
HAL Id: lirmm-03035798
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03035798

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An ECC-Based Repair Approach with an Offset-Repair
CAM for Mitigating the MBUs Affecting Repair CAM

Panagiota Papavramidou, Michael Nicolaidis, Patrick Girard

To cite this version:
Panagiota Papavramidou, Michael Nicolaidis, Patrick Girard. An ECC-Based Repair Approach with
an Offset-Repair CAM for Mitigating the MBUs Affecting Repair CAM. IOLTS 2020 - 26th IEEE
International Symposium on On-Line Testing and Robust System Design, Jul 2020, Napoli, Italy.
pp.1-6, �10.1109/IOLTS50870.2020.9159731�. �lirmm-03035798�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03035798
https://hal.archives-ouvertes.fr

An ECC-Based Repair Approach with an Offset-Repair

CAM for Mitigating the MBUs Affecting Repair CAM
Panagiota Papavramidou1 Michael Nicolaidis1 Patrick Girard2

1 TIMA CNRS, Grenoble INP, UJF Grenoble, France 2LIRMM, CNRS, Univ. of Montpellier, France

Abstract— Memory system reliability is a serious concern in many

systems today and is becoming more worrisome as technology scales,

system size grows and the demand of aggressive voltage reduction

becomes more stringent. Thus, disposing of memory repair

architectures with strong fault tolerance capability at low cost is

desirable. In this context, Error Correcting Codes (ECC)-based repair

techniques were proposed and offer aggressive reduction of the repair

cost for high defect densities. However, an important issue in advanced

process nodes is the fact that, single particles induce Single-Event

Upsets (SEUs) in neighbor memory cells, thus leading to Multi-Cell

Upsets (MCUs) and Multi-Bit Upsets (MBUs), when they occur in the

same memory word. In the case of memories, there exist efficient

approaches mitigating this kind of MBUs, in particular the use of

interleaving. But when a memory is repaired, the impact of MBUs on

the circuitry repairing the faulty memory words should also be

mitigated. This can be done by using a repair Content Addressable

Memory (CAM) having interleaving at its data-words, or else an Offset

CAM. In this paper we present and evaluate a novel repair approach

that uses the Offset CAM in ECC-based Memory Repair and hence

permits the mitigation of the MBUs affecting it.

Keywords—Memory repair; MBUs; Mitigation; Offset CAM;

ECC;

I. INTRODUCTION

mbedded memories occupy the largest part of modern SoCs
and include even larger proportions of transistors. As

memories are designed very tightly to the technology limits,
they are more prone to failures than other circuits. Thus, they
concentrate the large majority of manufacturing faults,
affecting yield adversely. Hence, memory Built-In Self-Repair
[1-6] is mandatory for maintaining acceptable fabrication yield.
Moreover, field failures (soft-errors caused by neutrons and
alpha particles, weak-cell faults activated during very-low
voltage modes, circuit aging and wear-out) are a critical
concern in memories. Thus, ECC becomes also compulsory for
maintaining acceptable reliability. As ECC can cope with both
field and fabrication faults, we can use it for mitigating both
fault types and reduce cost. In particular, ECC can be used to
manage faults affecting a single cell of a memory word and a
CAM can be used to repair only memory words comprising
two or more faulty cells. This is the ECC-based repair
technique introduced in [7] and it has been shown in [8] that
even for extremely high defect densities, it achieves high yield
at much lower than the conventional repair area and power
cost. Furthermore, in advanced deep submicron technologies,
single-particle strikes induce often in memories Multi-cell
Upsets (MCUs) [9-11] and thus multiple errors at the same
memory word (usually double errors) known as Multi-Bit
Upsets (MBUs). One way for mitigating MBUs is to use an
ECC that is able to correct multiple errors, but such codes
induce quite higher hardware and speed penalty than the
Single-Error Correcting and Double-Error Detecting
(SECDED) codes that are usually used. Therefore, to avoid
these extra costs, the mitigation of MBUs in memories is
commonly performed by using interleaving [12],[13], which

consists in a memory architecture that has at each row more
than one word and two consecutive bits that do not belong to
the same word. Moreover, the systems which use CAMs for
repairing memory words employ the same ECC for the words
stored in the memory and in the CAM, but they do not use
interleaving in repair CAMs. However, the impact of MBUs on
them should also be mitigated, since the scaling down of
CMOS technology and the growth of memory’s size has
increased the susceptibility of cells to particle radiation. Hence,
to maintain a high level reliability, the use of interleaving is
required as well as in the data-words of the repair CAM.
 The only existing CAM architecture with interleaving at its

data-words is the Offset CAM [14]. This is a CAM with several

data-words in a row. During each memory read/write operation,

an associative search is performed by means of the row address

used at the current memory read/write. Each time a Hit occurs at

this associative search, the selection of a data-word at the CAM

row that is selected by this Hit is done by using as Offset bits the

row address of the current memory operation.

 So far, there is no approach using Offset-CAM for repair. To

this end, we present a detailed scheme of memory repair by

means of an Offset-CAM in order to mitigate the MBUs that affect

it. In this repair, for each memory row that comprises faulty

word(s), its row address is stored in the tag field of an Offset Repair-

CAM row and its faulty word(s) is stored in the corresponding data-

word(s) of this Offset CAM row. The position of the faulty word(s)

in the memory row should be the same with the position of the data-

word(s) in the Offset Repair-CAM row. Evidently, for a correct

repair, it is required to avoid using any row of the Offset CAM that

has faulty tag field and avoid repairing a faulty memory word by a

faulty data-word of the Offset CAM. Hence the specific Offset

CAM row should be fault-free at all positions that the memory row

has faulty word(s). To achieve this, a fault diagnosis on the memory

must be firstly performed, during which the faulty words of every

memory row are identified and stored in a block. Afterwards, this

information is used in order to select for each of these memory

rows, a CAM row that will be able to repair its faulty words. In

order to realise this repair, the architecture is completed by adding

some flag cells at the CAM rows and two counters for visiting the

rows and data-words of the Offset CAM. These are presented in

section II of the paper. If we add a circuit in which will be stored the

information related to the memory fault diagnosis, a significant

extra hardware cost will be induced. Thus, to avoid this, we

developed an approach (presented in section III) that achieves

storing this information at the Offset CAM and using it later to

determine the rows that will be used to repair the faulty memory

words. Note that, discovering an approach that will determine

consistently which row of the Offset Repair-CAM should be

selected for repairing any faulty memory row is not obvious. Such

an approach is presented in section IV. Here we study the ECC-

based repair case but the approach can be applied also in

conventional CAM repair. Section V presents the development of

mathematical expressions for the yield computation of the proposed

E

architecture followed by the evaluations in Section VI. The paper

ends with conclusions in Section VII. Hereafter, the Offset Repair-

CAM row will be mentioned as R-ORC and the Offset Repair-

CAM as ORC.

II. PARTS AND FLAG CELLS OF THE OFFSET REPAIR CAM

 Each R-ORC will comprise:
- A Tag Field, in which the address of the faulty memory row that

will be repaired by this R-ORC will be stored;

- A number of Data-Words (equal to the number of words of each

memory row), which will be used to write and read the data of the

faulty words of the memory row repaired by this R-ORC;

- A flag cell (flag2) at each data-word of the R-ORC, which will be set

initially to 0. This will indicate that its data-word is not yet selected for

repairing a faulty memory word and it will be set to 1 when its data-

word is selected for repairing a faulty memory word.

Also the following flag cells are added in each R-ORC:

- Flag1 (and Flag1’): A flag cell (flag1) is put at each data-word of

the R-ORC and it will indicate if this data-word is faulty or not. All

flag1 cells of the ORC are initialized to 1. This flag indicates that its

related data-word is fault-free. Each time during the test-session of

the ORC a data-word is detected to be faulty (i.e. one or more of its

data cells or its flag2 cell is faulty) its flag1 cell is set to 0 thus

indicating that this data-word is faulty. But, if a flag1 is faulty, it

may indicate that a bad CAM data-word is good for performing

repair and finally it will result in incorrect repair. This issue is

resolved by replicating the flag1 and adding a second flag1’.

- Flag.t: If the tag field of an R-ORC is detected to be faulty, the

flag cells flag1 and flag1’ of each data-word of this R-ORC will be

set to 0. This will guaranty during each memory operation that none

of these data-words will be selected, even if the Hit signal of this R-

ORC is activated and thus induces a certain level of safety. But for

each R-ORC whose tag-field is faulty or all its data-words are

faulty, no row address will be set at its tag field and the tag field of

this R-ORC will comprise the all 0s’ state. Thus, during a memory

operation at which the row address is equal to the all 0s’ state, the

Hit signals of several of these R-ORC will be activated. Also, even

if the row address is not equal to the all 0s’ state, the Hit signals of

some of the R-ORC that have faulty tag field can be activated due

to the faults in their tag field. These situations are disturbing as the

activation of multiple Hit signals will lead to an incorrect operation

of the ORC and will affect accordingly the execution of the current

memory operation. Thus, for avoiding these situations, the flag.t cell

is added at the tag field of each R-ORC. It is set initially to 1 and

each time the tag field of an R-ORC is detected to be faulty, its

flag.t is set to 0. Furthermore, at the end of the test session of the

ORC, if a row with all its data-words faulty is found, the flag.t of this

row is also set to the value 0. When the value of flag.t is 0, the Hit

signal of its tag-field is deactivated by means of an AND gate whose

inputs are the Hit signal generated by the tag field and the content of

its flag.t. Also if a designer prefers to ensure this kind of mitigation

even if flag.t signal is faulty, a second flag.t’ can be added.

FAC-Counter and Word-Counter: During the executions of

applications, the operations of the CAMs are performed by means

of an associative search that identifies if a tag field of the CAM

comprises the memory address used by the current operation. On

the other hand, before starting the execution of an application,

certain memory addresses should be stored at the tag fields of the

CAM. But in this case the selection of a CAM row for storing a

memory address at its tag field cannot be done by means of an

associative search. In [14], authors show that the selection of an R-

ORC can be done by means of a counter, which is referred to as

FAC-Counter and an address decoder, which is referred to as FAC

Address-Decoder. The number of bits of this FAC-Counter and the

number of inputs of this FAC Address-Decoder are equal to

log2(rc), where rc is the total number of the R-ORC. For visiting the

R-ORC, the FAC-Counter will be initialized to the all-0s’ state

and then it will be incremented. Each time a row is visited, it may

also be needed to visit its data-words. For this reason, we add a

second counter (mentioned as Word-Counter), whose size is equal

to the number of bits of the column address of the memory under

repair. The Word-Counter is also initialized to the all-0s’ state and

then it is incremented. We also add a multiplexer on the inputs of

the Column Decoder of the ORC. During any regular memory

read/write operation, the ORC uses the associative search and the

multiplexer connects the column address of this read/write

operation to the inputs of the Column Decoder. Whereas, during

the operations in which the R-ORC and their data-words are

needed to be visited by means of the FAC-Counter and the Word-

Counter, this multiplexer connects the outputs of the Word-

Counter to the inputs of the Column Decoder.

III. FAULT DIAGNOSIS FOR THE MEMORY AND THE OFFSET CAM

A. Fault-Diagnosis for the Offset Repair-CAM

 In order to avoid using faulty ORC locations to repair faulty

memory words, before starting the memory test-and-diagnosis

session, the test session of the ORC will be executed. As

mentioned, each time a faulty part of the R-ORC is detected its

related flag cell is set to 0. At the end of this test session, all the tag

fields and data-words of the ORC are initialized to all-0’s state.

B. Memory Fault-Diagnosis Requirements for Achieving

Consistent Repair

 As far as it concerns the repair of faulty memory words, the faulty

words of each memory row should be repaired by the fault-free data-

words of an R-ORC. Thus, for achieving a consistent repair, we should

know the positions of all faulty memory words comprised at each row.

But during the execution of the memory test algorithm, in many cases

the faulty words of the same row will be detected in different sequences

of the test algorithm. Consequently, when a faulty memory word will be

detected, it will not be possible to know if this memory row contains

only this one or also some other faulty words and at which positions.

Hence, selecting the R-ORC that would be appropriate for repairing

this faulty memory word (and others that may belong to the same row)

will not be possible. So, to achieve a consistent selection of the R-ORC

that will repair the faulty memory words, a complete diagnosis of the

faulty words at each memory row will be required. We set up an

approach that uses the ORC to perform the diagnosis and afterwards

analyse the diagnosis data stored in it for determining which R-ORC

should be selected for repairing the faulty words of each memory row.

C. Complete Diagnosis of the Faulty Words in each memory row

with the help of the Offset Repair-CAM

 During the execution of the memory test algorithm, all the

data of the faulty words in each memory row are stored in the

ORC, with the following approach:

A- When a faulty word is detected, the FAC-Counter visits

each R-ORC (by being reset to the all-0s’ state and

incrementing by 1) and at each visited row, it is verified from

the value of its flag.t cell if its tag field is fault-free. If this is

the case, incrementing the FAC-Counter is stopped and the

Word-Counter visits each data-word of this row by also being

reset and incrementing by 1. Each visited data-word is checked

if it is fault-free, from the values of its flag1 and flag1’. If a

visited data-word is fault-free, incrementing the Word-Counter

is stopped. However, if no fault-free data-word is found, even

when all data-words of the current R-ORC have been visited,

the searches performed by means of the FAC-Counter and the

Word-Counter are re-executed until finding a row having fault-

free tag field and at least one fault-free data-word. When such

a row is found, the operations of step A are stopped until

another faulty memory word is detected by the test algorithm.

The information concerning this faulty memory word is stored

in the first fault-free data-word of the R-ORC (selected by the

FAC-Counter and the Word-Counter).

B- When a faulty memory word is detected by the memory test

algorithm, the row-address of this faulty memory word is

stored in the tag field of the R-ORC, selected by the current

value of the FAC-Counter. If the value of the memory Column

Address (C@) is equal to k (where 0 ≤ k ≤ (rw-1) and rw is the

number of words per row), the kth output of the Column

Decoder is equal to 1 and its other outputs are equal to 0 (the

Column Decoder of the memory has rw outputs). Also, the

word selected by this value (C@ = k) of C@ is the kth word of

the memory row selected by the current value of the row

address. Therefore, the output of the memory Column Decoder

gives the position of the currently detected faulty memory word in

its row and thus, in the data-word of the ORC that is selected by

the FAC-Counter and the Word-Counter, we write these values.

As already mentioned, the positions of all faulty words

belonging to the same memory row should be stored at the fault-

free data-word of the same R-ORC. This goal is achieved in the

following way. Each time a faulty memory word is detected, the

selection of an R-ORC by the FAC-Counter is deactivated and

the associative search at the ORC is activated. If the positions of

some other faulty memory word(s) of the same memory row

with the currently detected faulty word are already stored at

some R-ORC, the associative search will activate the Hit signal

for the corresponding R-ORC and the position of the currently

detected faulty memory word should be stored at the first fault-

free data-word of the R-ORC that is selected by this Hit signal.

To perform this, the bits of this data-word of the R-ORC will be

read and each one will be “ORed” with the corresponding bit of

the outputs of the Column Decoder of the memory. The result of

this operation will be written back at this data-word. If no Hit

occurs, the selection of an R-ORC by the current content of the

FAC-Counter will be activated again and the position of the

current detected faulty memory word will be stored in the first

fault-free data-word of this row. Afterwards, step A- will be

executed and when a new faulty memory word will be detected

by the test algorithm, step B- will follow and so on…

IV. CONSISTENT REPAIR ESTABLISHMENT WITH THE OFFSET-

CAM

A. Constraints concerning the Consistent Selection of the Offset Repair-

CAM Data-Words that will Repair the Faulty Memory Words

 At the end of the above diagnosis process, for each memory row

containing some faulty word(s), the row address of these words is

stored in the tag field of an R-ORC and the position(s) of these

faulty word(s) are stored in the first fault-free data-word of this R-

ORC. Subsequently, each R-ORC that contains the positions of

the faulty words of a memory row will be visited and these

positions will be used to find an R-ORC that could be selected for

repairing the faulty words of the memory row. Let us note that:

a) An R-ORC may be able to repair the faulty words comprised at

some different memory rows;

b) A memory row comprising certain faulty words may be

reparable by several rows of the ORC. Then, if for a subset of

memory rows that contain faulty words and certain rows of the

ORC are selected for repairing them, it is possible that certain

other memory rows comprising faulty words may be repaired only

by the rows belonging to this selected subset of R-ORC. In this

case, the repair will fail. We can make so that the repair succeed, if

for some of the already repaired memory rows, we select some

other R-ORC that would be able to repair them and liberate the

R-ORC that are able to repair the non-repaired memory rows.

However, in certain cases, achieving a successful repair can be

quite complicate and may require several exchanges of the

selected R-ORC that repair various memory words. Thus, for a

consistent selection of the R-ORC that will lead to a successful

repair, we developed several processes. The initial one is simple

and achieves the repair of the majority of memory rows

comprising faulty words. Then, we developed certain other

processes that perform exchanges of the selected R-ORC and

establish the repair of the minority of faulty memory words (that

the initial process did not achieve).

B. Processes for achieving the Repair Accomplishment

FIRST PROCESS: The FAC-Counter visits the R-ORC until it

finds the first row with the following four properties:

i) it has a fault-free tag field (flag.t=1 and flag.t’ = 1)

ii) it has fault free data-word(s) (flag1 =1 and flag1’ = 1)

iii) it contains the positions of the faulty words of a memory

row. (The first fault-free data-word that is found is checked if there

are one or more cells having value equal to 1. If such a cell is found,

it is concluded that this row contains positions of faulty words of a

memory row and the 1s’ indicate the positions of the faulty words).

iv) it is not yet selected for repairing a memory row (verified by

checking that all of the flag2 cells of its data-words are equal to 0).
This row will be mentioned as Row.1. First of all, it is checked if
Row.1 is able to repair the faulty words of the memory row
whose positions are contained in this Row.1. To ensure this
property we have to verify if all the data-words of Row.1 that have
the same positions (i) with the faulty words of the memory row are
fault-free. In order to achieve this, we use the following three
circuitries and they are the same that we will use when we will have to
verify if another row (Row.X) is able to repair the faulty words of
the memory row whose positions are contained in Row.1. This is
because we want to avoid any additional hardware. The procedure is
depicted in Figure 1, by replacing the Row.X by Row.1 or Row.2
according to the row that we want to check if it can repair Row.1.
a) The first circuitry includes rw AND gates for performing the
function dw.1(i)=flag1(i)ANDflag1'(i) of the pair of flag cells
flag1, flag1' of each data-word i of Row.1. The output of these
AND identifies the fault-free data-words of Row.1.
b) The second circuitry includes rw AND gates that perform
the operations dw(i)=dw.1(i)ANDdb.1(i), where dw.1(i) is the
output of one of the above AND gates and db.1(i) is the value
of the bit b(i) of the first fault-free data-word of Row.1.

c) Finally, the above circuits are completed by a comparator that

compares the value dw(i) (output of circuit b) against dw.1(i) for all

positions (i) that are used. Thus, when the output of this comparator is

equal to 1, it can be shown that Row.1 can repair the faulty words

of the memory row whose positions are contained in this and it

is selected to do this. If this is not the case, the following

procedure is performed.

Figure 1: Procedure for verifying if a Row.X can repair the faulty memory

words stored in Row.1

 Before all, as in some cases of the repair process it is required

to store the states of an R-ORC that comprises the positions of

the faulty words of a memory row in a register (say Row.X), we

add two registers in our circuit (Registers R1 and R2 that will

be mentioned hereafter as R1 and R2) having each of them four

parts (part-F, part-RA, part-DWB, part-DW), as shown in

Figure 2 (X stands for 1 or 2). Part-F is for storing the current

content of the FAC-Counter (that selects Row.X); part-RA

stores the current content of the tag field of Row.X (equal to the

address of the memory row whose positions of faulty words are

stored at Row.X); part-DWB stores the current content of the

first fault-free data-word of Row.X; and at each bit i of the part-

DW is stored the result of the operation dw.X(i)=

flag1(i)ANDflag1'(i), for each word i of this Row.X. So, each

time an R-ORC (Row.1) is not found able to repair the faulty

words of a memory row whose positions are contained in this,

the related states of Row.1 are stored at the parts of R1.

F RA DWB DW

Content of

FAC-Counter

when shows

this Row.X

Content of

Tag-Field of

Row.X

Content of

first

fault-free dw

of Row.X

dw.X(i)=flag1(i)ANDflag1’(i)

for each word i of the Row.X

log2rc

rc: # of R-ORC

#bits of Row

Address

#bits of each

data-word

#of words per row

Figure 2: The fields of Register RX

Then, the next R-ORC (Row.2) is searched, which should be a

row that: has not yet been selected for repairing a memory row

and either comprises the positions of the faulty words of a

memory row or it does not comprise the positions of the faulty

words of any memory row. If this is valid, the states related to

Row.2 are stored at the parts of R2. After that, Row.2 is checked

if it is able to repair the faulty words of a memory row whose

positions are stored in Row.1 and R1. In order to verify this, we

use the circuitries a, b and c) presented above and the procedure

is the one that is shown in figure 1. If this is the case, it means

that Row.2 can repair all the faulty words of the memory row

stored in the Row.1 and R1 and it is selected for making so. This

selection is achieved by: i) putting the content of the tag field of

Row.1 at the tag field of Row.2. ii) setting flag2=1 for each

data-word of Row.2. FIRST PROCESS is depicted in figure 3.

Figure 3: FIRST PROCESS for consistent selection of Row.X to repair the

faulty memory words stored in Row.1

In the case where Row.2 comprises already the positions of the

faulty words of another memory row, it is checked similarly if

Row.1 is able to repair the faulty words of the memory row

whose positions are stored at Row.2. If this is confirmed, the

states of Row.2 that are stored at R2 are put also at Row.1.

SECOND PROCESS: So far, during the FIRST PROCESS,
the rows of the ORC that were able to repair any faulty
memory row have been identified and they have been selected
for this repair. Therefore, if at the end of the FIRST PROCESS,
there exist some faulty memory rows that are not repaired, it
means that it is impossible to repair them by means of an R-ORC
that is not yet selected. So, the only approaches that could find a
solution to repair any non-yet-repaired faulty memory row are
those that make some exchanges at the rows of the ORC that have
been selected for repairing some faulty memory rows.
A first step before making such exchanges consists in finding
each R-ORC that meets the four (i-iv) properties of the FIRST
PROCESS. Each time such a row is found, it is mentioned as
Row.1 and its related states are stored at R1. Then, for
repairing successfully the faulty words of the memory row
whose positions are stored at Row.1, an R-ORC is searched
(Row.2) that has been selected for repairing a row and:
a) Row.2 is able to repair the faulty-words of a memory row

whose positions were stored at Row.1 (and R1);

b) Row.1 is able to repair the faulty words of a memory row

which are repaired by Row.2 and whose states are stored at R2.

These properties are verified by the circuitries a), b) and c) of the

FIRST PROCESS and the procedure shown in Fig.1. If they are

both valid, then Row.1 is selected to repair the faulty words of a

memory row that were repaired by Row.2; and Row.2 is selected to

repair the faulty words of a memory row whose positions were

stored in Row.1. In figure 4 is shown the SECOND PROCESS.

 Which words of Row.X are fault-free?
dw.X(i)=flag1(i)ANDflag1’(i) = 1?

Flags of each data-word i of Row.X

Yes

dw(i)=dw.X(i)ANDdb.1(i) =1?
db.1(i): the value of bit i of first fault-free data-

word of Row.1

Yes

 Are fault-free words of Row.X at same positions as

faulty mem words?
Compare dw(i) and dw.X(i) =1?for all i

Yes
Row.X can repair the faulty words

stored in Row1

CAN ROW.X REPAIR
WORDS STORED IN ROW.1?

Row.X selected to repair words stored in R1

Tag_field(Row.1) -> Tag_field(Row.X)
flag2=1 for all datawords(Row.X)

FAC-Counter and Word-Counter find

Row.1 that meets the 4 properties

Can Row.1 repair the

faulty words contained

in it?

Yes

No

Store the states of

Row.1 in Register R1

FAC-Counter and Word-Counter find a

Row.2 not yet selected for repair

States of Row.2 stored in Register R2

Can Row.2 repair

Row.1?
Yes

No

Figure 4: SECOND PROCESS for the repairing non-yet-repaired faulty

memory row

After the execution of the FIRST and SECOND PPROCESSES,

the large majority of the faulty memory rows will be repaired.

Therefore, the probability that some faulty memory rows remain

unrepairable will be low. However, if for a Row.1 is not found any

row mentioned as Row.2 for which the above properties are valid,

the faulty memory row whose positions are stored at Row.1 should

be repaired by another approach, which performs the exchange

between 3 or 4 rows of the ORC. However, these approaches are

not described in this paper due to lack of space.

V. YIELD ESTIMATION

 We performed some experiments to evaluate the proposed
approach. To this purpose, we had to derive the corresponding
yield computation expression for achieving a target yield (e.g.
YSOC = 95%) and then find the area and power penalties of the
proposed architecture. Let rm be the number of memory rows,
rc the number of ORC rows and rw the number of words per
memory row and also per R-ORC. In ECC-based repair a
memory word is considered to be “good” if it has 0 or 1 faulty
cell in the data bits and 0 faulty cell in the tag and flag bits. PGmw
is the probability that a memory word is good, PGcw is the
probability that an ORC data-word is good, PGct the probability
that a tag field of the ORC is fault-free and PGcf the probability
that the flag cells of an R-ORC are fault-free. Also Nb stands
for the number of bits of the memory and of ORC data-word.
Then: PGmw= PGcw =(1 – Pf)

Nb
+ Nb(1-Pf)

Nb-1
Pf

Where Pf is the probability of a memory cell to be faulty;
PGct = (1 – Pf)

rN@
 and PGcf = (1 – Pf)

qNf

N@ is the number of cells of the tag field of the ORC, r is the
ratio (tag cell area)/(SRAM cell area), Nf the number of its flag
cells and q the ratio (flag cell area)/(SRAM cell area). Q is the

number of faulty memory rows. If Q is larger than the number
rc of the ORC rows, the repair is impossible. Thus, in the
computation of the repair probability, we have to take into
account values of Q that do not exceed rc, i.e. 0Qrc. We
take the partition of the number Q of faulty memory rows into
groups such that each group comprises faulty rows with a
given number of faulty words. In each faulty row the minimum
number of faulty words is 1 and the maximum is rw. Thus, it
can exist rw groups with k(1), k(2),…, k(rw) faulty rows where
each row of the group of k(1) faulty rows has 1 faulty word, each
row of group k(2) faulty rows has 2 faulty words,…, each row of
group k(rw) faulty rows has rw faulty words. As Q is the total
number of faulty memory rows, all sets of integers k(1),k(2),
…,k(rw) are satisfying the condition k(1)+k(2)+….+k(rw)=Q
and k(i) are in the domain 0≤k(i)≤Q for every i(1,2,..,rw}.

A. Computing the Probability for Repairing all the k(1),

k(2),…, k(rw) faulty rows

 As already mentioned, for a successful repair, an R-ORC

with fault-free tag field must exist for each faulty row of each

group consisting of k(i) faulty rows (with i faulty words each),

and the i words of this R-ORC corresponding to the i faulty

words of the faulty memory row have to be fault-free while the

rest of the words of this CAM row can be faulty or fault-free.

Then, the probability that a memory row has i faulty words (and

the remaining rw-i words are fault-free) and can have any

possible positions over the rw words of the row, is equal to:

a) 𝑃𝐺𝑚𝑤
𝑟𝑤−𝑖(1 − 𝑃𝐺𝑚𝑤)𝑖 𝑟𝑤!

(𝑟𝑤−𝑖)!𝑖!
, where (rw!/(rw-i)!i!) is the

number of all possible positions of i faulty words among rw words

of the row (i.e. number of permutations of i elements over rw).

For an R-ORC to be able to repair the i faulty words of a

memory row, it should:

b) Have fault-free tag field (which probability is equal to PGct)

c) Have fault-free flag cells (which probability is equal to PGcf)

d) Have fault-free data-words (with probability equal to PGcw
i
)

e) Each of the remaining (rw-i) data-words of this R-ORC can

be fault-free or faulty

f)The i fault-free words of this R-ORC have the same

positions as the i faulty words of this memory row.

From points b), c) d), e) and f) the probability that an R-ORC

can repair the i faulty words of a memory row is found to be

equal to the product PGctPGcfPGcw
i
. And so, the probability that a

memory row has i faulty words and these are repaired by an R-

ORC is given by the expression:

(PGmw
rw-i

(1-PGmw)
i
rw!/(rw-i)!i!)PGctPGcfPGcw

i

Then, the probability that there are k(i) memory rows having

each i faulty words and being repairable by the ORC, is:

[𝑃𝐺𝑚𝑤
𝑟𝑤−𝑖(1 − 𝑃𝐺𝑚𝑤)𝑖

𝑟𝑤!

(𝑟𝑤 − 𝑖)! 𝑖!
]

𝑘(𝑖)

∙ [𝑃𝐺𝑐𝑡𝑃𝐺𝑐𝑓𝑃𝐺𝑐𝑤
𝑖]

𝑘(𝑖)

Furthermore, the probability that k(1), k(2),....k(rw) specified

memory rows comprise respectively (1, 2,…rw) faulty words

and can be repaired by the ORC, is equal to the product:

 ∏ (
𝑟𝑤!𝑃𝐺𝑚𝑤

𝑟𝑤−𝑖(1−𝑃𝐺𝑚𝑤)𝑖𝑃𝐺𝑐𝑡𝑃𝐺𝑐𝑓𝑃𝐺𝑐𝑤
𝑖

(𝑟𝑤−𝑖)!𝑖!
)

𝑘(𝑖)

 𝑟𝑤
𝑖=1

The above product should be multiplied by the probability

PGmw
rw(rm-Q)

 of the remained rm – (k(1)+…+ k(rw)) memory

rows with rw words per row and 0 faulty words.

𝑃𝐺𝑚𝑤
𝑟𝑤(𝑟𝑚−𝑄) ∏ (

𝑟𝑤!𝑃𝐺𝑚𝑤
𝑟𝑤−𝑖(1−𝑃𝐺𝑚𝑤)𝑖𝑃𝐺𝑐𝑡𝑃𝐺𝑐𝑓𝑃𝐺𝑐𝑤

𝑖

(𝑟𝑤−𝑖)!𝑖!

𝑟𝑤
𝑖=1)𝑘(𝑖) (1)

FAC-Counter and Word-Counter find

Row.1 that meets the 4 properties

Can Row.2 repair the faulty

words of a memory row

whose positions are contained

in Row.1 and R1 ?

 Yes

 No

Store the states of

Row.2 in Register R2

 Yes

Store the states of

Row.1 in Register R1

FAC-Counter and Word-Counter find

a Row.2 that has been selected for

 repairing a memory row

Can Row.1 repair the faulty

words of a memory row which

are repaired by Row.2 and

whose positions are stored in

R2 ?

Row.1 selected to repair words repaired by Row.2 and stored in R2

and Row.2 selected to repair faulty words stored in Row.1 and R1:
Tag_field(Row.1) -> Tag_field (Row.2)

Tag_field(Row.2) -> Tag_field (Row.1)

flag2=1 for all selected datawords(Row.X)

In order to find the total repair probability for all possible

distributions of the k(1),k(2),…k(rw) faulty memory rows over

the rm memory rows, we need to determine the number of

these distributions. In mathematics, there is an expression for

the number of combinations of k elements over r elements (k-

out-of-n), but it cannot be used here because the subsets of

elements associated to two different distributions of k-out-of-n

elements are different, while the subsets of two different

distributions of the k(1),k(2),… faulty memory rows over the

rm memory rows are not necessarily different. We have shown

that, with Q=k(1)+k(2)+…+k(rw), the total number of all

possible distributions of k(1), k(2),…., k(rw) faulty rows over

the rm memory rows is given by the expression:

rm!/((rm - Q)! k(1)!k(2)!…k(rw)! (2)

Proof is long and is not included in this paper due to space

limitations. By using the product symbol , the expression (2)

can be written as:
𝑟𝑚!

(𝑟𝑚−𝑄)! ∏ 𝑘(𝑖)!𝑟𝑤
𝑖=1

 (3)

The above expression is used also for the number of all

possible distributions of the rc R-ORC that can repair

respectively the k(1),k(2),…,k(rw) faulty memory rows:

𝑟𝑐!

(𝑟𝑐−𝑄)! ∏ 𝑘(𝑖)!𝑟𝑤
𝑖=1

 (4)

For a given value of Q, the memory repair probability will be

equal to the sum of the repair probabilities for all possible sets

k(1), k(2),.., k(rw) with sum equal to Q. For the total repair

probability, we should take the sum of the probabilities for

each value of Q with repair probability other than 0. Thus, the

total repair probability is given by the following expression:

𝑃 = ∑ ∑
𝑟𝑚! 𝑟𝑐! (𝑃𝐺𝑚𝑤

𝑟𝑤)(𝑟𝑚−𝑄)

(𝑟𝑚 − 𝑄)! (𝑟𝑐 − 𝑄)!

 𝑘(1)+..𝑘(𝑟𝑤)=𝑄

𝑟𝑐

𝑄=0

∙

∏ [
1

(𝑘(𝑖)!)2
(

𝑟𝑤!

(𝑟𝑤−𝑖)!𝑖!
𝑃𝐺𝑚𝑤

𝑟𝑤−𝑖(1 − 𝑃𝐺𝑚𝑤)𝑖𝑃𝐺𝑐𝑡𝑃𝐺𝑐𝑓𝑃𝐺𝑐𝑤
𝑖)

𝑘(𝑖)

]𝑟𝑤
𝑖=1 (5)

VI. EVALUATIONS

 In this section, we evaluate the efficiency of the proposed

approach. We used the analytical computation expression

developed in section V to determine the sizes of the ORC for

the target yield (95%). Then we employed the CACTI tool to

find the area and power overhead of our approach. We

considered an SRAM with 131072 words of (32 data bits+7

bits ECC SECDED) and interleaving of 2 words per row and

the same interleaving for the ORC. Table 1 depicts the area

and power costs for the case of the conventional CAM-based

repair, the case of ECC-based Repair with a regular CAM

without interleaving and the proposed scheme of ECC-based

Repair with the ORC. Column 1 gives the defect density (Pf)

and columns 2 to 7 give the area and power cost of each case

compared to the area and power of the SRAM.

TABLE 1. Area and power cost for Conventional CAM-based Repair,
ECC-based repair and ECC-based repair with an ORC

 Conventional

Repair with CAM
ECC based Repair

with Ordinary CAM

ECC-based Repair

with Offset CAM
Pf

%A %P %A %P %A %P

3*10
-4

6.4915% 383.47% 0.099% 5.164%

0.12% 6.799%

10
-3 22.3% 1278% 0.447% 31.37%

0.575% 39.97%

3*10-3 70.044% 3790% 3.92% 243.28%

5.05%

302.76%

The area and power penalty of the ECC-based Repair with the

ORC compared to the conventional CAM-based repair

remains still significantly low. With respect to ECC-based

repair with regular CAM it is increased 20%-30%. However

the very low cost and the increase of reliability permit this

increase of penalties. In addition to this we can assume that the

protection of an ECC (SECDED) in combination with the 2

word interleaving is equivalent to an ECC double error

correcting triple error detecting code (DECTED). According to

[14], the area penalty increase of our approach is similar to that of

an ECC DECTED, the power penalty is almost the half and the

latency of the advanced ECC is larger. Thus, the proposed repair

approach with ORC achieves similar mitigation of MBUs with

less overhead than advanced error correcting codes.

VII. CONCLUSION

 As scaling progresses, circuits become more sensitive to particle

radiation and need more protection. Accordingly, in the case of

CAM-based memory repair, techniques for mitigating the MBUs

in repair CAMs should also be used and more specifically, in

order to avoid, the expensive multiple error correcting codes, the

interleaving should be applied. The interleaving in CAMs can be

achieved by means of the Offset CAM however so far, no such

repair approach exists and it requires performing some specific

processes for the memory fault diagnosis and the selection of the

R-ORC that will repair the faulty words. We proposed a novel

efficient approach performing repair by means of an ORC and we

resolved the complex issues related to this kind of repair. This

strong multibit error protection in the case of ECC-based ORC

can be used to improve memory manufacturability and yield since

it permits aggressively scale cell sizes while maintaining robust

operation at low area and power cost in comparison with

conventional CAM-based memory repair.

REFERENCES

[1] Zorian Y., “Embedded Memory Test & Repair:Infrastructure IP for SOC
Yield“, IEEE ITC, 2002.

[2] Sawada K. et al, “Built-In self repair circuit for High Density ASMIC”,
IEEE Custom Integrated Circuits Conference, 1999.

[3] Benso A. et al,“A Family of Self-Repair SRAM Cores”, IEEE IOLTW,
2000.

[4] Kim I. et al, "Built-In self repair for embedded high-density SRAM",
IEEE ITC, 1998

[5] V. Schober, S. Paul, O. Picot, “Memory Built-In Self-Repair using
redundant words”, IEEE ITC, 2001.

[6] M. Nicolaidis, N. Achouri, S. Boutobza, “Optimal reconfiguration
functions for column or data-bit built-in self-repair”, IEEE DATE, 2003

[7] M. Nicolaidis, N. Achouri, L. Anghel, ”A Diversified Memory Built In
Self Repair Approach for Nanotechnologies”,IEEE VTS, 2004.

[8] P. Papavramidou, “Memory repair for high fault rates”, IEEE ITC, 2016.
[9] J.Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of

multi-bit soft error events in advanced SRAMs,” IEEE Int. Electron
Devices Meeting IEDM’03 Digest, Dec. 2003.

[10] A.M.Chugg, et al.,“A statistical technique to measure the proportion of
MBU’s in SEE testing,” IEEE Trans. Nucl. Sci., vol. 53, no. 6, pt. 1, pp.
3139–3144, Dec. 2006.

[11] D. Giot, et al “Heavy ion testing and 3-D simulations of multiple cell upset
in 65 nm standard SRAMs,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pt. p.
2048–2054, Aug. 2008.

[12] S. Baeg, et al "SRAM interleaving distance selection with a soft error failure
model", IEEE Trans. Nucl. Sci., vol. 56, no. 4, pp. 2111-2118, Aug. 2009.

[13] P. Reviriego, et al "Protection of Memories Suffering MCUs Through the Selection of
the Optimal Interleaving Distance", IEEE Trans. Nucl. Sci., vol. 57, no. 4, Aug.. 2010.

[14] T. Kohonen, "Content-Addressable Memories", Springer-Verlag, 1987.
[15] Jangwoo Kim et al, “Multibit Error Tolerant Caches Using Two-

dimensional Error Coding, IEEE/ACM MICRO Jan. 2007

javascript:void(0)

