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Abstract— Memory system reliability is a serious concern in many 

systems today and is becoming more worrisome as technology scales, 

system size grows and the demand of aggressive voltage reduction 

becomes more stringent. Thus, disposing of memory repair 

architectures with strong fault tolerance capability at low cost is 

desirable. In this context, Error Correcting Codes (ECC)-based repair 

techniques were proposed and offer aggressive reduction of the repair 

cost for high defect densities. However, an important issue in advanced 

process nodes is the fact that, single particles induce Single-Event 

Upsets (SEUs) in neighbor memory cells, thus leading to Multi-Cell 

Upsets (MCUs) and Multi-Bit Upsets (MBUs), when they occur in the 

same memory word. In the case of memories, there exist efficient 

approaches mitigating this kind of MBUs, in particular the use of 

interleaving. But when a memory is repaired, the impact of MBUs on 

the circuitry repairing the faulty memory words should also be 

mitigated. This can be done by using a repair Content Addressable 

Memory (CAM) having interleaving at its data-words, or else an Offset 

CAM. In this paper we present and evaluate a novel repair approach 

that uses the Offset CAM in ECC-based Memory Repair and hence 

permits the mitigation of the MBUs affecting it.  

Keywords—Memory repair; MBUs; Mitigation; Offset CAM; 

ECC;  

I. INTRODUCTION 

mbedded memories occupy the largest part of modern SoCs 
and include even larger proportions of transistors. As 

memories are designed very tightly to the technology limits, 
they are more prone to failures than other circuits. Thus, they 
concentrate the large majority of manufacturing faults, 
affecting yield adversely. Hence, memory Built-In Self-Repair 
[1-6] is mandatory for maintaining acceptable fabrication yield. 
Moreover, field failures (soft-errors caused by neutrons and 
alpha particles, weak-cell faults activated during very-low 
voltage modes, circuit aging and wear-out) are a critical 
concern in memories. Thus, ECC becomes also compulsory for 
maintaining acceptable reliability. As ECC can cope with both 
field and fabrication faults, we can use it for mitigating both 
fault types and reduce cost. In particular, ECC can be used to 
manage faults affecting a single cell of a memory word and a 
CAM can be used to repair only memory words comprising 
two or more faulty cells. This is the ECC-based repair 
technique introduced in [7] and it has been shown in [8] that 
even for extremely high defect densities, it achieves high yield 
at much lower than the conventional repair area and power 
cost. Furthermore, in advanced deep submicron technologies, 
single-particle strikes induce often in memories Multi-cell 
Upsets (MCUs) [9-11] and thus multiple errors at the same 
memory word (usually double errors) known as Multi-Bit 
Upsets (MBUs). One way for mitigating MBUs is to use an 
ECC that is able to correct multiple errors, but such codes 
induce quite higher hardware and speed penalty than the 
Single-Error Correcting and Double-Error Detecting 
(SECDED) codes that are usually used. Therefore, to avoid 
these extra costs, the mitigation of MBUs in memories is 
commonly performed by using interleaving [12],[13], which 

consists in a memory architecture that has at each row more 
than one word and two consecutive bits that do not belong to 
the same word. Moreover, the systems which use CAMs for 
repairing memory words employ the same ECC for the words 
stored in the memory and in the CAM, but they do not use 
interleaving in repair CAMs. However, the impact of MBUs on 
them should also be mitigated, since the scaling down of 
CMOS technology and the growth of memory’s size has 
increased the susceptibility of cells to particle radiation. Hence, 
to maintain a high level reliability, the use of interleaving is 
required as well as in the data-words of the repair CAM. 
    The only existing CAM architecture with interleaving at its 

data-words is the Offset CAM [14]. This is a CAM with several 

data-words in a row. During each memory read/write operation, 

an associative search is performed by means of the row address 

used at the current memory read/write. Each time a Hit occurs at 

this associative search, the selection of a data-word at the CAM 

row that is selected by this Hit is done by using as Offset bits the 

row address of the current memory operation.  

    So far, there is no approach using Offset-CAM for repair. To 

this end, we present a detailed scheme of memory repair by 

means of an Offset-CAM in order to mitigate the MBUs that affect 

it. In this repair, for each memory row that comprises faulty 

word(s), its row address is stored in the tag field of an Offset Repair-

CAM row and its faulty word(s) is stored in the corresponding data-

word(s) of this Offset CAM row. The position of the faulty word(s) 

in the memory row should be the same with the position of the data-

word(s) in the Offset Repair-CAM row. Evidently, for a correct 

repair, it is required to avoid using any row of the Offset CAM that 

has faulty tag field and avoid repairing a faulty memory word by a 

faulty data-word of the Offset CAM. Hence the specific Offset 

CAM row should be fault-free at all positions that the memory row 

has faulty word(s). To achieve this, a fault diagnosis on the memory 

must be firstly performed, during which the faulty words of every 

memory row are identified and stored in a block. Afterwards, this 

information is used in order to select for each of these memory 

rows, a CAM row that will be able to repair its faulty words. In 

order to realise this repair, the architecture is completed by adding 

some flag cells at the CAM rows and two counters for visiting the 

rows and data-words of the Offset CAM. These are presented in 

section II of the paper. If we add a circuit in which will be stored the 

information related to the memory fault diagnosis, a significant 

extra hardware cost will be induced. Thus, to avoid this, we 

developed an approach (presented in section III) that achieves 

storing this information at the Offset CAM and using it later to 

determine the rows that will be used to repair the faulty memory 

words. Note that, discovering an approach that will determine 

consistently which row of the Offset Repair-CAM should be 

selected for repairing any faulty memory row is not obvious. Such 

an approach is presented in section IV. Here we study the ECC-

based repair case but the approach can be applied also in 

conventional CAM repair. Section V presents the development of 

mathematical expressions for the yield computation of the proposed 
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architecture followed by the evaluations in Section VI. The paper 

ends with conclusions in Section VII. Hereafter, the Offset Repair-

CAM row will be mentioned as R-ORC and the Offset Repair-

CAM as ORC.  

II. PARTS AND FLAG CELLS OF THE OFFSET REPAIR CAM 

   Each R-ORC will comprise:  
- A Tag Field, in which the address of the faulty memory row that 

will be repaired by this R-ORC will be stored;  

- A number of Data-Words (equal to the number of words of each 

memory row), which will be used to write and read the data of the 

faulty words of the memory row repaired by this R-ORC;  

- A flag cell (flag2) at each data-word of the R-ORC, which will be set 

initially to 0. This will indicate that its data-word is not yet selected for 

repairing a faulty memory word and it will be set to 1 when its data-

word is selected for repairing a faulty memory word. 

Also the following flag cells are added in each R-ORC:  

- Flag1 (and Flag1’): A flag cell (flag1) is put at each data-word of 

the R-ORC and it will indicate if this data-word is faulty or not. All 

flag1 cells of the ORC are initialized to 1. This flag indicates that its 

related data-word is fault-free. Each time during the test-session of 

the ORC a data-word is detected to be faulty (i.e. one or more of its 

data cells or its flag2 cell is faulty) its flag1 cell is set to 0 thus 

indicating that this data-word is faulty. But, if a flag1 is faulty, it 

may indicate that a bad CAM data-word is good for performing 

repair and finally it will result in incorrect repair. This issue is 

resolved by replicating the flag1 and adding a second flag1’.   

- Flag.t: If the tag field of an R-ORC is detected to be faulty, the 

flag cells flag1 and flag1’ of each data-word of this R-ORC will be 

set to 0. This will guaranty during each memory operation that none 

of these data-words will be selected, even if the Hit signal of this R-

ORC is activated and thus induces a certain level of safety. But for 

each R-ORC whose tag-field is faulty or all its data-words are 

faulty, no row address will be set at its tag field and the tag field of 

this R-ORC will comprise the all 0s’ state. Thus, during a memory 

operation at which the row address is equal to the all 0s’ state, the 

Hit signals of several of these R-ORC will be activated. Also, even 

if the row address is not equal to the all 0s’ state, the Hit signals of 

some of the R-ORC that have faulty tag field can be activated due 

to the faults in their tag field. These situations are disturbing as the 

activation of multiple Hit signals will lead to an incorrect operation 

of the ORC and will affect accordingly the execution of the current 

memory operation. Thus, for avoiding these situations, the flag.t cell 

is added at the tag field of each R-ORC. It is set initially to 1 and 

each time the tag field of an R-ORC is detected to be faulty, its 

flag.t is set to 0. Furthermore, at the end of the test session of the 

ORC, if a row with all its data-words faulty is found, the flag.t of this 

row is also set to the value 0. When the value of flag.t is 0, the Hit 

signal of its tag-field is deactivated by means of an AND gate whose 

inputs are the Hit signal generated by the tag field and the content of 

its flag.t. Also if a designer prefers to ensure this kind of mitigation 

even if flag.t signal is faulty, a second flag.t’ can be added. 

FAC-Counter and Word-Counter: During the executions of 

applications, the operations of the CAMs are performed by means 

of an associative search that identifies if a tag field of the CAM 

comprises the memory address used by the current operation. On 

the other hand, before starting the execution of an application, 

certain memory addresses should be stored at the tag fields of the 

CAM. But in this case the selection of a CAM row for storing a 

memory address at its tag field cannot be done by means of an 

associative search. In [14], authors show that the selection of an R-

ORC can be done by means of a counter, which is referred to as 

FAC-Counter and an address decoder, which is referred to as FAC 

Address-Decoder. The number of bits of this FAC-Counter and the 

number of inputs of this FAC Address-Decoder are equal to 

log2(rc), where rc is the total number of the R-ORC. For visiting the 

R-ORC, the FAC-Counter will be initialized to the all-0s’ state 

and then it will be incremented. Each time a row is visited, it may 

also be needed to visit its data-words. For this reason, we add a 

second counter (mentioned as Word-Counter), whose size is equal 

to the number of bits of the column address of the memory under 

repair. The Word-Counter is also initialized to the all-0s’ state and 

then it is incremented. We also add a multiplexer on the inputs of 

the Column Decoder of the ORC. During any regular memory 

read/write operation, the ORC uses the associative search and the 

multiplexer connects the column address of this read/write 

operation to the inputs of the Column Decoder. Whereas, during 

the operations in which the R-ORC and their data-words are 

needed to be visited by means of the FAC-Counter and the Word-

Counter, this multiplexer connects the outputs of the Word-

Counter to the inputs of the Column Decoder.  

III. FAULT DIAGNOSIS FOR THE MEMORY AND THE OFFSET CAM  

A. Fault-Diagnosis for the Offset Repair-CAM  

   In order to avoid using faulty ORC locations to repair faulty 

memory words, before starting the memory test-and-diagnosis 

session, the test session of the ORC will be executed. As 

mentioned, each time a faulty part of the R-ORC is detected its 

related flag cell is set to 0. At the end of this test session, all the tag 

fields and data-words of the ORC are initialized to all-0’s state. 

B. Memory Fault-Diagnosis Requirements for Achieving 

Consistent Repair 

   As far as it concerns the repair of faulty memory words, the faulty 

words of each memory row should be repaired by the fault-free data-

words of an R-ORC. Thus, for achieving a consistent repair, we should 

know the positions of all faulty memory words comprised at each row. 

But during the execution of the memory test algorithm, in many cases 

the faulty words of the same row will be detected in different sequences 

of the test algorithm. Consequently, when a faulty memory word will be 

detected, it will not be possible to know if this memory row contains 

only this one or also some other faulty words and at which positions. 

Hence, selecting the R-ORC that would be appropriate for repairing 

this faulty memory word (and others that may belong to the same row) 

will not be possible. So, to achieve a consistent selection of the R-ORC 

that will repair the faulty memory words, a complete diagnosis of the 

faulty words at each memory row will be required. We set up an 

approach that uses the ORC to perform the diagnosis and afterwards 

analyse the diagnosis data stored in it for determining which R-ORC 

should be selected for repairing the faulty words of each memory row.  

C. Complete Diagnosis of the Faulty Words in each memory row 

with the help of the Offset Repair-CAM  
 

   During the execution of the memory test algorithm, all the 

data of the faulty words in each memory row are stored in the 

ORC, with the following approach: 

A- When a faulty word is detected, the FAC-Counter visits 

each R-ORC (by being reset to the all-0s’ state and 

incrementing by 1) and at each visited row, it is verified from 



the value of its flag.t cell if its tag field is fault-free. If this is 

the case, incrementing the FAC-Counter is stopped and the 

Word-Counter visits each data-word of this row by also being 

reset and incrementing by 1. Each visited data-word is checked 

if it is fault-free, from the values of its flag1 and flag1’. If a 

visited data-word is fault-free, incrementing the Word-Counter 

is stopped. However, if no fault-free data-word is found, even 

when all data-words of the current R-ORC have been visited, 

the searches performed by means of the FAC-Counter and the 

Word-Counter are re-executed until finding a row having fault-

free tag field and at least one fault-free data-word. When such 

a row is found, the operations of step A are stopped until 

another faulty memory word is detected by the test algorithm. 

The information concerning this faulty memory word is stored 

in the first fault-free data-word of the R-ORC (selected by the 

FAC-Counter and the Word-Counter).  

B- When a faulty memory word is detected by the memory test 

algorithm, the row-address of this faulty memory word is 

stored in the tag field of the R-ORC, selected by the current 

value of the FAC-Counter. If the value of the memory Column 

Address (C@) is equal to k (where 0 ≤ k ≤ (rw-1) and rw is the 

number of words per row), the kth output of the Column 

Decoder is equal to 1 and its other outputs are equal to 0 (the 

Column Decoder of the memory has rw outputs). Also, the 

word selected by this value (C@ = k) of C@ is the kth word of 

the memory row selected by the current value of the row 

address. Therefore, the output of the memory Column Decoder 

gives the position of the currently detected faulty memory word in 

its row and thus, in the data-word of the ORC that is selected by 

the FAC-Counter and the Word-Counter, we write these values. 

As already mentioned, the positions of all faulty words 

belonging to the same memory row should be stored at the fault-

free data-word of the same R-ORC. This goal is achieved in the 

following way. Each time a faulty memory word is detected, the 

selection of an R-ORC by the FAC-Counter is deactivated and 

the associative search at the ORC is activated. If the positions of 

some other faulty memory word(s) of the same memory row 

with the currently detected faulty word are already stored at 

some R-ORC, the associative search will activate the Hit signal 

for the corresponding R-ORC and the position of the currently 

detected faulty memory word should be stored at the first fault-

free data-word of the R-ORC that is selected by this Hit signal. 

To perform this, the bits of this data-word of the R-ORC will be 

read and each one will be “ORed” with the corresponding bit of 

the outputs of the Column Decoder of the memory. The result of 

this operation will be written back at this data-word. If no Hit 

occurs, the selection of an R-ORC by the current content of the 

FAC-Counter will be activated again and the position of the 

current detected faulty memory word will be stored in the first 

fault-free data-word of this row. Afterwards, step A- will be 

executed and when a new faulty memory word will be detected 

by the test algorithm, step B- will follow and so on… 

IV. CONSISTENT REPAIR ESTABLISHMENT WITH THE OFFSET-

CAM 

A. Constraints concerning the Consistent Selection of the Offset Repair-

CAM Data-Words that will Repair the Faulty Memory Words 

   At the end of the above diagnosis process, for each memory row 

containing some faulty word(s), the row address of these words is 

stored in the tag field of an R-ORC and the position(s) of these 

faulty word(s) are stored in the first fault-free data-word of this R-

ORC. Subsequently, each R-ORC that contains the positions of 

the faulty words of a memory row will be visited and these 

positions will be used to find an R-ORC that could be selected for 

repairing the faulty words of the memory row. Let us note that:  

a) An R-ORC may be able to repair the faulty words comprised at 

some different memory rows; 

b) A memory row comprising certain faulty words may be 

reparable by several rows of the ORC. Then, if for a subset of 

memory rows that contain faulty words and certain rows of the 

ORC are selected for repairing them, it is possible that certain 

other memory rows comprising faulty words may be repaired only 

by the rows belonging to this selected subset of R-ORC. In this 

case, the repair will fail. We can make so that the repair succeed, if 

for some of the already repaired memory rows, we select some 

other R-ORC that would be able to repair them and liberate the 

R-ORC that are able to repair the non-repaired memory rows. 

However, in certain cases, achieving a successful repair can be 

quite complicate and may require several exchanges of the 

selected R-ORC that repair various memory words. Thus, for a 

consistent selection of the R-ORC that will lead to a successful 

repair, we developed several processes. The initial one is simple 

and achieves the repair of the majority of memory rows 

comprising faulty words. Then, we developed certain other 

processes that perform exchanges of the selected R-ORC and 

establish the repair of the minority of faulty memory words (that 

the initial process did not achieve).   

B. Processes for achieving the Repair Accomplishment 

FIRST PROCESS: The FAC-Counter visits the R-ORC until it 

finds the first row with the following four properties: 

i) it has a fault-free tag field (flag.t=1 and flag.t’ = 1) 

ii) it has fault free data-word(s) (flag1 =1 and flag1’ = 1)  

iii) it contains the positions of the faulty words of a memory 

row. (The first fault-free data-word that is found is checked if there 

are one or more cells having value equal to 1. If such a cell is found, 

it is concluded that this row contains positions of faulty words of a 

memory row and the 1s’ indicate the positions of the faulty words).  

iv) it is not yet selected for repairing a memory row (verified by 

checking that all of the flag2 cells of its data-words are equal to 0).  
This row will be mentioned as Row.1. First of all, it is checked if 
Row.1 is able to repair the faulty words of the memory row 
whose positions are contained in this Row.1. To ensure this 
property we have to verify if all the data-words of Row.1 that have 
the same positions (i) with the faulty words of the memory row are 
fault-free. In order to achieve this, we use the following three 
circuitries and they are the same that we will use when we will have to 
verify if another row (Row.X) is able to repair the faulty words of 
the memory row whose positions are contained in Row.1. This is 
because we want to avoid any additional hardware. The procedure is 
depicted in Figure 1, by replacing the Row.X by Row.1 or Row.2 
according to the row that we want to check if it can repair Row.1.  
a) The first circuitry includes rw AND gates for performing the 
function dw.1(i)=flag1(i)ANDflag1'(i) of the pair of flag cells 
flag1, flag1' of each data-word i of Row.1. The output of these 
AND identifies the fault-free data-words of Row.1.  
b) The second circuitry includes rw AND gates that perform 
the operations dw(i)=dw.1(i)ANDdb.1(i), where dw.1(i) is the 
output of one of the above AND gates and db.1(i) is the value 
of the bit b(i) of the first fault-free data-word of Row.1.  



c) Finally, the above circuits are completed by a comparator that 

compares the value dw(i) (output of circuit b) against dw.1(i) for all 

positions (i) that are used. Thus, when the output of this comparator is 

equal to 1, it can be shown that Row.1 can repair the faulty words 

of the memory row whose positions are contained in this and it 

is selected to do this. If this is not the case, the following 

procedure is performed. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Procedure for verifying if a Row.X can repair the faulty memory 

words stored in Row.1 
 

   Before all, as in some cases of the repair process it is required 

to store the states of an R-ORC that comprises the positions of 

the faulty words of a memory row in a register (say Row.X), we 

add two registers in our circuit (Registers R1 and R2 that will 

be mentioned hereafter as R1 and R2) having each of them four 

parts (part-F, part-RA, part-DWB, part-DW), as shown in 

Figure 2 (X stands for 1 or 2). Part-F is for storing the current 

content of the FAC-Counter (that selects Row.X); part-RA 

stores the current content of the tag field of Row.X (equal to the 

address of the memory row whose positions of faulty words are 

stored at Row.X); part-DWB stores the current content of the 

first fault-free data-word of Row.X; and at each bit i of the part-

DW is stored the result of the operation dw.X(i)= 

flag1(i)ANDflag1'(i), for each word i of this Row.X. So, each 

time an R-ORC (Row.1) is not found able to repair the faulty 

words of a memory row whose positions are contained in this, 

the related states of Row.1 are stored at the parts of R1.  
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Figure 2: The fields of Register RX 
 

Then, the next R-ORC (Row.2) is searched, which should be a 

row that: has not yet been selected for repairing a memory row 

and either comprises the positions of the faulty words of a 

memory row or it does not comprise the positions of the faulty 

words of any memory row. If this is valid, the states related to 

Row.2 are stored at the parts of R2. After that, Row.2 is checked 

if it is able to repair the faulty words of a memory row whose 

positions are stored in Row.1 and R1. In order to verify this, we 

use the circuitries a, b and c) presented above and the procedure 

is the one that is shown in figure 1. If this is the case, it means 

that Row.2 can repair all the faulty words of the memory row 

stored in the Row.1 and R1 and it is selected for making so. This 

selection is achieved by: i) putting the content of the tag field of 

Row.1 at the tag field of Row.2. ii) setting flag2=1 for each 

data-word of Row.2. FIRST PROCESS is depicted in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3: FIRST PROCESS for consistent selection of Row.X to repair the 

faulty memory words stored in Row.1 
 

In the case where Row.2 comprises already the positions of the 

faulty words of another memory row, it is checked similarly if 

Row.1 is able to repair the faulty words of the memory row 

whose positions are stored at Row.2. If this is confirmed, the 

states of Row.2 that are stored at R2 are put also at Row.1.  
 

SECOND PROCESS: So far, during the FIRST PROCESS, 
the rows of the ORC that were able to repair any faulty 
memory row have been identified and they have been selected 
for this repair. Therefore, if at the end of the FIRST PROCESS, 
there exist some faulty memory rows that are not repaired, it 
means that it is impossible to repair them by means of an R-ORC 
that is not yet selected. So, the only approaches that could find a 
solution to repair any non-yet-repaired faulty memory row are 
those that make some exchanges at the rows of the ORC that have 
been selected for repairing some faulty memory rows.  
A first step before making such exchanges consists in finding 
each R-ORC that meets the four (i-iv) properties of the FIRST 
PROCESS. Each time such a row is found, it is mentioned as 
Row.1 and its related states are stored at R1. Then, for 
repairing successfully the faulty words of the memory row 
whose positions are stored at Row.1, an R-ORC is searched 
(Row.2) that has been selected for repairing a row and: 
a) Row.2 is able to repair the faulty-words of a memory row 

whose positions were stored at Row.1 (and R1); 

b) Row.1 is able to repair the faulty words of a memory row 

which are repaired by Row.2 and whose states are stored at R2. 

These properties are verified by the circuitries a), b) and c) of the 

FIRST PROCESS and the procedure shown in Fig.1. If they are 

both valid, then Row.1 is selected to repair the faulty words of a 

memory row that were repaired by Row.2; and Row.2 is selected to 

repair the faulty words of a memory row whose positions were 

stored in Row.1. In figure 4 is shown the SECOND PROCESS. 
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Figure 4: SECOND PROCESS for the repairing non-yet-repaired faulty 

memory row 
 

After the execution of the FIRST and SECOND PPROCESSES, 

the large majority of the faulty memory rows will be repaired. 

Therefore, the probability that some faulty memory rows remain 

unrepairable will be low. However, if for a Row.1 is not found any 

row mentioned as Row.2 for which the above properties are valid, 

the faulty memory row whose positions are stored at Row.1 should 

be repaired by another approach, which performs the exchange 

between 3 or 4 rows of the ORC. However, these approaches are 

not described in this paper due to lack of space.  

V. YIELD ESTIMATION 

    We performed some experiments to evaluate the proposed 
approach. To this purpose, we had to derive the corresponding 
yield computation expression for achieving a target yield (e.g. 
YSOC = 95%) and then find the area and power penalties of the 
proposed architecture. Let rm be the number of memory rows, 
rc the number of ORC rows and rw the number of words per 
memory row and also per R-ORC. In ECC-based repair a 
memory word is considered to be “good” if it has 0 or 1 faulty 
cell in the data bits and 0 faulty cell in the tag and flag bits. PGmw 
is the probability that a memory word is good, PGcw is the 
probability that an ORC data-word is good, PGct the probability 
that a tag field of the ORC is fault-free and PGcf the probability 
that the flag cells of an R-ORC are fault-free. Also Nb stands 
for the number of bits of the memory and of ORC data-word. 
Then:                PGmw= PGcw =(1 – Pf)

Nb 
+ Nb(1-Pf)

Nb-1
Pf   

Where Pf is the probability of a memory cell to be faulty;   
PGct = (1 – Pf)

rN@
   and    PGcf = (1 – Pf)

qNf 

N@ is the number of cells of the tag field of the ORC, r is the 
ratio (tag cell area)/(SRAM cell area), Nf the number of its flag 
cells and q the ratio (flag cell area)/(SRAM cell area). Q is the 

number of faulty memory rows. If Q is larger than the number 
rc of the ORC rows, the repair is impossible. Thus, in the 
computation of the repair probability, we have to take into 
account values of Q that do not exceed rc, i.e. 0Qrc. We 
take the partition of the number Q of faulty memory rows into 
groups such that each group comprises faulty rows with a 
given number of faulty words. In each faulty row the minimum 
number of faulty words is 1 and the maximum is rw. Thus, it 
can exist rw groups with k(1), k(2),…, k(rw) faulty rows where 
each row of the group of k(1) faulty rows has 1 faulty word, each 
row of group k(2) faulty rows has 2 faulty words,…, each row of 
group k(rw) faulty rows has rw faulty words. As Q is the total 
number of faulty memory rows, all sets of integers k(1),k(2), 
…,k(rw) are satisfying the condition k(1)+k(2)+….+k(rw)=Q 
and  k(i) are in the domain 0≤k(i)≤Q for every i(1,2,..,rw}. 

A. Computing the Probability for Repairing all the k(1), 

k(2),…,  k(rw) faulty rows 

   As already mentioned, for a successful repair, an R-ORC 

with fault-free tag field must exist for each faulty row of each 

group consisting of k(i) faulty rows (with i faulty words each), 

and the i words of this R-ORC corresponding to the i faulty 

words of the faulty memory row have to be fault-free while the 

rest of the words of this CAM row can be faulty or fault-free. 

Then, the probability that a memory row has i faulty words (and 

the remaining rw-i words are fault-free) and can have any 

possible positions over the rw words of the row, is equal to:  

a) 𝑃𝐺𝑚𝑤
𝑟𝑤−𝑖(1 − 𝑃𝐺𝑚𝑤)𝑖 𝑟𝑤!

(𝑟𝑤−𝑖)!𝑖!
,  where (rw!/(rw-i)!i!) is the 

number of all possible positions of i faulty words among rw words 

of the row (i.e. number of permutations of i elements over rw). 

For an R-ORC to be able to repair the i faulty words of a 

memory row, it should:  

b) Have fault-free tag field (which probability is equal to PGct) 

c) Have fault-free flag cells (which probability is equal to PGcf) 

d) Have fault-free data-words (with probability equal to PGcw
i
)  

e) Each of the remaining (rw-i) data-words of this R-ORC can 

be fault-free or faulty  

f)The i fault-free words of this R-ORC have the same 

positions as the i faulty words of this memory row.  

From points b), c) d), e) and f) the probability that an R-ORC 

can repair the i faulty words of a memory row is found to be 

equal to the product PGctPGcfPGcw
i
. And so, the probability that a 

memory row has i faulty words and these are repaired by an R-

ORC is given by the expression:  

(PGmw
rw-i

(1-PGmw)
i 
rw!/(rw-i)!i!)PGctPGcfPGcw

i
 

Then, the probability that there are k(i) memory rows having 

each i faulty words and being repairable by the ORC, is: 

[𝑃𝐺𝑚𝑤
𝑟𝑤−𝑖(1 − 𝑃𝐺𝑚𝑤)𝑖

𝑟𝑤!

(𝑟𝑤 − 𝑖)! 𝑖!
]

𝑘(𝑖)

∙ [𝑃𝐺𝑐𝑡𝑃𝐺𝑐𝑓𝑃𝐺𝑐𝑤
𝑖 ]

𝑘(𝑖)
 

Furthermore, the probability that k(1), k(2),....k(rw) specified 

memory rows comprise respectively (1, 2,…rw) faulty words 

and can be repaired by the ORC, is equal to the product:   

                       ∏ (
𝑟𝑤!𝑃𝐺𝑚𝑤

𝑟𝑤−𝑖(1−𝑃𝐺𝑚𝑤)𝑖𝑃𝐺𝑐𝑡𝑃𝐺𝑐𝑓𝑃𝐺𝑐𝑤
𝑖

(𝑟𝑤−𝑖)!𝑖!
)

𝑘(𝑖)

  𝑟𝑤
𝑖=1    

The above product should be multiplied by the probability 

PGmw
rw(rm-Q)

 of the remained rm – (k(1)+…+ k(rw)) memory 

rows with rw words per row and 0 faulty words.  

𝑃𝐺𝑚𝑤
𝑟𝑤(𝑟𝑚−𝑄) ∏ (

𝑟𝑤!𝑃𝐺𝑚𝑤
𝑟𝑤−𝑖(1−𝑃𝐺𝑚𝑤)𝑖𝑃𝐺𝑐𝑡𝑃𝐺𝑐𝑓𝑃𝐺𝑐𝑤

𝑖

(𝑟𝑤−𝑖)!𝑖!

𝑟𝑤
𝑖=1 )𝑘(𝑖)      (1) 

 

FAC-Counter and Word-Counter find 

Row.1   that meets the 4 properties

Can Row.2 repair the faulty 

words of a memory row 

whose positions are contained 

in Row.1 and R1  ?

 Yes

 No

Store the states of 

Row.2 in Register  R2

 Yes

Store the states of 

Row.1 in Register  R1

FAC-Counter and Word-Counter find 

a Row.2 that has been selected for 

 repairing a memory row

Can Row.1 repair the faulty 

words of a memory row which 

are repaired by Row.2 and 

whose positions are stored in 

R2  ?

Row.1 selected to repair words repaired by Row.2 and stored in R2 

and Row.2 selected to repair faulty words stored in Row.1 and R1:   
Tag_field(Row.1) -> Tag_field  (Row.2)

Tag_field(Row.2) -> Tag_field  (Row.1)

flag2=1 for all selected datawords(  Row.X)



In order to find the total repair probability for all possible 

distributions of the k(1),k(2),…k(rw) faulty memory rows over 

the rm memory rows, we need to determine the number of 

these distributions. In mathematics, there is an expression for 

the number of combinations of k elements over r elements (k-

out-of-n), but it cannot be used here because the subsets of 

elements associated to two different distributions of k-out-of-n 

elements are different, while the subsets of two different 

distributions of the k(1),k(2),… faulty memory rows over the 

rm memory rows are not necessarily different. We have shown 

that, with Q=k(1)+k(2)+…+k(rw), the total number of all 

possible distributions of k(1), k(2),…., k(rw) faulty rows over 

the rm memory rows is given by the expression:  

rm!/((rm - Q)! k(1)!k(2)!…k(rw)!  (2)  

Proof is long and is not included in this paper due to space 

limitations. By using the product symbol , the expression (2) 

can be written as:    
𝑟𝑚!

(𝑟𝑚−𝑄)! ∏ 𝑘(𝑖)!𝑟𝑤
𝑖=1

           (3) 

The above expression is used also for the number of all 

possible distributions of the rc R-ORC that can repair 

respectively the k(1),k(2),…,k(rw) faulty memory rows:  

                                 
𝑟𝑐!

(𝑟𝑐−𝑄)! ∏ 𝑘(𝑖)!𝑟𝑤
𝑖=1

           (4) 

For a given value of Q, the memory repair probability will be 

equal to the sum of the repair probabilities for all possible sets 

k(1), k(2),.., k(rw) with sum equal to Q. For the total repair 

probability, we should take the sum of the probabilities for 

each value of Q with repair probability other than 0. Thus, the 

total repair probability is given by the following expression: 

𝑃 = ∑ ∑
𝑟𝑚! 𝑟𝑐! (𝑃𝐺𝑚𝑤

𝑟𝑤 )(𝑟𝑚−𝑄)

(𝑟𝑚 − 𝑄)! (𝑟𝑐 − 𝑄)!
     

    𝑘(1)+..𝑘(𝑟𝑤)=𝑄

𝑟𝑐

𝑄=0

∙ 

∏ [
1

(𝑘(𝑖)!)2
(

𝑟𝑤!

(𝑟𝑤−𝑖)!𝑖!
𝑃𝐺𝑚𝑤

𝑟𝑤−𝑖(1 − 𝑃𝐺𝑚𝑤)𝑖𝑃𝐺𝑐𝑡𝑃𝐺𝑐𝑓𝑃𝐺𝑐𝑤
𝑖 )

𝑘(𝑖)

]𝑟𝑤
𝑖=1           (5) 

VI. EVALUATIONS 

   In this section, we evaluate the efficiency of the proposed 

approach. We used the analytical computation expression 

developed in section V to determine the sizes of the ORC for 

the target yield (95%). Then  we employed the CACTI tool to 

find the area and power overhead of our approach. We 

considered an SRAM with 131072 words of (32 data bits+7 

bits ECC SECDED) and interleaving of 2 words per row and 

the same interleaving for the ORC. Table 1 depicts the area 

and power costs for the case of the conventional CAM-based 

repair, the case of ECC-based Repair with a regular CAM 

without interleaving and the proposed scheme of ECC-based 

Repair with the ORC. Column 1 gives the defect density (Pf) 

and columns 2 to 7 give the area and power cost of each case 

compared to the area and power of the SRAM.  
 

TABLE 1. Area and power cost for Conventional CAM-based Repair,  
ECC-based repair and ECC-based repair with an ORC 

 

 Conventional 

Repair with CAM 
ECC based Repair 

with Ordinary CAM 

ECC-based Repair 

with Offset CAM 
Pf 

 

%A %P %A %P %A %P 

3*10
-4

 
6.4915% 383.47% 0.099% 5.164% 

 

0.12% 6.799% 

10
-3 22.3% 1278% 0.447% 31.37% 

 

0.575% 39.97% 

3*10-3 70.044% 3790% 3.92% 243.28% 

 

5.05% 
 

302.76% 

  

 

The area and power penalty of the ECC-based Repair with the 

ORC compared to the conventional CAM-based repair 

remains still significantly low. With respect to ECC-based 

repair with regular CAM it is increased 20%-30%. However 

the very low cost and the increase of reliability permit this 

increase of penalties. In addition to this we can assume that the 

protection of an ECC (SECDED) in combination with the 2 

word interleaving is equivalent to an ECC double error 

correcting triple error detecting code (DECTED). According to 

[14], the area penalty increase of our approach is similar to that of 

an ECC DECTED, the power penalty is almost the half and the 

latency of the advanced ECC is larger. Thus, the proposed repair 

approach with ORC achieves similar mitigation of MBUs with 

less overhead than advanced error correcting codes.  

VII. CONCLUSION  

   As scaling progresses, circuits become more sensitive to particle 

radiation and need more protection. Accordingly, in the case of 

CAM-based memory repair, techniques for mitigating the MBUs 

in repair CAMs should also be used and more specifically, in 

order to avoid, the expensive multiple error correcting codes, the 

interleaving should be applied. The interleaving in CAMs can be 

achieved by means of the Offset CAM however so far, no such 

repair approach exists and it requires performing some specific 

processes for the memory fault diagnosis and the selection of the 

R-ORC that will repair the faulty words. We proposed a novel 

efficient approach performing repair by means of an ORC and we 

resolved the complex issues related to this kind of repair. This 

strong multibit error protection in the case of ECC-based ORC 

can be used to improve memory manufacturability and yield since 

it permits aggressively scale cell sizes while maintaining robust 

operation at low area and power cost in comparison with 

conventional CAM-based memory repair. 
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