
HAL Id: lirmm-03036103
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03036103v1

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Omissions in Constraint Acquisition
Dimosthenis C. Tsouros, Kostas Stergiou, Christian Bessiere

To cite this version:
Dimosthenis C. Tsouros, Kostas Stergiou, Christian Bessiere. Omissions in Constraint Acquisition.
CP 2020 - 26th International Conference on Principles and Practice of Constraint Programming, Sep
2020, Louvain-la-Neuve, Belgium. pp.935-951, �10.1007/978-3-030-58475-7_54�. �lirmm-03036103�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03036103v1
https://hal.archives-ouvertes.fr

Omissions in Constraint Acquisition

Dimosthenis C. Tsouros1, Kostas Stergiou1, and Christian Bessiere2

1 Dept. of Electrical & Computer Engineering,
University of Western Macedonia,

Kozani, Greece
dtsouros@uowm.gr, kstergiou@uowm.gr

2 CNRS, University of Montpellier,
Montpellier, France

bessiere@lirmm.fr

Abstract. Interactive constraint acquisition is a special case of query-directed
learning, also known as “exact” learning. It is used to assist non-expert users
in modeling a constraint problem automatically by posting examples to the user
that have to be classified as solutions or non-solutions. One significant issue that
has not been addressed in the literature of constraint acquisition is the possible
presence of uncertainty in the answers of the users. We address this by intro-
ducing Limited Membership Queries, where the user has the option of replying
“I don’t know”, corresponding to “omissions” in exact learning. We present two
algorithms for handling omissions. The first one deals with omissions that are
independent events, while the second assumes that omissions are related to gaps
in the user’s knowledge. We present theoretical results about both methods and
we evaluate them on benchmark problems. Importantly, our second algorithm can
not only learn (a part of) the target network, but also the constraints that cause the
user’s uncertainty.

1 Introduction

A major bottleneck in the use of Constraint Programming (CP) is modeling. Expressing
a combinatorial problem as a constraint network requires considerable expertise in the
field. Hence, one of the major challenges in CP research is that of efficiently obtaining
a good model of a real problem without relying on expert human modellers [14, 16, 15].
Constraint acquisition can assist non-expert users in modeling a constraint problem
automatically. It has started to attract a lot of attention as constraint acquisition systems
can learn the model of a constraint problem using a set of examples that are posted as
queries to a human user or to a software system [6, 8, 7, 20, 19].

Active or interactive constraint acquisition systems interact with the user while
learning the constraint network. This is a special case of query-directed learning, also
known as “exact learning” [11, 10]. State-of-the-art constraint acquisition algorithms
like QuAcq [5], MQuAcq [20] and MQuAcq-2 [19] use the version space learning
method [18], extended for learning constraint networks. In such systems, the basic
query is to ask the user to classify an example as a solution or not solution. This “yes/no”
type of question is called membership query [1], and this is the type of query that has
received the most attention in active constraint acquisition.

2 Dimosthenis C. Tsouros et al.

One significant issue that has not been addressed in the literature is the presence
of uncertainty, or even errors, in the answers of the user. The constraint acquisition al-
gorithms that have been proposed are guaranteed to perform well and learn the target
constraint network under the assumption that queries are always answered with cer-
tainty and correctly. However, this is not a realistic assumption as questions posted by
the algorithm can be too difficult for humans to always answer reliably. Thus, it may
happen that the user is uncertain about her/his answers or even gives erroneous answers.
In this paper we deal with the case where the user is uncertain about her/his answers,
leaving the case of erroneous answers for future work.

In the context of exact learning, uncertainty is typically captured through “omis-
sions” in the replies of the users. The omissions can be persistent or not. In this work,
we focus on persistent omissions. Such omissions have been studied for several classes
of concepts [17, 13, 3, 2]. Two main models of omissions in answers to membership
queries have been introduced:

1. Learning from Randomly Fallible Teachers (RFT) [3, 2]: The omissions are as-
sumed to be independent, as “independent coin flips the first time each query is
made” [3].

2. Learning from a Consistently Ignorant Teacher (CIT) [13]: In this model it is as-
sumed that the omissions are related to a gap in the user’s knowledge. Thus, the
omissions are not only persistent but also they are consistent with the rest of the an-
swers of the user. This means that if the answers to some queries imply a particular
answer to another query, the latter cannot be answered with an omission.

Concerning RFT, Angluin et. al [3] presented an algorithm that can learn the target
concept using equivalence and incomplete membership queries. In the exact learning
model defined by [2] the learning system can learn exactly a target concept using equiv-
alence and membership queries with at most some number l of errors or omissions in
the answers of the user to the membership queries. This model introduced the limited
membership queries (LMQ) and the malicious membership queries. A LMQ may be an-
swered either by precisely classifying the example, or with the special answer “I don’t
know” that corresponds to an omission. In a malicious membership query, the classi-
fication by the user may be wrong. The examples answered with “I don’t know” are
allowed to be classified arbitrarily by the final hypothesis of a learning algorithm. The
above models have been extended to other classes of concepts [9]. Focusing on learn-
ing from a CIT, Frazier et al. [13] introduced learning algorithms for several concept
classes like k-term DNF formulas, decision trees etc.

In this work we address the problem of uncertainty in user answers in the context
of constraint acquisition, for the first time. We focus on persistent omissions inspired
by both the RFT and CIT models. We are specifically interested in the important case
where there exist relations about the entities (variables) of the problem that the user is
uncertain about. As a result, the user may find it difficult to classify some examples
with absolute certainty. To address this, we introduce LMQs in constraint acquisition
and propose two methods to handle “I don’t know” replies by extending the state-of-
the-art algorithm MQuAcq-2.

Omissions in Constraint Acquisition 3

The first method is a baseline one that simply ignores omissions, assuming that
nothing can be learned from them. The reasoning behind this is inspired by the RFT
model, where the omissions are assumed to be independent.

The second method, which is our main contribution, is related to the CIT learning
model and is based on the assumption that through the interaction between the learner
and the user it may be possible to identify and exploit the gap in the user’s knowledge,
i.e. the “uncertain” constraints. For instance, the user may not be certain if a large exam-
ple is a solution or not because of uncertainty about a relation between some variables.
However, if a part of the example that does not include these “problematic” variables
is posted to the user, then she/he may be able to classify it with certainty. Our method
exploits the idea of posting partial examples that are built by dividing an example that
was classified as an omission, to seek the parts of the example that cause the confu-
sion to the user, and hence, to learn the “uncertain” constraints. As we demonstrate,
this method does not only learn such constraints, but using knowledge inferred while
seeking them, it also significantly cuts down the number of queries and the cpu time
required for convergence.

We prove the correctness of our main method and give complexity results for both
methods. We also present experimental results that evaluate our methods in the context
of both RFT and CIT learning.

The rest of the paper is organized as follows. Section 2 gives background on inter-
active constraint acquisition. Section 3 focuses on the proposed methods. Experiments
are presented in Section 4. Section 5 concludes the paper.

2 Background

The vocabulary (X,D) is a finite set of n variables X = {x1, ..., xn} and a domain
D = {D(x1), ..., D(xn)}, where D(xi) ⊂ Z is the finite set of values for xi. The
vocabulary is the common knowledge shared by the user and the constraint acquisi-
tion system. A constraint c is a pair (rel(c), var(c)), where var(c) ⊆ X is the scope of
the constraint and rel(c) is the relation between the variables in var(c). rel(c) specifies
which of their assignments are allowed. |var(c)| is called the arity of the constraint.
A constraint network is a set C of constraints on the vocabulary (X,D). A constraint
network that contains at most one constraint for each subset of variables (i.e., for each
scope) is called a normalized constraint network. Following the literature, we will as-
sume that the constraint network is normalized. Besides the vocabulary, the learner has
a language Γ consisting of bounded arity constraints.

An example eY is an assignment on a set of variables Y ⊆ X . eY violates a con-
straint c iff var(c) ⊆ Y and the projection evar(c) of eY on the variables in the scope
var(c) of the constraint is not in rel(c). A complete assignment eX that is accepted by
all the constraints in C is a solution to the problem. sol(C) is the set of solutions of
C. An assignment eY is called a partial solution iff it is accepted by all the constraints
in C with a scope S ⊆ Y . Observe that a partial solution is not necessarily part of a
complete solution.

Using terminology from machine learning, concept learning can be defined as learn-
ing a Boolean function from examples. A concept is a Boolean function over DX

4 Dimosthenis C. Tsouros et al.

that assigns to each example e ∈ DX a value in {0, 1}, or in other words, classi-
fies it as negative or positive. The target concept fT is a concept that assigns 1 to e
if e is a solution to the problem and 0 otherwise. In constraint acquisition, the target
concept, also called target constraint network, is any constraint network CT such that
sol(CT) = {e ∈ DX | fT (e) = 1}. The constraint bias B is a set of constraints
on the vocabulary (X,D), built using the constraint language Γ . The bias is the set of
all possible constraints from which the system can learn the target constraint network.
κB(eY) represents the set of constraints in B that reject eY .

In exact learning, the question asking the user to determine if an example eX is a
solution to the problem that the user has in mind is called a membership queryASK(e).
In the following we will use the terms example and query interchangeably. The answer
to a membership query is positive if fT (e) = 1 and negative if fT (e) = 0. A partial
queryASK(eY), with Y ⊆ X , asks the user to determine if eY , which is an assignment
in DY , is a partial solution or not. We assume that all queries are answered correctly or
with an omission by the user.

In partial queries the assumption is that the user considers only the assigned vari-
ables in the query posted. So, if the relation between the variables is insufficiently clear
because some variable assignments are missing, then this does not affect the user’s an-
swer. Classifying a partial example as positive does not mean that it is necessarily part
of a complete solution.

For instance, assume that we have a constraint c ∈ B ∧ c ∈ CT with var(C) =
{x1, x2, x3, x4}. An example violating this constraint that includes assignments to all
four variables will be classified by the user as negative. However, if the system asks
the user to classify an example ex1,x2,x3 , which does not include an assignment to x4,
the above constraint is not taken into account. So, if no other constraint from the target
network is violated in this example, it will be classified as positive.

The acquisition process has converged on the learned network CL ⊆ B iff CL

agrees withE and for every other networkC ⊆ B that agrees with E, we have sol(C) =
sol(CL).

3 Omissions in Constraint acquisition

State-of-the-art constraint acquisition algorithms are based on version space learning.
Initially, the given language Γ is used to construct the bias B. Then the system itera-
tively posts membership queries to the user in order to learn the constraints of the target
network. Each example posted as a query must satisfy CL, i.e. the network that has
already been learned so far, and violate at least one constraint from B. A query that sat-
isfies these criteria is informative, as whatever the user’s answer is, the version space’s
size will shrink. In case of a positive answer, each constraint c ∈ B that violates the
posted example can be removed from B (i.e. all the constraint networks containing c
are removed from the version space). In case of a negative answer, one or more of the
violated constraints are certainly in CT . So, the system will search to find the scope of
one, some, or all of them, depending on the algorithm used.

This is done through a function called FindScope in QuAcq, and its enhanced variant
FindScope-2 [20] used by MQuAcq and MQuAcq-2. Once a scope has been located, the

Omissions in Constraint Acquisition 5

function FindC [5] is used to learn the specific constraint (i.e. its relation). FindScope-
2, upon which we build, finds the scope of a violated constraint of the target network
by successively removing entire blocks of variables from the query, and posting the
resulting partial query to the user.

The above reasoning assumes that all the answers of the user are correct and also
does not allow for uncertainty (omissions) in the answers. However, both of these as-
sumptions are not realistic as humans make mistakes and are not always certain of their
answers. In this paper we deal with the problem of uncertainty. We introduce the use of
Limited Membership Queries (LMQ) to constraint acquisition, and propose methods to
handle them. A LMQ may be answered by the user either by classifying the example
as a solution (“yes”) or not (“no”) of the problem, or with a third option, namely an “I
don’t know” answer. In this paper we are mainly interested in cases where the user is
uncertain about the existence or non-existence of a relation between some entities (i.e.
variables) of the problem, and the type of the relation if one exists.

In general, there are some questions that arise when an “I don’t know” answer is
encountered: First of all, is it possible to learn something from this query? And if we
believe that it is possible, what can we learn and how can we learn it?

We argue that in case we have consistent answers, it is possible to learn from an
omission. We define as the omission network COM the set of “uncertain” constraints
that the user does not know if they should be included in the target network or not, i.e.
the gap in the knowledge of the user. This set may contain constraints both from CT

and from B \ CT . Thus, if we iteratively split the initial query into partial ones then by
posting these partial queries to the user we may be able to isolate one or more scopes
that cause the uncertainty.

Considering these, we propose and compare two different methods for handling
omissions in constraint acquisition:

1. Queries answered as “I don’t know” are simply ignored, under the assumption that
we cannot discover anything through such queries. So, after an omission, we can
save the query to avoid posting it again, and move on to generate a new one. This
method is inspired by the RFT learning model, where it is assumed that the reason
of the omission cannot be learned.

2. The second method assumes that each omission is caused by relations between the
variables that the user is uncertain about, and that the relevant sets of variables can
be identified. When the user answers with an omission, the system commences a
search for the “confusing” constraints using a reasoning similar to the search for
violating constraint that algorithms like QuAcq and its variants apply at negative
examples. This method corresponds to the CIT of concept learning, where it is
assumed that the reason of the omission is a gap in the knowledge of the user about
the problem.

We now describe and analyze the proposed methods for dealing with omissions.
Both extend MQuAcq-2 [19], but they can be used in conjunction with any constraint
acquisition algorithm.

6 Dimosthenis C. Tsouros et al.

3.1 Ignoring Omissions

This is a simple method, called MQuAcq-2-OM1, where any query eY answered as “I
don’t know” is ignored by the system, under the assumption that we cannot discover
anything through such a query. Thus, after an omission, the example posted as a query
is stored, to avoid posting it again, and then a new example is generated. Note that
the following scenario is possible: The user may answer negatively to a query, and
as a result the algorithm will search for one or more violated constraints following a
similar process to MQuAcq-2 (and also QuAcq/MQuAcq). However, as partial queries
are posted to the user during this process, some of these partial queries may be answered
by an omission because the user may be certain that the initial query is not a solution,
but may not be certain that some part of the query violates any constraint or not. Such
partial queries are also stored and then bypassed.

Algorithm 1 depicts MQuAcq-2-OM1. The system repeatedly generates an exam-
ple e satisfying CL and rejecting at least one constraint from B (line 4). If it has not
converged, it tries to acquire multiple constraints of CT violating e. At first it posts the
example to the user (line 8). If the answer of the user is positive, the set κB(eY ′) of
all the constraints from B that reject eY ′ is removed from the bias (line 9). In case the
answer is negative, it tries to learn a constraint by using the functions FindScope-2 and
FindC (lines 14-17).

In case of an omission, the example, which may be a complete or a partial one, is
added to the set E′ (line 11) and then the algorithm stops trying to learn any more con-
straints ofCT in this example (line 12). The setE′ stores all the examples that lead to an
omission, in order to avoid generating the same assignments in future queries, as shown
at line 4. FindScope-2 has been modified to apply the same reasoning when searching
in partial queries. We omit the pseudocode of this modified version of FindScope-2 for
space reasons. In case FindScope-2 has added any partial example eY ′′ to E′, then the
algorithm breaks the loop again (lines 18-19), stopping the search for more violated
constraints of the target network in this specific partial query. If no omissions have
occured, the algorithm removes the entire scope of the acquired constraint at line 20,
trying to learn multiple non-overlapping constraints. This iterative process ends when
the example eY ′ does not contain any violated constraint from the bias (line 21), or if
an omission has occured at some point. In these cases, the system cannot learn more
violated constraints from this example, so it generates a new example at line 4 and starts
over.

We now analyze the complexity of MQuAcq2-OM1 in terms of the number of
queries required. We assume that l is the maximum number of omissions.

Proposition 1. Given a biasB built from a language Γ , with bounded arity constraints,
a target network CT and a number of omissions l, MQuAcq-2-OM1 uses O(|CT | ·
(log |X|+ Γ) + |B|+ l) number of queries to converge.

Proof. MQuAcq-2 needs O(|CT | · (log |X| + Γ) + |B|) queries in order to find the
CT and converge when we do not have omissions [19]. As our handling of omission
guaranties that no query will be posted more than once, the maximum number of omis-
sions is l. Also, the omissions do not affect the maximum number of queries needed

Omissions in Constraint Acquisition 7

Algorithm 1 MQuAcq-2-OM1
Input: B,X,D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL : a constraint network
1: CL ← ∅;
2: E′ ← ∅;
3: while true do
4: Generate eY inDY accepted byCL and rejected byB, with eY 6= e′Y | e′Y2

∈ E′∧Y ⊆
Y2 ;

5: if e = nil then return ”CL converged”;
6: Y ′ ← Y ;
7: do
8: answer←ASK(eY ′);
9: if answer = “yes” then B ← B \ κB(eY ′);

10: else if answer = “I don’t know” then
11: E′ ← E′ ∪ eY ′ ;
12: break;
13: else
14: Scope← FindScope-2(eY ′ , ∅, Y ′, false);
15: c← FindC(eY ′ , Scope);
16: CL ← CL ∪ {c}
17: B ← B \ {c ∈ B | var(c) = Scope};
18: if ∃ Y ′′ ⊂ Y ′ | eY ′′ ∈ E′ then
19: break;
20: Y ′ ← Y ′ \ Scope;
21: while κB(eY ′) 6= ∅

to learn the constraints from CT and to converge. As a result, MQuAcq-2-OM1 uses
O(|CT | · (log |X|+ Γ) + |B|+ l) number of queries to converge.

As the number l of omissions can be equal to the maximum number of examples that
can be generated in the worst case, i.e. l ≤ |D||X|, the above complexity, as well as the
space complexity of the algorithm, is exponential, which of course is a major drawback.
However, under the assumption that omissions are random independent events, meaning
that there are no “uncertain constraints”, then the algorithm will converge once B is
empty, as does MQuAcq-2.

On the other hand, in case the omissions are related to a gap in the user’s knowledge
(i.e. to “uncertain” constraints), their number can be exponential. This is because the
“uncertain” constraints are not learned, and therefore the system cannot distinguish
them from “normal” constraints. Consider the case where CT has been learned (hence
CL is equivalent to CT) and the constraints from B \ (CT ∪ COM) have already been
removed from B. Now the system will repeatedly try to build examples that satisfy
CL and violate at least one constraint from COM in line 4. Each such example will be
answered with an omission because the user cannot tell if the violation of a constraint
from COM makes the example a non-solution or not. As the number of examples that
satisfy CL and violate at least one constraint from COM is exponential, and all of these

8 Dimosthenis C. Tsouros et al.

examples have to be generated in the worst case in order for the algorithm to terminate,
the number of omissions is exponential.

3.2 Exploiting Omissions

We now present our main method for handling omissions, which is called MQuAcq-
2-OM2, and is based on the assumption that each omission is due to uncertainty from
the user’s part about one or more relations between the variables, i.e. due to a gap in
knowledge. In contrast to the first method, instead of discarding omissions, we now try
to derive useful information from them.

The main idea is to iteratively divide an example that was answered by an omission
into partial ones, in a way similar to how negative answers are handled, until a set of
variables (a scope) that causes uncertainty to the user is discovered. Then the constraints
corresponding to this scope can be learned and removed from B to avoid generating
subsequent queries that contain the same “source of uncertainty”. Another potential
gain is that during this process we may come across partial queries that are answered
positively, meaning that the constraints that violate them can also be removed from B.

We introduce a new set, CLOM
, which stores all the “uncertain” constraints that are

removed from B via an omission. We also modify the query handling process to locate
scopes causing omissions and avoid violating the constraints that confuse the user in
future queries, through the use of CLOM

. As we now explain, each of the three possible
answers by the user to a query over an example e requires different handling.

– After a positive answer: The constraints from B that reject the example posted are
removed, as in all constraint acquisition algorithms.

– After an omission: In this case a partial example of e can lead either to an omis-
sion, if the variables that confuse the user are still in the partial example, or to a
positive answer, in case one or more of the variables in the scope of the omission
are removed. So, we can find the scope of the omission with a procedure similar to
the one used in FindScope-2, exploiting the positive answers in order to locate the
variables of the scope.

– After a negative answer: In such a case a partial example of e can be answered in
any possible way. If one or more of the variables in the scope of the violated con-
straint(s) are removed, we can have a positive answer or an omission if a constraint
that confuses the user is violated. In addition, the answer can still be “no”, if all
the variables of the constraint of CT that is violated are still in the partial example.
Hence, after a negative answer we must search for a violated constraint but we may
also find the scope of an omission.

Based on these, we introduce two functions for finding the scope of a violated con-
straint (FindScope-NO) and the scope of an omission (FindScope-OM) so as to handle
all the possible query answers.

MQuAcq-2-OM2 is depicted by Algorithm 2. The system generates an example
accepted by the learned network and CLOM

, while violating at least one constraint from
B (line 4). We want the example to satisfy CLOM

to avoid violating any constraint that
will lead to an omission. Queries answered as “I don’t know” are handled at lines 11-14

Omissions in Constraint Acquisition 9

Algorithm 2 MQuAcq-2-OM2
Input: B,X,D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL, CLOM : constraint networks
1: CL ← ∅;
2: CLOM ← ∅;
3: while true do
4: Generate eY in DY accepted by CL and CLOM while rejected by B;
5: if e = nil then return ”CL converged”;
6: Y ′ ← Y ;
7: do
8: answer← ASK(eY ′);
9: if answer = “yes” then B ← B \ κB(eY ′);

10: else if answer = “I don’t know” then
11: OMS ← FindScope-OM(eY ′ , ∅, Y ′, false);
12: CLOM ← CLOM ∪ FindC(eY ′ , OMS));
13: B ← B \ {c ∈ B | var(c) = OMS};
14: Y ′ ← Y ′ \OMS;
15: else
16: Scope← FindScope-NO(eY ′ , ∅, Y ′, false);
17: c← FindC(eY ′ , Scope);
18: CL ← CL ∪ {c}
19: B ← B \ {c ∈ B | var(c) = Scope};
20: Y ′ ← Y ′ \ Scope;
21: if κCLOM

(eY ′) 6= ∅ then
22: Y ′ ← Y ′ \ {var(c) | c ∈ κCLOM

(eY ′)};
23: while κB(eY ′) 6= ∅

by calling FindScope-OM. This function finds the scope responsible for the omission, as
we explain below, and stores it inOMS (line 11). Then, it finds the specific “uncertain”
constraint (i.e. the relation) and removes it from B, adding it to CLOM

(lines 12-13).
Finally, the scope found is removed from Y ′ (line 14), so that MQuAcq-2-OM2 can
continue searching.

Queries answered negatively are handled by calling FindScope-NO at line 16. As
explained below, this function not only finds the scope of a violated constraint but some-
times it can also find the scope of an omission. Thus, if such a scope is found (line 21),
the algorithm removes the scope from Y ′ at line 22.

We now focus on the new functions, FindScope-OM and FindScope-NO. Both use
the reasoning of FindScope-2, i.e. successively removing approximately half of the vari-
ables and posting a partial query. If after such a removal, the answer of the user changed
then we know that the removed block contains at least one variable from the scope of a
constraint we seek (a constraint from CT or COM).

FindScope-OM (Algorithm 3) is similar to FindScope-2. It takes as parameters a
(partial) example eY that has led to an omission, two sets of variables R and Y , ini-
tialized to the empty set and to Y respectively, and a Boolean variable ask query. An
invariant in any recursive call is that the example e violates at least one constraint from

10 Dimosthenis C. Tsouros et al.

Algorithm 3 FindScope-OM
Input: e, R, Y , ask query (e: the example, R,Y : sets of variables, ask query: boolean)
Output: Scope : a set of variables, the scope of an omission
1: function FindScope-OM(e, R, Y , ask query)
2: if ask query ∧ |κB(eR)| > 0 then
3: if rej 6= |κB(eR)| then
4: if ASK(eR) = “I don’t know” then
5: rej ← |κB(eR)|;
6: return ∅;
7: else B ← B \ κB(eR);
8: else return ∅;
9: if |Y | = 1 then return Y ;

10: split Y into < Y1, Y2 > such that |Y1| = d|Y |/2e;
11: S1 ← FindScope-OM(e,R ∪ Y1, Y2, true);
12: S2 ← FindScope-OM(e,R ∪ S1, Y1, (S1 6= ∅));
13: return S1 ∪ S2;

COM , whose scope is a subset of R ∪ Y . The number of violated constraints from B is
stored in rej, to avoid posting redundant queries to the user in any recursive call.

If FindScope-OM is called with ask query = true and eR violates at least one con-
straint from B (line 2) but not the same number of constraints as the previous query
posted (line 3), it posts eR as a query to the user (line 4). In case of an omission it
returns the empty set (line 6), in order to remove some variables from R in the previous
call. If the answer is “yes”, it removes all the constraints from the bias that reject eR
and continues. Thus, it reaches line 9 only in the case where eR does not violate any
constraint from COM . Because we know that e violates at least one constraint whose
scope is a subset of R ∪ Y , in case Y is a singleton it is returned (line 9). The set Y
is split in two balanced parts (line 10) and the algorithm searches recursively, in sets of
variables built using R and these parts, for the scope of a violated constraint of COM ,
in a logarithmic number of steps (lines 11-13).

FindScope-NO (Algorithm 4) handles the case of a negative answer by the user. It
operates in a slightly different way than FindScope-OM because after the removal of
some variables, the answer of the user may change from “no” either to “yes” or to “I
don’t know” (see Lemma 3 below). This is because after the removal of one or more
variables of the violated constraint, the user may now be confused by another constraint
in the partial example formed, not being sure if the partial example is positive or not.
In such a case, we continue the search in two directions. First, FindScope-OM is called
in order to locate the scope of the omission and store it in OMS (line 8) and then find
the “uncertain” constraint, which is then removed from B and added to CLOM

(line 9),
as in lines 11-13 of MQuAcq-2-OM2. Also the function FindScope-NO continues the
search for the scope of the violated constraint of CT .

Now, let us illustrate the behaviour of our proposed approach.

Example 1. Assume that the vocabulary (X,D) given to the system isX = {x1, ..., x8}
and D = {D(x1), ..., D(x8)} with D(xi) = {1, ..., 8}, the target network CT is the set

Omissions in Constraint Acquisition 11

Algorithm 4 FindScope-NO
Input: e, R, Y , ask query (e: the example, R,Y : sets of variables, ask query: boolean)
Output: Scope : a set of variables, the scope of a constraint in CT

1: function FindScope-NO(e, R, Y , ask query)
2: if ask query ∧ |κB(eR)| > 0 then
3: if rej 6= |κB(eR)| then
4: answer← ASK(eR);
5: if answer = “yes” then B ← B \ κB(eR);
6: else if answer = “I don’t know” then
7: if κCLOM

(eR) = ∅ then
8: OMS← FindScope-OM(eR, ∅, R, false);
9: CLOM ← CLOM ∪ FindC(eR, OMS));

10: B ← B \ {c ∈ B | var(c) = OMS};
11: else
12: rej ← |κB(eR)|;
13: return ∅;
14: else return ∅;
15: if |Y | = 1 then return Y ;
16: split Y into < Y1, Y2 > such that |Y1| = d|Y |/2e;
17: S1 ← FindScope-NO(e,R ∪ Y1, Y2, true);
18: S2 ← FindScope-NO(e,R ∪ S1, Y1, (S1 6= ∅));
19: return S1 ∪ S2;

{6=34, 6=56}, COM = {6=34} andB = {6=ij | 1 <= i < 8∧i < j <= 8}. Also, assume
that the example generated at line 4 of MQuAcq-2-OM2 is e = {1, 4, 2, 2, 3, 3, 5, 6}.

The system will post e as a query at line 8 of MQuAcq-2-OM2. The answer will be
“no” as it violates constraint 6=56. Thus, FindScope-NO is called to find the scope of a
violated constraint. Table 1 shows the trace of its recursive calls. A dash (-) in columns
eR and ASK means that no query is posted to the user, due to one of the conditions at
lines 2 and 3 (e.g., at call 0 of FindScope-NO, as ask query = false and R = ∅, the
condition at line 2 does not hold). Recall that queries are only on the variables in R.

When half of the variables are removed from the query at recursive call 1 of FindScope-
NO, the answer of the user changes to “I don’t know”. So, FindScope-OM is called to
find the cause of uncertainty (line 8 of FindScope-NO). Its trace of recursive calls is
also shown in Table 1. After 4 queries it finds the scope of the omission constraint and
returns it (back at the 0 call), so FindC is called at line 9 of FindScope-NO. FindScope-
NO then continues searching to find the violated constraint from CT \ COM that is
responsible for the negative answer in the first place. It will be found after 3 queries and
returned (back at the 0 call of FindScope-NO).

Analysis of MQuAcq2-OM2: We now prove the correctness of MQuAcq-2-OM2.
That is, we prove that the constraints it adds toCL andCLOM

belong indeed there, and it
converges having learned all the constraints of CT and of COM that it possibly can. We
first give three lemmas showing that for each possible answer to a query ASK(eY), the
possible answers we can have in partial queries of the form ASK(eY ′), with Y ′ ⊂ Y , are
the ones informally described previously for the CIT model. Then we give a proposition

12 Dimosthenis C. Tsouros et al.

Table 1. Behavior of MQuAcq-2-OM2 in Example 1

Recursive calls of FindScope-NO
call R Y eR ASK return
0 ∅ x1, x2, x3, x4, x5, x6, x7, x8 - - {x5, x6}
1 x1, x2, x3, x4 x5, x6, x7, x8 {1, 4, 2, 2,−,−,−,−} “I don’t know” {x5, x6}

Go to FindScope-OM
0 ∅ x1, x2, x3, x4 - - {x3, x4}
1 x1, x2 x3, x4 {1, 4,−,−,−,−,−} “yes” {x3, x4}
1.1 x1, x2, x3 x4 {1, 4,−,−,−,−,−} “yes” {x4}
1.2 x1, x2, x4 x3 {1, 4,−,−,−,−,−} “yes” {x3}

back to FindScope-NO
1.1 x1, x2, x3, x4, x5, x6 x7, x8 {1, 4, 2, 2, 3, 3,−,−} “no” ∅
1.2 x1, x2, x3, x4 x5, x6 - - {x5, x6}
1.2.1 x1, x2, x3, x4, x5 x6 {1, 4, 2, 2, 3,−,−} “yes” {x6}
1.2.2 x1, x2, x3, x4, x6 x5 {1, 4, 2, 2,−, 3,−} “yes” {x5}

regarding the soundness of FindScope-OM and FindScope-NO. Proofs of Lemmas are
ommitted for space reasons.

Lemma 1. If ASK(eY) = “yes” then for any Y ′ ⊂ Y it holds that ASK(eY ′) = “yes”.

Lemma 2. If ASK(eY) = “I don’t know” then for any Y ′ ⊂ Y we can have ASK(eY ′)
= “I don’t know” or ASK(eY ′) = “yes”.

Lemma 3. If ASK(eY) = “no” then a partial query in Y ′ ⊂ Y , ASK(eY ′) can return
any of the possible answers.

Proposition 2. If FindScope-OM (resp. FindScope-NO) is given an example eY and
returns a scope S then there exists a violated constraint c ∈ COM (resp. c ∈ CT \COM)
with scope(c) = S.

Proof. An invariant of FindScope-OM is that the example e violates at least one con-
straint fromCOM , whose scope is a subset ofR∪Y (i.e. ASK(R∪Y) = “I don’t know”).
Also, it reaches line 9 only in the case that ASK(eR) = “yes”. Thus, by Lemma 1, for
Y ′ ⊂ Y it holds that ASK(eY ′) = “yes”, i.e. eR does not violate any constraint from
COM . Also, FindScope-OM returns variables only at line 9, in case Y is a singleton. As
a result, for any xi ∈ S we know that ASK(S) = “I don’t know” and ASK(S \ xi) =
“yes”. Hence, S is definitely a scope of a constraint from COM .

Theorem 1. Given a bias B built from a language Γ with bounded arity constraints,
a target network CT representable by B, and an omission network COM , MQuAcq-2-
OM2 is correct.

Proof. Soundness. MQuAcq-2-OM2 learns constraints and adds them to CLOM
or CL

only by using the function FindC in a scope found by FindScope-OM or FindScope-NO
respectively. By Proposition 2, when FindScope-OM returns a scope S, then there exists
a violated constraint c ∈ COM with scope(c) = S and when FindScope-NO returns a
scope S, then there exists a violated constraint c ∈ CT \ COM with scope(c) = S.
Also, FindC has been proved to be correct for normalized target networks [7]. Hence,

Omissions in Constraint Acquisition 13

MQuAcq-2OM2 is sound, as for every constraint c added to CL it holds that c ∈ CT \
COM and for every constraint c added to CLOM

it holds that c ∈ COM .
Completeness. An example generated at line 4 of MQuAcq-2-OM2 must violate at

least one constraint from B. Given such an example eY , MQuAcq-2-OM2 will find at
least one constraint from CT (lines 16-20) or COM (lines 11-14), if one exists, and then
remove it from B (lines 13,19). It finds the scope of a constraint of CT \ COM using
FindScope-NO and of COM using FindScope-OM. After a scope has been located, it
had been proved that FindC will find a constraint in the given scope if one exists [7].
The same applies to constraints of COM , as the procedure is exactly the same, because
when ASK(eY) = “I don’t know” then for any Y ′ ⊂ Y we can have ASK(eY ′) = “I don’t
know” or ASK(eY ′) = “yes” (Lemma 2). If no constraint can be learned by an example
(i.e. κCT

(eY) = κCOM
(eY) = ∅), it will remove all the violated constraints from B

(line 9). Thus, the size of B will decrease after each query. The algorithm terminates
only when no example can be generated at line 4. In this case, the system has converged
as CL agrees with E and for every other network C ⊆ B that agrees with E and, we
have sol(C) = sol(CL). Hence, the system learned any constraint in CT \ COM that
could be learned. As no constraint from B can be violated, the same applies for COM .
Hence, MQuAcq-2-OM2 is complete.

Proposition 3. Given a biasB built from a language Γ , with bounded arity constraints,
a target network CT and an omission network COM , MQuAcq-2-OM2 uses O(|CT | ·
(log |X|+ |Γ |)+ |B|+ l) number of queries to converge, with l <= |COM | · (log |X|+
|Γ |).

Proof. (sketch). MQuAcq-2-OM2 will learn |CT \ COM | constraints and will find
|COM | omission constraints. The constraints from CT \ COM are learned using the
functions FindScope-NO and FindC while the constraints of |COM | are found using the
functions FindScope-OM and FindC. Both FindScope-NO and FindScope-OM need a
maximum number of |S| · log |Y | = O(log |X|) queries in order to find a scope S in
an example eY , as they use a process very similar to FindScope [5]. FindC needs at
most |Γ | queries to learn a constraint. Also, assuming that each positive query removes
only one constraint from |B| it will need to ask a total number of |B| − |CT \COM | −
|COM | = O(|B|) queries to prune B and reach convergence. Thus, the total total num-
ber of queries inO(|CT | ·(log |X|+ |Γ |)+ |B|+ l) , with l <= |COM | ·(log |X|+ |Γ |).
The above result in O((|CT |+ |COM |) · (log |X|+ |Γ |) + |B|).
4 Experimental Evaluation
We ran experiments both in the RFT and the CIT models. In the former, as the omissions
are not related to missing knowledge, we evaluated only MQuAcq-2-OM1. In the latter
we compared our methods to each other. We used MQuAcq-2 without omissions as
a reference point. Experiments were run on an Intel(R) Core(TM) i7-8700 CPU @
3.20GHz with 16 GB of RAM. In more detail:

– We used the maxB heuristic for query generation [20]. maxB generates examples
violating as many constraints as possible from B. The best example found within
1 second is returned, even if not proved optimal. If none is found, we continue and
return the first suitable (partial) example found. The variable involved in the most
constraints in B is chosen during search. Values are chosen randomly.

14 Dimosthenis C. Tsouros et al.

– In the RFT model, a query is answered by an omission with 20% probability.
– In the CIT model, we used a cutoff for MQuAcq-2-OM1, as the number of omis-

sions can be exponential (it did not complete within 10 hours). So we only present
results for MQuAcq-2-OM1 in CIT with a cutoff, which was imposed as follows:
the system stops at line 3 when the number of omission #omissions is more than
the 30% of the total number of queries #queries.

– To compare the algorithms on the same scenario, all our experiments concern the
extreme case where CL is initially empty, This results in a number of queries that
may seem too large for human users. But in real applications, background knowl-
edge can used by giving a frame of basic constraints or by using other methods,
e.g. ModelSeeker [4], to extract some constraints from known solutions. Then, our
algorithms can be used to finalize the model.

– We measure the size of the learned network CL, the size of the learned omis-
sion network CLOM

, the total number of queries #queries, the total number of
omission answers #omissions and the total cpu time T . We present results of
MQuAcq-2 without analyze&Learn, MQuAcq-2-OM1 and MQuAcq-2-OM2. Each
algorithm was run 5 times and the means are presented.

We used the following benchmarks in our study:
Zebra. It consists of 25 variables with domains of maximum size 5. The target

networkCT contains five cliques of 10 6= constraints each and 11 additional constraints.
The bias was initialized with 1200 binary constraints from the language Γ = {=, 6=, >
,<, xi − xj = 1, |xi − xj | = 1}. COM contains the constraints of CT not belonging to
a clique, and 5 randomly chosen constraints from B.

Murder. It has 20 variables with domains of size 5.CT contains 4 cliques of 6= con-
straints and 12 additional constraints. The bias was initialized with 760 constraints from
the language Γ = {=, 6=, >,<}. COM contains the constraints of CT not belonging to
a clique, and 10 randomly chosen constraints from B.

Random. We generated a random target network with 50 variables, domains of size
10, and 122 6= constraints. The bias was initialized with 19,800 constraints, using the
language Γ = {=, 6=, >,<}. COM was created randomly, containing 15 constraints
with only 1 belonging to CT .

Radio Link Frequency Assignment Problem (RLFAP). We use a simplified ver-
sion of the communication problem from [12], with 50 variables having domains of
size 40. CT contains 125 distance constraints. The bias was built using a language of 2
distance constraints ({|xi − xj | > y, |xi − xj | = y}) with 5 different possible values
for y. This led to a language of 10 different distance constraints. In total, B contains
12,250 constraints. COM was created randomly, containing 15 constraints in total with
5 belonging to CT .

Results from the RFT model presented in Table 2 (see rows for MQuAcq-2-OM1RFT),
confirm our complexity analysis. When omissions are random events, the queries posted
by MQuAcq-2-OM1 do not increase a lot compared to MQuAcq-2 without omissions.
We can see that the increase is related to the number of variables of the problem. On
the other hand, cpu times increase significantly. This is because most of the (few) addi-
tional queries are generated queries and not partial ones (because the system generates a

Omissions in Constraint Acquisition 15

new query when an omission occurs). As query generation is the most time-consuming
process of the algorithm, this affects the run times considerably.

Table 2. Results from the RFT and CIT models.

Benchmark Algorithm |CL| |CLOM | #q #om T

MQuAcq-2 61 0 494 0 9.28
MQuAcq-2-OM1RFT 60 0 624 115 48.09
MQuAcq-2-OM1CIT 49 0 534 135 33.07Zebra
MQuAcq-2-OM2 48 12 480 73 8.37
MQuAcq-2 52 0 384 0 12.70
MQuAcq-2-OM1RFT 52 0 484 101 51.18
MQuAcq-2-OM1CIT 40 0 411 124 48.87Murder
MQuAcq-2-OM2 39 17 397 78 11.81
MQuAcq-2 122 0 1031 0 37.48
MQuAcq-2-OM1RFT 122 0 1464 294 139.22
MQuAcq-2-OM1CIT 121 0 1583 475 404.01Random122
MQuAcq-2-OM2 121 15 1095 68 37.99
MQuAcq2 125 0 1157 0 241.10
MQuAcq2-OM1RFT 125 0 1391 309 459.71
MQuAcq2-OM1CIT 28 0 401 121 28.13RLFAP
MQuAcq2-OM2 119 15 1273 115 602.40

Focusing on the CIT model, where the omissions are related to a gap in the user’s
knowledge (i.e., the “uncertain” constraints of COM), the results (Table 2) demon-
strate that both MQuAcq-2-OM1 with a cutoff (denoted MQuAcq-2-OM1CIT) and
MQuAcq-2-OM2 achieve a quite good performance in most of the problems. The ex-
ception for MQuAcq-2-OM1 is RLFAP where it learns only 23% of CT \ COM , be-
cause the cutoff condition is activated too early. On the other hand, MQuAcq-2-OM2
gives very good overall results, with the increase in number of queries being only up
to 6.2% compared to MQuAcq-2 without omissions. In addition, the omission answers
in MQuAcq-2-OM2 are quite fewer than in MQuAcq-2-OM1 (up to 86% in Random).
Also, we observe that in Zebra and Murder the number of queries is very close to that
of MQuAcq-2. This happens because most of the “uncertain” constraints are in CT .

5 Conclusions

One significant issue that has not been addressed in constraint acquisition is the possi-
ble presence of uncertainty in the answers of the users. We address this for the first time
by introducing Limited Membership Queries in constraint acquisition. We propose two
algorithms for handling omissions that correspond to the two models of omissions in
concept learning. The first method assumes that omissions are independent events and
nothing can be learned from them, while the second assumes that they are related to
gaps in the user’s knowledge, and can be exploited. Theoretical and experimental re-
sults show that both methods perform well when used in their corresponding omission
models.

16 Dimosthenis C. Tsouros et al.

References

1. Angluin, D.: Queries and concept learning. Machine learning 2(4), 319–342 (1988)
2. Angluin, D., Kriķis, M., Sloan, R.H., Turán, G.: Malicious omissions and errors in answers

to membership queries. Machine Learning 28(2-3), 211–255 (1997)
3. Angluin, D., Slonim, D.K.: Randomly fallible teachers: Learning monotone dnf with an in-

complete membership oracle. Machine Learning 14(1), 7–26 (1994)
4. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models from pos-

itive examples. In: Principles and practice of constraint programming. pp. 141–157. Springer
(2012)

5. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper,
C.G., Walsh, T., et al.: Constraint acquisition via partial queries. In: IJCAI. vol. 13, pp. 475–
481 (2013)

6. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M., et al.: Query-driven constraint acquisi-
tion. In: IJCAI. vol. 7, pp. 50–55 (2007)

7. Bessiere, C., Daoudi, A., Hebrard, E., Katsirelos, G., Lazaar, N., Mechqrane, Y., Narodytska,
N., Quimper, C.G., Walsh, T.: New approaches to constraint acquisition. In: Data mining and
constraint programming, pp. 51–76. Springer (2016)

8. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artificial Intel-
ligence 244, 315–342 (2017)

9. Bisht, L., Bshouty, N.H., Khoury, L.: Learning with errors in answers to membership queries.
Journal of Computer and System Sciences 74(1), 2–15 (2008)

10. Bshouty, N.H.: Exact learning from an honest teacher that answers membership queries.
Theoretical Computer Science 733, 4–43 (2018)

11. Bshouty, N.: Exact learning boolean functions via the monotone theory. Information and
Computation 123(1), 146 – 153 (1995)

12. Cabon, B., De Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assign-
ment. Constraints 4(1), 79–89 (1999)

13. Frazier, M., Goldman, S., Mishra, N., Pitt, L.: Learning from a consistently ignorant teacher.
In: Proceedings of the seventh annual conference on Computational learning theory. pp. 328–
339. ACM (1994)

14. Freuder, E.C.: Modeling: the final frontier. In: The First International Conference on The
Practical Application of Constraint Technologies and Logic Programming (PACLP), Lon-
don. pp. 15–21 (1999)

15. Freuder, E.C.: Progress towards the holy grail. Constraints 23(2), 158–171 (2018)
16. Freuder, E.C., O’Sullivan, B.: Grand challenges for constraint programming. Constraints

19(2), 150–162 (2014)
17. Goldman, S.A., Mathias, H.D.: Learning k-term dnf formulas with an incomplete member-

ship oracle. In: COLT. pp. 77–84. Citeseer (1992)
18. Mitchell, T.M.: Version spaces: an approach to concept learning. Tech. rep., STANFORD

UNIV CALIF DEPT OF COMPUTER SCIENCE (1978)
19. Tsouros, D.C., Stergiou, K., Bessiere, C.: Structure-driven multiple constraint acquisition.

In: International Conference on Principles and Practice of Constraint Programming. pp. 709–
725. Springer (2019)

20. Tsouros, D.C., Stergiou, K., Sarigiannidis, P.G.: Efficient methods for constraint acquisition.
In: 24th International Conference on Principles and Practice of Constraint Programming
(2018)

