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Abstract: Multiple linear regression assumes an imperative role in supervised machine learning. In 2009, Harrow et al. [Phys.
Rev. Lett. 103, 150502 (2009)] showed that their Harrow Hassidim Lloyd (HHL) algorithm can be used to sample the solution of
a linear system Ax = b exponentially faster than any existing classical algorithm. The entire field of quantum machine learning
gained considerable traction after the discovery of this celebrated algorithm. However, effective practical applications and
experimental implementations of HHL are still sparse in the literature. Here, the authors demonstrate a potential practical utility
of HHL, in the context of regression analysis, using the remarkable fact that there exists a natural reduction of any multiple
linear regression problem to an equivalent linear systems problem. They put forward a 7-qubit quantum circuit design, motivated
from an earlier work by Cao et al. [Mol. Phys. 110, 1675 (2012)], to solve a three-variable regression problem, using only
elementary quantum gates. They also implement the group leaders optimisation algorithm (GLOA) [Mol. Phys. 109 (5), 761
(2011)] and elaborate on the advantages of using such stochastic algorithms in creating low-cost circuit approximations for the
Hamiltonian simulation. Further, they discuss their Qiskit simulation and explore certain generalisations to the circuit design.

1 Introduction
Quantum algorithms running on quantum computers aim at quickly
and efficiently solving several important computational problems
faster than classical algorithms running on classical computers [1–
11]. One key way in which quantum algorithms differ from
classical algorithms is that they utilise quantum mechanical
phenomena such as superposition and entanglement, that allows us
to work in exponentially large Hilbert spaces with only polynomial
overheads. This in turn, in some cases, allows for exponential
speed-ups in terms of algorithmic complexity [1].

In today's world, machine learning is primarily concerned with
the development of low-error models in order to make accurate
predictions possible by learning and inferring from training data
[12, 13]. It borrows heavily from the field of statistics in which
linear regression is one of the flagship tools. The theory of multiple
linear regression or more generally multivariate linear regression
was largely developed in the field of statistics in the pre-computer
era. It is one of the most well understood, versatile and
straightforward techniques in any statistician's toolbox. It is also an
important and practical supervised learning algorithm. Supervised
learning is where one has some labelled input data samples
{xi, yi}i = 1

N  (where xi's are the feature vectors and yi's are the
corresponding labels) and then based on some criteria (which
might depend on the context) chooses a mapping from the input set
X to the output set Y. That mapping can help to predict the
probable output corresponding to an input lying outside of the
training data sets. Multiple linear regression is similar in the sense
that given some training samples one identifies a closely fitting
hyperplane depending on the specific choice of a loss function (the
most common one being a quadratic loss function based on the
‘least squares’ method). Interestingly, any multiple regression
problem can be converted into an equivalent system of linear
equations problem or more specifically, a quantum linear systems
problem (QLSP) [14]. The process has been outlined using an
example in Section 3.

Suppose that we are given a system of N linear equations with
N unknowns, which can be expressed as Ax = b. Now, what we
are interested in, is: given a matrix A ∈ ℂN × N with a vector
b ∈ ℂN, find the solution x ∈ ℂN satisfying Ax = b (which is A−1b
if A is invertible), or else return a flag if no solution exists. This is
known as the linear systems problem (LSP). However, we will
consider only a special case of this general problem, in the form of
the QLSP [14, 15].

The quantum version of the LSP problem, the QLSP, can be
expressed as follows.

Let A be a N × N Hermitian matrix with a spectral norm
bounded by unity and a known condition number κ. The quantum
state on ⌈log N⌉ qubits b⟩ can be given by

b⟩ :=
∑i bi i⟩

∥ ∑i bi i⟩ ∥ (1)

and x⟩ by

x⟩ :=
∑i xi i⟩

∥ ∑i xi i⟩ ∥ (2)

where bi, xi are, respectively, the ith component of vectors b and x.
Given the matrix A (whose elements are accessed by an oracle) and
the state b⟩, an output state x~⟩ is such that ∥ x~⟩ − x⟩ ∥2 ≤ ϵ, with
some probability Ω(1) (practically at least 1/2) along with a binary
flag indicating ‘success’ or ‘failure’ [14].

The restrictions on Hermiticity and spectral norm can be
relaxed by noting that, even for a non-Hermitian matrix A, the
corresponding

0 A†

A 0
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matrix is Hermitian. This implies that we can instead solve the
linear system given by

0 A†

A 0
y = b

0 ,

which has the unique solution

y = 0
x

when A is invertible [4]. Also, any non-singular matrix can be
scaled appropriately to adhere to the given conditions on the
eigenspectrum. Note that the case when A is non-invertible has
already been excluded by the fact that a known finite condition
number exists for the matrix A.

In 2009, Harrow, Hassidim and Lloyd [4] put forward a
quantum algorithm (popularly known as the ‘HHL algorithm’) to
obtain information about the solution x of certain classes of linear
systems Ax = b. As we know, algorithms for finding the solutions
to linear systems of equations play an important role in
engineering, physics, chemistry, computer science and economics
apart from other areas. The HHL algorithm is highly celebrated in
the world of quantum algorithms and quantum machine learning,
but there is still a distinct lack of literature demonstrating practical
uses of the algorithm and their experimental implementations.
Experimentally implementing the HHL algorithm for solving an
arbitrary system of linear equations to a satisfactory degree of
accuracy remains an infeasible task even today, due to several
physical and theoretical restrictions imposed by the algorithm and
the currently accessible hardware. Our fundamental aim in this
paper is to put forth a neat technique to demonstrate how HHL can
be used for one of the most useful tools in statistical modelling –
multiple regression analysis. We show that there is a canonical
reduction of any multiple linear regression problem into a QLSP
that is thereafter amenable to a solution using HHL. It turns out
that, after slight modifications and classical pre-processing, the
circuit used for HHL can be used for multiple linear regression as
well. Here we should point out, in Scott Aaronson's words [16],
that the HHL algorithm is mostly a template for other quantum
algorithms and it has some caveats that must be kept in mind
during the circuit design and physical implementation step, to
preserve the exponential speedup offered by the algorithm.
Nonetheless, these issues are not always detrimental and can often
be overcome by appropriately preparing and justifying the circuit
design methodology for specific purposes, as we will do here.
There is another brief discussion related to these issues in the
conclusions section of the paper.

In Section 4, we present an application (in the context of
multiple regression) of a modified version of the earlier circuit
design by Cao et al. [17] which was meant for implementing the
HHL algorithm for a 4 × 4 linear system on real quantum
computers. This circuit requires only 7 qubits and it should be
simple enough to experimentally verify it if one gets access to a
quantum processor having logic gates with sufficiently low error
rates. Previously, Pan et al. demonstrated HHL on a 4-qubit NMR
quantum computer [18], so we believe that it will be easily possible
to experimentally implement the circuit we discuss, given the rapid
rise in the number of qubits in quantum computer chips, in the past
few years.

We also note that although HHL solves the QLSP for all
matrices A or

0 A†

A 0
,

it can be efficiently implemented only when they are sparse and
well-conditioned (the sparsity condition may be slightly relaxed)
[14]. In this context, ‘efficient’ means ‘at most polylogarithmic in
system size’. A N × N matrix is called s-sparse if it has at most s
non-zero entries in any row or column. We call it simply sparse if
it has at most poly(log N) entries per row [15]. We generally call a

matrix well-conditioned when its singular values lie between the
reciprocal of its condition number (1/κ) and 1 [4]. Condition
number κ of a matrix is the ratio of largest to smallest singular
value and is undefined when the smallest singular value of A is 0.
For Hermitian matrices, the eigenvalue magnitudes are equal to the
magnitudes of the respective singular values.

At this point, it is important to reiterate that unlike the output
A−1b of a classical linear system solver, the output copy of x~⟩ does
not provide access to the coordinates of A−1b. Nevertheless, it
allows for sampling from the solution vectors like ⟨x~ M x~⟩, where
M is a quantum-mechanical operator. This is one main difference
between solutions of the LSP and solutions of the QLSP. We
should also keep in mind that reading out the elements of x~⟩ in
itself takes O(N) time. Thus, a solution to QLSP might be useful
only in applications where just samples from the vector x~⟩ are
needed [4, 14, 15].

The best existing classical matrix inversion algorithm involves
the Gaussian elimination technique which takes O(N3) time. For s-
sparse and positive semi-definite A, the conjugate gradient
algorithm [19] can be used to find the solution vector x in
O(Nsκlog(1/ϵ)) time by minimising the quadratic error function
Ax − b 2, where s is the matrix sparsity, κ is the condition number

and ϵ is the desired precision parameter. On the other hand, the
HHL algorithm scales as O(log(N)s2κ2/ϵ), and is exponentially
faster in N but polynomially slower in s and κ. In 2010, Andris
Ambainis further improved the runtime of HHL to
O(κlog3 κlog N /ϵ) [20]. The exponentially worse slowdown in ε
was also eliminated by Childs et al. in 2017 [14] and it got
improved to O(sκpolylog(sκ /ϵ)) [15]. Since HHL has logarithmic
scaling only for sparse or low-rank matrices, in 2018, Wossnig et
al. [21] extended the HHL algorithm with quantum singular value
estimation and provided a quantum linear system algorithm for
dense matrices which achieves a polynomial improvement in time
complexity, that is, O( Npolylog(N)κ2/ϵ) (HHL retains its
logarithmic scaling only for sparse or low-rank matrices).
Furthermore, an exponential improvement is achievable with this
algorithm if the rank of A is polylogarithmic in the matrix
dimension.

Last but not least, we note that it is assumed that the state b⟩
can be efficiently constructed, i.e. prepared in ‘polylogarithmic
time’. In reality, however, efficient preparation of arbitrary
quantum states is hard and is subject to several constraints.

2 Harrow Hassidim Lloyd algorithm
The HHL algorithm consists of three major steps which we will
briefly discuss one by one. Initially, we begin with a Hermitian
matrix A and an input state b⟩ corresponding to our specific
system of linear equations. The assumption that A is Hermitian
may be dropped without loss of generality since we can instead
solve the linear system of equations given by

0 A†

A 0
y = b

0

which has the unique solution

y = 0
x

when A is invertible. This transformation does not alter the
condition number (ratio of the magnitudes of the largest and
smallest eigenvalues) of A [4, 14]. However, in the case our
original matrix A is not Hermitian, the transformed system with the
new matrix

0 A†

A 0

needs oracle access to the non-zero entries of the rows and
columns of A [14]. Since A is assumed to be Hermitian, it follows
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that eiAt is unitary. Here iAt and −iAt commute and hence
eiAte−iAt = eiAt − iAt = e0 = I. Moreover, eiAt shares all its
eigenvectors with A, while its eigenvalues are eiλjt if the
eigenvalues of A are taken to be λj. Suppose that uj⟩ are the
eigenvectors of A and λj are the corresponding eigenvalues. We
recall that we assumed all the eigenvalues to be of magnitude <1
(spectral norm is bounded by unity). As the eigenvalues λj are of
the form 0.a1a1a3… in binary [1, p. 222], we will use λj⟩ to refer to
a1a2a3…⟩. We know from the spectral theorem that every
Hermitian matrix has an orthonormal basis of eigenvectors. So, in
this context, A can be re-written as ∑ j λj uj⟩⟨uj  (via
eigendecomposition of A) and b⟩ as ∑ j β j u⟩ j.

2.1 Phase estimation

The quantum phase estimation algorithm performs the mapping
0⟩ ⊗ n C u⟩I 0⟩S ↦ φ~⟩C uI 0⟩S where u⟩ is an eigenvector of a

unitary operator U with an unknown eigenvalue ei2πφ [1]. φ~ is a t-
bit approximation of φ, where t is the number of qubits in the clock
register. The superscripts on the kets indicate the names of the
registers which store the corresponding states. In the HHL
algorithm, the input register begins with a superposition of
eigenvectors instead, i.e. b⟩ = ∑ j β j uj⟩ instead of a specific
eigenvector u⟩, and for us the unitary operator is eiAt. So, the phase
estimation circuit performs the mapping

0⟩ ⊗ n C b⟩I ↦ ∑
j = 1

N
β j uj⟩I λ

~
jt0

2π

C

where λ
~

j′s are the binary representations of the eigenvalues of A to
a tolerated precision. To be more explicit, here λ

~
j is represented as

b1b2b3…bt (t being number of qubits in the clock register) if the
actual binary equivalent of λj is of the form λ = 0.b1b2b3…. To
avoid the factor of 2π in the denominator, the ‘evolution time’ t0 is
generally chosen to be 2π. However, t0 may also be used to
‘normalise’ A (by re-scaling t0) in case the spectral norm of A
exceeds 1 [Ideally, we should know both the upper bound and the
lower bound of the eigenvalues, for effective re-scaling.
Furthermore, to get accurate estimates, we should attempt to spread
the possible values of λt over the whole 2π range.]. Additionally,
an important factor in the performance of the algorithm is the
condition number κ. As κ grows, A tends more and more towards a
non-invertible matrix, and the solutions become less and less stable
[4]. Matrices with large condition numbers are said to be ‘ill-
conditioned’. The HHL algorithm generally assumes that the
singular values of A lie between 1/κ and 1, which ensures that the
matrices we have to deal with are ‘well-conditioned’. Nonetheless,
there are methods to tackle ill-conditioned matrices and those have
been thoroughly discussed in the paper by Lloyd and co-workers
[4]. It is worth mentioning that in this step the ‘clock register’-
controlled Hamiltonian simulation gate U can be expressed as

∑k = 0
T − 1 τ⟩⟨τ C ⊗ eiAτt0/T, where T = 2t and evolution time

t0 = O(κ /ϵ). Interestingly choosing t0 = O(κ /ϵ) can at worse cause
an error of magnitude ϵ in the final state [4].

2.2 R λ
~−1

 rotation

A ‘clock register’ controlled σy-rotation of the ‘ancilla’ qubit
produces a normalised state of the form

∑
j = 1

N
β j uj⟩I λ

~
j⟩C 1 − C2

λ
~

j
2 0⟩ + C

λ
~

j
1⟩

S

These rotations, conditioned on respective λ
~

j, can be achieved by
the application of the

exp( − iθσy) = cos θ −sin θ
sin θ cos θ

operators where θ = cos−1 C /λ~ j . C is a scaling factor to prevent
the controlled rotation from being unphysical [15]. That is,
practically C < λmin is a safe choice, which may be more formally
stated as C = O(1/κ) [4] (Fig. 1). 

2.3 Uncomputation

In the final step, the inverse quantum phase estimation algorithm
sets back the clock register to ( 0⟩ ⊗ n)C and leaves the remaining
state as

∑
j = 1

N
β j uj⟩I 1 − C2

λ
~

j
2 0⟩ + C

λ
~

j
1⟩

S

Postselecting on the ancilla 1⟩S gives the final state
C∑ j = 1

N β j/λj uj⟩I [15]. The inverse of the Hermitian matrix A can
be written as ∑ j 1/λj uj⟩⟨uj , and hence A−1 b⟩ matches
∑ j = 1

N β j/λ
~

j uj⟩I. This outcome state, in the standard basis, is
component-wise proportional to the exact solution x of the system
Ax = b [17].

3 Linear regression utilising HHL
Linear regression models a linear relationship between a scalar
‘response’ variable and one or more ‘feature’ variables. Given a n-
unit data set {yi, xi1, …, xip}i = 1

n , a linear regression model assumes
that the relationship between the dependent variable y and a set of
p attributes, i.e. x = {x1, …, xp} is linear [12]. Essentially, the
model takes the form

yi = β0 + β1x1 + ⋯ + βpxip + ϵi = xi
Tβ + ϵi

Fig. 1  HHL algorithm schematic [The HHL algorithm schematic (Fig. 1) was generated using the TikZ code provided by Dr. Niel de Beaudrap (Department
of Computer Science, Oxford University). It was inspired by figure 5 of the Dervovic et al. paper [15].]
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where ϵi is the noise or error term. Here i ranges from 1 to n. xi
T

denotes the transpose of the column matrix xi. xi
Tβ is the inner

product between vectors xi and β. These n equations may be more
compactly represented in the matrix notation, as y = Xβ + ϵ. Now,
we will consider a simple example with three feature variables and
a bias β0. Say our data sets are
{ − (1/8) + (1/8 2), − 2, (1/ 2), − (1/2)},
{(3/8) − (3/8 2), − 2, − (1/ 2), (1/2)},
{ − (1/8) − (1/8 2), 2, − (1/ 2), − (1/2)} and
{(3/8) + (3/8 2), 2, (1/ 2), (1/2)}. Plugging in these data sets,
we get the linear system

β0 − 2β1 + 1
2 β2 − 1

2 β3 = − 1
8 + 1

8 2 (3)

β0 − 2β1 − 1
2 β2 + 1

2 β3 = 3
8 − 3

8 2 (4)

β0 + 2β1 − 1
2 β2 − 1

2 β3 = − 1
8 − 1

8 2 (5)

β0 + 2β1 + 1
2 β2 + 1

2 β3 = 3
8 + 3

8 2 (6)

To estimate β we will use the popular ‘least squares’ method,
which minimises the residual sum of squares ∑i = 1

N (yi − xiβi)2. If X
is positive definite (and in turn has full rank), we can obtain a
unique solution for the best fit β

^
, which is (XTX)−1XTy. It can

happen that all the columns of X are not linearly independent and
by extension X is not full rank. This kind of situation might occur
if two or more of the feature variables are perfectly correlated.
Then XTX would be singular and β

^
 would not be uniquely defined.

Nevertheless, there exist techniques like ‘filtering’ to resolve the
non-unique representations by reducing the redundant features.
Rank deficiencies might also occur if the number of features p
exceeds the number of data sets N. If we estimate such models
using ‘regularisation’, then redundant columns should not be left
out. The regulation takes care of the singularities. More
importantly, the final prediction might depend on which columns
are left out [22].

Equations (3)–(6) may be expressed in the matrix notation as

− 2 1 1
2 − 1

2

− 2 1 − 1
2

1
2

− 2 −1 1
2

1
2

2 1 1
2

1
2

β1

β0

β2

β3

=

− 1
8 + 1

8 2
3
8 − 3

8 2
1
8 + 1

8 2
3
8 + 3

8 2

(7)

Note that unlike common convention, our representation of X does
not contain a column full of 1's corresponding the bias term. This
representation is used simply because of the convenient form that
we obtain for XTX. The final result remains unaffected as long as
y = Xβ represents the same linear system.

Now

XTX = 1
4

15 9 5 −3
9 15 3 −5
5 3 15 −9

−3 −5 −9 15

(8)

and

XTy =

1
2
1
2
1
2
1
2

. (9)

Thus, we need to solve for β
^
 from XTXβ

^ = XTy [12].

4 Quantum circuit
Having discussed the general idea behind the HHL algorithm in
Section 2 and its possible application in drastically speeding up
multiple regression in Section 3, we now move on to the quantum
circuit design meant to solve the 4 × 4 linear system which we
encountered in Section 3, i.e. XTXβ

^ = XTy. For sake of
convenience, we will now denote XTX with A, β

^
 with x and XTy

with b. The circuit requires only 7 qubits, with 4 qubits in the
‘clock register’, 2 qubits in the ‘input register’ and the remaining 1
as an ‘ancilla’ qubit. At this point, it is imperative to mention that
we specifically chose the form of the regression data points in the
previous section such that A turns out to be Hermitian, has four
distinct eigenvalues of the form λi = 2i − 1 and b has a convenient
form which can be efficiently prepared by simply using two
Hadamard gates

A = XTX = 1
4

15 9 5 −3
9 15 3 −5
5 3 15 −9

−3 −5 −9 15

(10)

A is a Hermitian matrix with eigenvalues λ1 = 1, λ2 = 2, λ3 = 4 and
λ4 = 8. The corresponding eigenvectors encoded in quantum states
uj⟩ may be expressed as

u1⟩ = − 00⟩ − 01⟩ − 10⟩ + 11⟩ (11)

u2⟩ = + 00⟩ + 01⟩ − 10⟩ + 11⟩ (12)

u3⟩ = + 00⟩ − 01⟩ + 10⟩ + 11⟩ (13)

u4⟩ = − 00⟩ + 01⟩ + 10⟩ + 11⟩ (14)

Also

b = 1
2

1
2

1
2

1
2

T

can be written as ∑ j = 1
j = 4 β j uj⟩ where each β j = (1/2).

We will now trace through the quantum circuit in Fig. 2. q0⟩
and q1⟩ are the input register qubits which are initialised to a
combined quantum state

b⟩ = 1
2 00⟩ + 1

2 01⟩ + 1
2 10⟩ + 1

2 11⟩ (15)

which is basically the state-encoded format of b. This is followed
by the quantum phase estimation step which involves a Walsh–
Hadamard transform on the clock register qubits j0⟩, j1⟩, j2⟩, j3⟩,
a clock register controlled unitary gates U20

, U21
, U22

 and U23
,

where U = exp(iAt /16) and an inverse quantum Fourier transform
on the clock register. As discussed in Section 2, this step would
produce the state
(1/2) 0001⟩C u1⟩I + (1/2) 0010⟩C u2⟩I + (1/2) 0100⟩C u3⟩I + (1/2
) 1000⟩C u4⟩I
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, which is essentially the same as ∑ j = 1
N β j uj⟩I λ

~
jt0/2π C,

assuming t0 = 2π. Also, in this specific example λ
~

j⟩ = λj⟩, since
the 4 qubits in the clock register are sufficient to accurately and
precisely represent the 4 eigenvalues in binary. As far as the
endianness of the combined quantum states is concerned, we must
keep in mind that in our circuit q0⟩ is the most significant qubit and
q3⟩ is the least significant qubit.

Next is the R(λ~−1) rotation step. We make use of an ancilla qubit
s⟩ (initialised in the state 0⟩), which gets phase shifted depending
upon the clock register's state. Let us take an example clock
register state 0100⟩C = 0⟩q0

C ⊗ 1⟩q1
C ⊗ 0⟩q2

C ⊗ 0⟩q3
C  (binary

representation of the eigenvalue corresponding to u3⟩, that is 4). In
this combined state, q1⟩ is in the state 1⟩ while q0⟩, q2⟩ and q3⟩ are
all the in state 0⟩. This state will only trigger the Ry(2π /2r) rotation
gate, and none of the other phase shift gates. Thus, we may say that
the smallest eigenvalue states in C cause the largest ancilla
rotations. Using linearity arguments, it is clear that if the clock
register state had instead been b⟩, as in our original example, the
final state generated by this rotation step would be
∑ j = 1

N β j uj⟩I⟩λ
~

j
C ((1 − C2/λ~ j

2)1/2 0 + (C /λ~ j)⟩1)S where C = 8π /2r.
For this step, an a priori knowledge of the eigenvalues of A was
necessary to design the gates. For more general cases of
eigenvalues, one may refer to [17].

Then, as elaborated in Section 2, the inverse phase estimation
step essentially reverses the quantum phase estimation step. The
state produced by this step, conditioned on obtaining 1⟩ in ancilla

is (8π /2r)∑ j = 1
j = 4 (1/2)

2 j − 1 uj⟩. Upon writing in the standard basis and

normalising, it becomes
(1/ 340)(− 00⟩ + 7 01⟩ + 11 10⟩ + 13 11⟩). This is proportional
to the exact solution of the system x = (1/32) −1 7 11 13 T.

5 Simulation
We simulated the quantum circuit in Fig. 2 using the Qiskit Aer
QasmSimulator backend [23], which is a noisy quantum circuit
simulator backend. One of the main hurdles while implementing
the quantum program was dealing with the Hamiltonian simulation
step, i.e. implementing the controlled unitary U = eiAt. Taking a
cue from the Cao et al. paper [17] which employed the group
leaders optimisation algorithm (GLOA) [24], we approximately
decomposed the U gate into elementary quantum gates, as shown
in Fig. 3. It is however important to keep in mind that using GLOA
to decompose the U is useful only when the matrix exponential eiAt

is readily available. Let us call the resulting approximated unitary
U. The parameters of the Rx and Rzz gates given in [17] were
refined using the scipy.optimize.minimize function [25], to
minimise the Hilbert–Schmidt norm of U − U (which is a measure
of the relative error between U and U). The
scipy.optimize.minimize function makes use of the quasi-Newton
algorithm of Broyden, Fletcher, Goldfarb and Shanno [26] by
default. Also, we noticed that it is necessary to use a controlled- Z
gate instead of a single qubit Z gate (as in [17]).

A sample output of the Qiskit code has been shown in Fig. 4.

Fig. 2  Quantum circuit for solving a 4 × 4 linear system Ax = b. Here f = exp(iAt /16) and τ = π /2r. The top qubit ( s⟩) is the ancilla qubit. The four qubits
in the middle ( j0⟩, j1⟩, j2⟩ and j3⟩) stand for the clock register C. The two qubits at the bottom ( q0⟩ and q1⟩) form the input register I and two Hadamard
gates are applied on them to initialise the state b⟩

 

Fig. 3  GLOA is employed to approximately decompose the exp(iAt /2k) gates in the Hamiltonian simulation step into elementary quantum gates. The
decomposition is not unique. The specific gate decompositions shown in the diagram were taken by Cao et al. [17] and the angle shifts were corrected using
the scipy.optimize.minimize module
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All the results have been rounded to four decimal places. The
‘Error in found solution’ is in essence the 2-norm of the difference
between the exact solution and the output solution. We have
neglected normalisation and constant factors like (1/32) in the
displayed solutions.

It is clear from the low error value that the gate decomposition
we used for U helps to approximately replicate the ideal circuit
involving U. Also, the difference between the predicted and
simulated results (with shots =  105) has been shown in Fig. 5. 

One should remember that using genetic algorithms like GLOA
for the Hamiltonian simulation step is a viable technique only
when cost of computing the matrix exponential eiAt is substantially
lower than the cost of solving the corresponding linear system
classically. A popular classical algorithm for calculating matrix
exponentials is the ‘the scaling and squaring algorithm’ by Al-
Mohy and Higham [27–29], whose cost is O(n3), and which is
generally used along with the Padé approximation by Matlab [30]
and SciPy [25]. However, this algorithm is mostly used for small
dense matrices. For large sparse matrices, better approaches exist.
For instance, in the Krylov space approach [31, 32], an Arnoldi
algorithm is used whose cost is in the ballpark of O(mn), where n is
the matrix size and m is the number of Krylov vectors which need
to be computed. In general, for large sparse matrices, GLOA may
be useful but that decision needs to be made on a case-by-case
basis depending on the properties of the matrix A.

6 Discussion and conclusions
We have noticed that any multiple linear regression problem can be
reduced to an equivalent QLSP. This allows us to utilise the general
quantum speed-up techniques like the HHL algorithm. However,
for HHL we need low-error low-cost circuits for the Hamiltonian

simulation and controlled rotation steps to get accurate results.
There already exist well-defined deterministic approaches like the
celebrated Solovay–Kitaev and Trotter–Suzuki algorithms [33–36]
that can help to decompose the Hamiltonian simulation unitary U
up to arbitrary accuracy. However in most cases, they provide
neither minimum cost nor efficiently generable gate sequences for
engineering purposes. The Solovay–Kitaev algorithm, which scales
as O(log(1/ϵ)), takes advantage of the fact that quantum gates are
elements of the unitary group U(d), which is a Lie group and a
smooth differentiable manifold, in which one can do precise
calculations regarding the geometry and distance between points.
Similarly, the Trotter–Suzuki algorithm uses a product formula that
can precisely approximate the Hamiltonian exponential, and which
exploits the structure of commutation relations in the underlying
Lie algebras. In practical engineering scenarios, however, one
would prefer a low-cost gate sequence that approximates the
unitary just well enough, rather than a high-cost and exact or
almost exact decomposition.

This is where stochastic genetic algorithms like GLOA come
into play. These are heuristic algorithms that do not have well-
defined time complexities and error bounds. Given a particular
matrix A, if the time taken to find a circuit approximation for the
Hamiltonian evolution is (say) polynomial-time O(nc) for some
constant c, the exponential speedup disappears. This remains an
issue with GLOA because we still need to classically compute the
2n × 2n unitary matrix of the evolution we are trying to
approximate. The real advantage of GLOA shows up when dealing
with large data sets, as the standard GLOA [17, 24] restricts the
number of gates to a maximum of 20 (a detailed explanation of
GLOA is available in the supplementary material). So, while the
number of linear equations and the size of the data sets can be
arbitrarily large, it will only ever use a limited number of gates for
approximating the Hamiltonian simulation. This property of GLOA
ensures that time taken for Hamiltonian simulation remains nearly
independent of the size of the data sets as they grow large. Our
circuit design technique will be useful for engineering purposes,
particularly when the regression analysis is to be done on extensive
amounts of data. Using GLOA, it is also often possible to
incorporate other desired aspects of circuit design into the
optimisation, like specific choices of gate sets. The maximum size
of data set on which we can use this approach is only limited by the
number of qubits available in the quantum processors.

It is noteworthy that regression analysis is widely used in
various scientific and business applications, as it enables one to
understand the relationship between variable parameters and make
predictions about unknowns. Every day in the actual world, the
handling of larger and larger data sets craves for faster and more
efficient approaches to such analyses. It is natural to ask whether it
might be possible to leverage quantum algorithms for this purpose.
The answer seems to be a yes, although there remain several
technical and engineering challenges; the dearth of sufficient
experimental realisations is testimony to this. Our work on
quantum multiple linear regression, which is a first of its kind,
shows a practical circuit design method that we believe will pave
the path for more viable and economic experimental
implementations of quantum machine learning protocols,
addressing problems in business analytics, machine learning, and
artificial intelligence. In particular, this work opens a new door of
possibilities for time- and cost-efficient experimental realisations
of various quantum machine learning protocols, exploiting
heuristic approaches like GLOA, which will make incrementally
large amounts of data tractable.
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