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Abstract

This paper provides a short overview of space time series clustering, which
can be generally grouped into three main categories such as: hierarchi-
cal, partitioning-based, and overlapping clustering. The �rst hierarchical
category is to identify hierarchies in space time series data. The second
partitioning-based category focuses on determining disjoint partitions among
the space time series data, whereas the third overlapping category explores
fuzzy logic to determine the di�erent correlations between the space time
series clusters. We also further describe solutions for each category in this
paper. Furthermore, we show the applications of these solutions in an urban
tra�c data captured on two urban smart cities (e.g., Odense in Denmark and
Beijing in China).The perspectives on open questions and research challenges
are also mentioned and discussed that allow to obtain a better understand-
ing of the intuition, limitations, and bene�ts for the various space time series
clustering methods. This work can thus provide the guidances to practition-
ers for selecting the most suitable methods for their used cases, domains, and
applications.
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1. Introduction

Recent advances in geolocation, partly as a result of GPS (Global Po-
sitioning System) support, has resulted in the creation of large volumes of
data varied in time and space. Space time series is one of the most powerful
representations for several domains applications including transportation J.
Hu et al. 2018, health-care Xi et al. 2018, seismology Morales-Esteban et
al. 2014 and climate science Y. Liu 2015. The useful way to analyze space
time series is by utilizing data mining and machine learning techniques Iza-
kian, Pedrycz, and Jamal 2013; Von Landesberger et al. 2016. Clustering
is one of the data mining techniques where similar data are grouped to-
gether into homogeneous clusters that has been intensively studied in the
past decades Karypis, E.-H. Han, and Kumar 1999; Ng and J. Han 2002;
Vesanto and Alhoniemi 2000; Karypis 2002; Nanopoulos, Theodoridis, and
Manolopoulos 2001; H. Xiong, J. Wu, and J. Chen 2009; Ester et al. 1996;
Jain, Murty, and Flynn 1999; Kriegel, Kr•oger, and Zimek 2009. In recent
decades, many research focused on time series clustering Keogh and J. Lin
2005; Hallac et al. 2017; Dau, Begum, and Keogh 2016; Y. Xiong and Ye-
ung 2002, and several works considered the spatial dimension in time series
clustering Ferstl et al. 2017; Gharavi and B. Hu 2017; Izakian, Pedrycz, and
Jamal 2015; Izakian, Pedrycz, and Jamal 2013, resulting in space time series
clustering.

This paper presents a comprehensive overview of the existing space time
series clustering algorithms. We have divided the existing approaches into
three main categories depending on the type of clustering results. The �rst
category is called hierarchical space time series clustering that is used to
create hierarchical clusters among the space time series data. The second
category is named pure partitioning space time series clustering that is uti-
lized to partition the space time series into disjoint and similar clusters. For
the third overlapping partitioning space time series clustering, it aims at de-
termining clusters where space time series data may belong to one or more
clusters. In this paper, we then study and present the solutions for each
category. In addition, we show the applications of existing space time series
clustering on urban tra�c data relevant to two smart cities (e.g., Odense
in Denmark and Beijing in China). Furthermore, challenges, open perspec-
tives and research trends for space time series clustering are discussed and
concluded. Compared to previous survey papers, this paper �rst provides
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a deep analysis of space time series clustering techniques, which allows to
clearly understand the merits and the limits of the reviewed algorithms for
each space time series clustering category. This paper also derives mature
solutions for space time series clustering, in particular for massive data, and
for emerging applications.

1.1. Previous studies
This section summarizes the relevant survey papers and clari�es the dif-

ferences to show the contributions of this paper. This survey paper is com-
posed of two main topics, which are spatio-temporal data mining and time
series clustering. In the following section, we review some existing surveys of
these topics. Many data mining approaches have been proposed for spatio-
temporal data.

Zheng 2015 reviewed trajectory data mining techniques including clus-
tering, classi�cation, and outlier detection. Feng and Zhu 2016 proposed an
overall framework of trajectory data mining including preprocessing, data
management, query processing, trajectory data mining tasks, and privacy
protection. Shekhar, Evans, et al. 2011 and Gupta et al. 2014 provided the
comprehensive overviews of application-based scenarios for spatio-temporal
data mining such as �nancial markets, system diagnosis, biological data, and
user-action sequences. Eftelioglu et al. 2016 studied hot spot detection in
several applications such as environmental criminology, epidemiology, and
biology. Keogh and Kasetty 2003 introduced the need of a fair evaluation of
time series data including time series clustering. According to the authors,
such as evaluation is done to avoid data and implementation bias. Liao 2005
presented an overview of time series clustering. It categorizes time series clus-
tering into three categories, which are i) raw-data-based approaches either in
time or frequency domain; ii) feature-based approaches that use feature ex-
traction techniques for handling high dimensional time series reduction; and
iii) model-based approaches that each time series is obtained by applying
some mixture of models. Zolhavarieh, Aghabozorgi, and Teh 2014 reviewed
the existing works of subsequence time series clustering based on the pub-
lished periods such as: preproof (1997{2003), interproof (2003{2010), and
postproof (2011{2014).

Fu 2011 discussed time series data mining techniques including segmen-
tation, indexing, clustering, visualization and pattern discovery. Esling and
Agon 2012 reviewed the existing time series data mining approaches such
as classi�cation, clustering, segmentation, outlier detection, prediction, and
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rules and motifs discovery. It classi�es time series clustering into two cate-
gories, which are i) whole series clustering by considering the complete time
series in the clustering process, and ii) sub-sequences clustering, in which
the clusters are found by selecting subsequences from multiple time series.
In addition, Aghabozorgi, Shirkhorshidi, and Wah 2015 included another
category of time series clustering, namelytime point clustering, which aims
at determining clusters based on a combination of the temporal proximity
of time points and the similarity of the corresponding values. Compared to
the existing surveys, this is the �rst survey that deals with space time series
data; all the other works have been limited to only time series data, or even
to spatial or temporal data.

Class Algorithms Variants
Rodriguez and Laio 2014

Agglomerative Clustering Shen and Cheng 2016
X. Wang et al. 2019

Hierarchical Hierarchical Self Organizing Map Steiger, Resch, and Zipf 2016
Y. Wu et al. 2017

Machine Learning Ferstl et al. 2017
Deng et al. 2018

N. Andrienko and G. Andrienko 2013
Gharavi and B. Hu 2017
Cho et al. 2014

kmeans H.-L. Yu et al. 2015
X. Jiang, C. Li, and J. Sun 2018
Bai et al. 2014
Kr•uger et al. 2017

Pure Partitioning Von Landesberger et al. 2016
PAM Penfold et al. 2016

T. Sun et al. 2017
J. Jiang, Y. Chen, et al. 2019

Peak Density Putri et al. 2019
Heredia and Mor 2019
H. Li 2019

Izakian, Pedrycz, and Jamal 2013
Fuzzy kmeans Izakian, Pedrycz, and Jamal 2015

Overlapping Partitioning Disegna, D'Urso, and Durante 2017
Paci and Finazzi 2017

Machine learning Gholami and Pavlovic 2017
Y. Zhang et al. 2017

Table 1: Taxonomy of space time series clustering algorithms

1.2. Taxonomy and paper organization

Table 1 presents a taxonomy of the space time series clustering algorithms
presented in this paper. They are classi�ed into three categories. The �rst
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category is namedhierarchical clustering, which is utilized to identify hier-
archy among the space time series data. The secondpure partitioning space
time series clusteringcategory is to partition the space time series into dis-
joint and similar clusters. Furthermore, the third overlapping partitioning
space time series clusteringcategory aims at determining a space time series
that may belong to one or more clusters.

The rest of the paper is organized as follows. Section 2 de�nes the back-
ground and concepts used in the paper, including clustering and space time
series data. Section 3 presents the relevant approaches for space time series
algorithms. Section 4 shows a case study of the existing space time series
clustering algorithms on large and big urban tra�c data by exploring two
urban smart cities (Odense in Denmark and Bejing in China). Section 5
discusses the challenges and future directions in space time series clustering.
Finally, Section 6 states the conclusion of this paper.

2. Preliminaries

This section presents preliminaries regarding clustering techniques and
space time series data.

2.1. Clustering
De�nition 1 (Clustering). Considerm data x1; x2; : : : ; xm , and a set ofk
clusters C = f C1; C2; : : : ; Ckg, and a distance measureD. Each clusterCi

is represented by its centroidgi . Any clustering algorithm aims to partition
the data into similar groups such as the optimal clustering denoted asC � :

C � = EC

kX

i =1

X

x j 2 C

D(gi ; x j ) (1)

De�nition 2 (Hierarchical Clustering). Hierarchical clustering aims to
create a tree-like nested structure partitionH = fH 1; H 2 : : : H hg of the data
such that:
8(i; j ) 2 [1: : : k]2; 8(m; l ) 2 [1: : : h]2; Ci 2 H m ; Cj 2 H l ; m � l ) Ci 2
Cj ^ Ci \ Cj = ;

A hierarchical algorithm builds the hierarchical relationship among data.
The typical approach is that each data point is �rst in an individual clus-
ter. Based on the most neighboring, the clusters are merged to new clusters
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until there is only one cluster left. Algorithms of this kind of clustering
include BIRCH (Balanced Iterative Reducing and Clustering using Hierar-
chies) T. Zhang, Ramakrishnan, and Livny 1996, CURE (Clustering Using
REpresentatives) Guha, Rastogi, and Shim 1998, ROCK (RObust Clustering
Hierarchical) Guha, Rastogi, and Shim 2000, and Chameleon Karypis, E.-H.
Han, and Kumar 1999.

De�nition 3 (Pure Partitioning Clustering). Pure partitioning cluster-
ing aims to look fork partitions of the data such that:
Ci \ Cj = ; , and 8i 2 [1: : : k]; Ci 6= ;

The basic idea of pure partitioning clustering is to consider the center
of data points as the center of the corresponding cluster, and recursively
compute and update the center until convergence criterion is achieved. Typ-
ical algorithms of this kind of clustering includek-means MacQueen et al.
1967, PAM (Partition Around Medoids) Kaufman and Rousseeuw 1990, and
CLARA (Custering LARge Applications) Kaufman and Rousseeuw 2009.

De�nition 4 (Overlapping Partitioning Clustering). Overlapping par-
titioning clustering indicates that each datax j to each clusterCi is with a
degree of membership� ij 2 [0: : : 1] such that

P k
i =1 �ij = 1

The basic idea of overlapping clustering is to assign data point to each
cluster using a membership value between 0 and 1 in order to describe the
relationship between data points and clusters. Typical algorithms of this
kind of clustering include fuzzy c-means Bezdek, Ehrlich, and Full 1984, and
FCS (Fragment Clustering Schemes) Dave and Bhaswan 1992.

2.2. Space Time Series

De�nition 5 (Space Time Series). Considerm data such thatx1; x2; : : : ; xm ,
each of data is comprised of a spatial part and a time series part. For the
l th data x l , the concatenationx l = [ x l (s)jx l (t)] is realized, wherex l (s) repre-
sents its spatial part andx l (t) refers to its time series part. By consideringr
features (usually,r = 2) for the spatial part and q features for the time series
part, we have the following representation for thel th data with dimensionality
n = r + q

x l = [ x l1(s); : : : ; xlr (s)jx l1(t); : : : ; xlq(t)] (2)
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Figure 1: Space-time series example

Figure 1 illustrates an example of a space-time series. There are a number
of spatial points in x-y coordinates, and for each spatial point, there is one
(or more) time series representing the measurements of a phenomenon in
di�erent time steps.

De�nition 6 (Space Time Series Similarity). We de�ne the distance be-
tween two space time seriesx1, and x2 as:

D(x1; x2) = SD(x1; x2) + TD(x1; x2); (3)

where i) SD(x1; x2) de�nes the spatial distance that computes the similarity
between the spatial components of the space time seriesx1, and x2, and
ii) TD(x1; x2) de�nes the temporal distance that determines the similarity
between the time series components ofx1, and x2. The spatial distance
is usually computed using ordinary Euclidean distance, where the temporal
distance is captured using time series distances Mori, Mendiburu, and Lozano
2016. In the following, we illustrate some interesting measures between two
time series data (e.g.,x(t) and y(t)).

1. Lp distances Yi and Faloutsos 2000:Lp distances are the rigid metrics
that can only compare series of the same length. However, due to their
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simplicity, they have been widely used in many tasks related to time
series analysis and mining. The di�erent variations of theLp distances
and their formulas are provided in Table 2.

Table 2: L p Distances
Distance p Formula
Manhattan 1

P
x i ( t ) 2 x ( t ) _ y i ( t ) y ( t ) jx i (t ) � yi (t )j

Euclidean 2
q P

x i ( t ) 2 x ( t ) _ y i ( t ) y ( t ) (x i (t ) � yi (t )) 2

Minkowski [1 : : : 1 ] p
q P

x i ( t ) 2 x ( t ) _ y i ( t ) y ( t ) (x i (t ) � yi (t )) 1=p

In�nite norm 1 maxx i ( t ) 2 x ( t ) _ y i ( t ) y ( t ) fj x i (t ) � yi (t )jg

Table 3: Time Series Distances
Distance Formula

DTW(x(t), y(t))

8
>>><

>>>:

0 if jx(t )j � 1 = jy(t )j � 1 = 0
1 if jx(t )j � 1 = 0 jjj y(t )j � 1 = 0
x0 (t ) � y0 (t ) + min f DT W (x(t )=x0 (t );
y(t )=y0 (t )) ; DT W (x(t ); y(t )=y0 (t )) ; otherwise
DT W (x(t )=x0 (t ); y(t )) g

STS(x(t), y(t))

r
P

x i ( t ) 2 x ( t ) _ y i ( t ) y ( t )

�
y i +1 ( t ) � y i ( t )

t i +1 � t i
�

x i +1 ( t ) � x i ( t )
t i +1 � t i

�

Dissim(x(t), y(t))
P

x i ( t ) 2 x ( t ) _ y i ( t ) y ( t ) (x i (t ) � yi (t ) + x i +1 (t ) � yi +1 (t )) � (t i +1 � t i )

PC(x(t), y(t))
P

x i ( t ) 2 x ( t ) _ y i ( t ) y ( t ) ( x i ( t ) � x ( t )) � ( y i ( t ) � y ( t ))
q

( x i ( t ) � x ( t )) 2 �
q

( y i ( t ) � y ( t )) 2

Note that x(t ) and y(t ) are the mean values of time series x(t ) and y(t ), respectively.

2. DTW (Dynamic Time Warping) Sakoe and Chiba 1978: This distance
is able to deal with transformations such as local warping and shifting.
Furthermore, it allows the comparison between di�erent series length.

3. STS (Short Time Series) M•oller-Levet et al. 2003: This distance is
adapted to the characteristics of irregularly sampled series.

4. Dissim Frentzos, Gratsias, and Theodoridis 2007: It is speci�cally de-
signed for series collected at di�erent sampling rates that indicates each
series is de�ned in a �nite set of time instants, but these can be di�erent
for each series.

5. PC (Pearson`s correlation) Golay et al. 1998: This distance focuses on
extracting a set of features from the time series and calculating the
similarity between these features instead of using the raw values of the
series.

Table 3 presents the description of DTW, STS, Dissim, and PC for-
mulas. The interested readers may also �nd the alternative distances with
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SAX (Symbolic Aggregate approXimation) Cole, Shasha, and Zhao 2005 or
sketches Shieh and Keogh 2008 but until now, we do not �nd those relevant
works in space time series clustering.

3. Algorithms

Intensive studies have been carried to capture the space time series clus-
tering algorithms. Up to now, 112 papers have been analyzed. From these
papers, the following �lter process is performed:

1. 28 papers are removed after the �rst pre-screening of the abstract due
to they are out of the scope of space time series clustering.

2. From the remaining 84 papers, only 32 papers are �nally selected. The
selection criteria is based on the quality of the paper, and the quality
of the publisher. Only high quality papers are elected if the paper is
published in top-tier conferences or high impact factor journals.

In addition, our intensive study reveals that almost solutions for space
time series clustering can be classi�ed as hierarchical-based, pure partitioning-
based, and overlapping-based approaches. Therefore, this section presents
space time series clustering algorithms grouped into three categories.

3.1. Space-time series hierarchical clustering
Before 2017: Rodrigues, Gama, and Pedroso 2008 presented ODAC

(Online Divisive Agglomerative Clustering) incrementally updates the tree-
like hierarchy clusters using top-down strategy by computing the dissimilari-
ties between time series. The dissimilarities between time series is de�ned by
the cluster`s diameter measure, where the splitting criterion is supported by
a con�dence level given by the Hoe�ding bound Hoe�ding 1963 that allows
to de�ne the diameter of each cluster. This algorithm is applied to multiple
time series, but it can be easily adopted on space time series data. Shen
and Cheng 2016 established a new framework that enables comprehensive
analysis of trajectory space-time series data to group people with similar
behavior. The framework segregates individuals into subgroups upon where
(place), when (time) and how long (duration) the activities are conducted for
each individual. It includes three main steps, (i) extracting ST-ROI, i.e., the
region of interests with not only spatial location information but also inter-
esting time spans; (ii) de�ning individual time allocation on the ST ROIs as
their space-time pro�les to describe his/her activity routine; and (iii) group
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people using hierarchical clustering based on di�erent activity patterns. For
example, Steiger, Resch, and Zipf 2016 develop the geographic hierarchical
self-organizing map (Geo-H-SOM) for discovering spatio-temporal semantic
clusters from tweets of people generated in di�erent week days and on dif-
ferent regions. It considers the similarities between tweets across their tem-
poral as well as geographical and semantic characteristics. Results on real
case study in London reveal similar correlations between tweets of people
live in the same region. However, some clusters are sparse and di�cult to be
analyzed due to high correlation between certain tweets.

From 2017: Ferstl et al. 2017 propose a hierarchical ensemble clus-
tering approach to analyze and visualize temporal uncertainty in weather
forecasting data. Clusters in speci�ed time window are merged to indi-
cate when and where forecast trajectories diverge. Di�erent visualizations
of time-hierarchical grouping on European center for medium-range weather
forecasting data are shown including space-time surfaces built by connect-
ing cluster representatives over time, and stacked contour variability plots.
Y. Wu et al. 2017 presented an interactive framework namedStreamExplorer
that visualizes social streams. It continuously detects important time periods
(i.e., sub-events), and extract topics of tweets made on any sub-events using
GPU-assisted self organizing map. A multi-level visualization method that
integrates Agnes algorithm for showing a space-time series generated from
the extracted tweets in a given time period and for di�erent users located on
di�erent regions. The map allows to summarize important sub-events at a
macroscopic level using a tree of visualizations. It not only reveals the dy-
namic changes of a social stream in the context of its past evolution, but also
organizes historical sub-events in a hierarchical manner for easy review and
navigation of sub-events. The proposed system enables end users to track, ex-
plore, and gain insights of social streams at di�erent levels. Deng et al. 2018
address a spatio-temporal heterogeneity problem by employing space-time
series clustering. This approach divides space-time series data into mean-
ingful clusters while considering both the spatial proximity and the time
series similarity instead of the previous methods that only deal with time
or space dimensions. The application of auto-correlation time-series clusters
in arti�cial neural networks reveals good accuracy for space-time series pre-
diction. X. Wang et al. 2019 suggested a novel representation formed by a
sequence of 3-tuples for interval-valued time series in high dimensional data,
and loss information issue. In addition, a hierarchical clustering algorithm
based on improved dynamic time warping distance measure is designed for
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interval-valued time series of equal or unequal length.

3.2. Space-time series pure partitioning clustering
Before 2016: N. Andrienko and G. Andrienko 2013 proposed an interac-

tive framework to analyze and visualize large amount of spatio-temporal data
represented by a set of time series. Multiple and heterogeneous space-time
series are �rst created from the spatio temporal data. The set of space-time
series is then grouped based on the similarity of the temporal variation of
the timestamp value. During this step, an interactive tool is used to re�ne
the clustering results. This is done by showing both time graph and map
displays to the data analysts. The time-graph display let the analysts view
the homogeneity degree of each group. For the map display, the locations
are characterized by the space-time series and each group is painted in the
same color. Cho et al. 2014 develop the Stroscope visualization tool that
help neurologists analyze space-time series coming from blood pressure data.
It provides two kinds of clustering techniques such as: data-space clustering
and image-space clustering. For the data-space clustering, records that have
similar measurement values are grouped together, which result in the same
clusters for the same data set. However, an image-space clustering aims at
solving the visual inconsistency problem of the data-space clustering. In the
image space clustering, records with a similar color pattern are clustered to-
gether, where the clustering results could vary according to the color table
de�ned by the users, but the results are more reasonable to users who ex-
presses his/her intention in his/her color mapping choice. Bai et al. 2014
proposed a Gtem algorithm to cluster events from geographical temperature
sequence data. It can detect high temperature events in irregular shape,
size and evolution model. Furthermore, Gtem can automatically select the
optimal parameters based on the MDL (Minimum Length Description) prin-
ciple Barron, Rissanen, and B. Yu 1998 to automatically group events of an
area into space-time series data. Moreover, Gtem can successfully �nd high-
temperature events with exact start-end timestamps on the daily weather of
the Hunan province in China from 2004{2008. H.-L. Yu et al. 2015 applied
the clustering process to distinguish the space-time patterns of local pre-
cipitations in the summer and autumn synoptic conditions from 24 gauges
during 1996{2008 in Taiwan. It groups the synoptic and local conditions for
the space-time rainfall patterns by integratingk-means with the empirical
orthogonal function analysis. The results identi�ed three mainly extreme
patterns and two normal patterns in both seasons. L. Li et al. 2015 in-
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vestigated trend modeling for space time series clustering in the context of
urban tra�c data. Based on daily similarity of tra�c time series on di�erent
urban locations, the simple average trend with PCA (Principle Component
Analysis) approach is developed to analyze the daily tra�c space time series
obtained in consecutive days and de�ne their global varying similarity while
DWT (Discrete wavelet transform) mostly de�nes the local varying tendency.

2016: Von Landesberger et al. 2016 presented a visual analysis for people
ow between places in London. The people ow is aggregated into regions
to reduce the mass mobility patterns usingk-means algorithm. Despite of
visualization of people ow, only aggregated regions are shown to the users
for better understanding the distribution of ow between places. Moreover,
a new measure namedStrength Flowis developed to �lter the regions having
low density ow. L. Wang et al. 2016 developed a clustering method called
separation degree algorithm that is able to construct self-adaptive interval
based on the separation degree model to detect anomaly in network space
data. The advantage of this approach is to automatically determine the self-
adaptive interval, which can be used to improve the accuracy of anomaly
detection. Extensive experimental results showed that the proposed method
can e�ectively detect anomaly data from heterogeneous spaces in the given
network. Penfold et al. 2016 suggested a clustering model to identify clusters
of early adoption for a new clinical practice. The results indicated that the
revealed patterns provide insights to identify organizational context and pre-
scribe level factors involved in di�usion and implementation within a learn-
ing health care system. The proposed approach can be used for real-time
prospective surveillance context such as urgent clinical events with public
health importance. Steiger, Resch, Albuquerque, et al. 2016 used a geo-
graphic self-organizing map to group human mobility patterns by analyz-
ing similar space-time series generated from live tra�c feeds. A standard
self-organizing map is �rst applied in order to observe and analyze the gen-
eral topological relationships of the reference database. A geographic self-
organizing map is then computed for the identi�cation of similar overlapping
tra�c disruption patterns. The results of tra�c disruption clusters are �-
nally correlated with the computed geo-referenced weight vectors from all
retrieved geo-referenced tra�c data. A case study in London tra�c data
showed that particularly special events, such as concerts, demonstrations,
and sports events, etc., are well reected within space-time series input data.

2017: T. Sun et al. 2017 proposed matching and pruning strategies to ef-
�ciently compute the center of space-time series using dynamic time warping
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distance. Experimental results revealed that the proposed centroid formula
improves the performance compared to the existing space-time series cluster-
ing in terms of computational time and clustering quality. Gharavi and B. Hu
2017 presented a clustering algorithm to detect disturbances and degradation
area in the grid. Thek-means algorithm is extended to group measurement
units into di�erent clusters based on power quality. A multi-objective cri-
terion is de�ned by considering both time and space in the clustering pro-
cess. According to the experiments on IEEE 39-bus transmission system,
it revealed that the proposed clustering space-time synchrophasor scheme is
capable to detect and isolate areas in the grid su�ering from multiple distur-
bances, such as faults. Kr•uger et al. 2017 proposed a segmentation approach
that allows distinct activities within human motion space-time series data.
Segmentation human motion data is �rst considered as graph problem, and
a neighborhood graph-based and PCA (Principle Components Analysis) ap-
proaches are then applied for dimension reduction. A clustering method that
allows to detect motion segments is based on self-similarities which needs no
assumption on the number of clusters. The experiments on a wide variety
of motion datasets show that the approach can identify usual non-repetitive
human activities such as one step, jump, and, turn. However, the approach
could not identify some substantial changes between the individual repeti-
tions in the muscle activation patterns such as fatigue e�ects in longer motion
trials.

2018: X. Jiang, C. Li, and J. Sun 2018 focused on mining of multime-
dia time series data using a mixed composition of graphic arts and pictures,
hyper text, text data, video or audio. It adopted a k-means algorithm to
handle high dimensional data as the input set for a multimedia database
and at the same time, the algorithms obtains optimal similarity measure by
utilizing a Minkowski distance which is a generalized form of the Euclidean
distance. Mikalsen et al. 2018 proposed a robust time series cluster kernel
by taking the missing time series data into account using the properties of
Gaussian mixture models augmented with informative prior distributions.
An ensemble learning approach is exploited to ensure robustness of param-
eters by combining the clustering results of many Gaussian mixture models
to form the �nal kernel.

2019: Some algorithms based on density peaks principle Rodriguez and
Laio 2014 and its variants gravitation-based density peaks clustering J. Jiang,
Hao, et al. 2018, and density peaks clustering based on logistic distribution
and gravitation J. Jiang, Y. Chen, et al. 2019 have been suggested for space
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time series clustering. The main idea behind these algorithms is that the
centers of the di�erent clusters are more dense than the remaining data.
This allows to automatically identify outliers. In addition, the clusters are
recognized regardless of their shape and of the dimensionality of the space
in which they are embedded. Y. Wang et al. 2016 implements a time-based
Markov model to formulate the dynamics of electricity consumption for cus-
tomer behaviors by considering the state-dependent characteristics. It also
indicates that future consumption behaviors would be related to the current
states. Furthermore, it mentions that the density peak clustering has good
robustness to identify outliers without further processing. Putri et al. 2019
developed a new density-based clustering approach for grouping a set of time
series. This approach generates arbitrarily shaped clusters, and explicitly
tracks their temporal evolution. Heredia and Mor 2019 proposed a hybrid
approach which combines the density-peak clustering with the spatial den-
sity of space time series data. The whole data is �rst partitioned using the
smoothed density function, and the resulted groups are further divided using
the density-peak clustering approach. H. Li 2019 developed a hybrid ap-
proach based on principal component analysis and density-peak clustering.
A high dimensional multi-variate space time series data is �rst reduced using
the principal component analysis, and the selected features are then grouped
using the density-peak clustering.

3.3. Space-time series overlapping partitioning clustering
Before 2017: Izakian, Pedrycz, and Jamal 2013 proposed a fuzzy ap-

proach for spatio-temporal data clustering. Fuzzy c-means and adaptive
Euclidean distance function are adopted to cluster di�erent nature of spatio-
temporal data. The suggested augmented distance allows to control the e�ect
of each data in the determination of the overall Euclidean distance and gives
a sound balance between the impact of the spatial and temporal components
of the data. Izakian and Pedrycz 2014b suggested a cluster-center approach
for anomaly detection problem in space-time series data. A Fuzzy C-Means
(FCM) algorithm is employed to group the time series. A Euclidean distance
is used for similarity computation in both spatial and temporal components,
where the� parameter is de�ned to balance the impact of the spatial and tem-
poral components of the data in the clustering process. In addition, Anomaly
score is assigned to each cluster for quantifying the unexpected changes in
the structure of data. At the end, the relations between clusters presented in
successive time windows are visualized to quantify anomaly propagation over
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time. Izakian and Pedrycz 2014a introduced a generalized version of fuzzy
c-means clustering to cluster data with blocks of features coming from dis-
tinct sources. A new distance function is developed to take the multi-sources
aspect into account. The distance combines the features of di�erent sources
by using aggregate variables, that allows to increase/decrease the impact of
the given data source against other data sources. Izakian, Pedrycz, and Ja-
mal 2015 further presented three alternative approaches for fuzzy clustering
of space-time series data. The �rst approach takes the averaging dynamic
time warping distance technique into account and applies the fuzzy c-means
technique for clustering space-time series data. For the second approach, a
fuzzy c-medoids technique that ignores the average distance calculation was
explored and �nally, a combination between the c-medoids and the c-medoids
was examined and discussed.

From 2017: Paci and Finazzi 2017 developed a Bayesian dynamic ap-
proach that integrates a �nite weighted mixture model for clustering space-
time series data. Thus, a state-space model has been employed to describe
the temporal evolution of di�erent locations belonging to each cluster. Also,
a new strategy for selecting the number of clusters has presented. By using
a weighted mixture model, this approach allows easy and fast prediction of
the membership probability at any location and at any window time. Dis-
egna, D'Urso, and Durante 2017 proposed COFUST (COpula-based FUzzy
clustering algorithm for Spatial Time series). A combination of Fuzzy Parti-
tioning Around Medoids (FPAM) algorithm Kaufman and Rousseeuw 1990
with a copula-based approach Di Lascio, Durante, and Pappada 2017 is per-
formed to interpret co-movements of large-scale time series. First, both spa-
tial and temporal dependencies between the time series are identi�ed through
a copula-based approach. Then, the FPAM algorithm has been adopted in
order to determine non-�ctitious patterns in the space-time series and pro-
ducing the �nal clusters. This approach is computationally more e�cient
and tend to be less a�ected by both local optima and convergence problems
compared to the existing space-time series overlapping clustering. Gholami
and Pavlovic 2017 considered the temporal dependency between space-time
series of complex human motion data. The temporal dependencies are mod-
eled using Gaussian process whose covariance function controls the desired
dependence. The Bernoulli process is also incorporated into the overall pro-
cess to concurrently learn the dimensionality of the subspaces from the data.
Y. Zhang et al. 2017 introduced a density-contour based spatio-temporal
clustering approach (ST-DPOLY) and compare it with the spatio-temporal
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shared nearest neighbors (ST-SNN). First, a spatial density function is de-
termined for the spatial point data collected in batches, where a density
threshold is used for each batch of time to identify spatial clusters. Spatio-
temporal clusters are then determined as continuing clusters. Continuing
clusters are de�ned as the clusters highly correlated in consecutive batches
of time. The proposed approach has applied to 1:1 billion taxi trips recorded
over seven consecutive years from 2009 to 2016, and presented advantages
in terms of clustering results, time and space complexity, while ST-SNN is
more interesting in terms of temporal exibility.

3.4. Discussions

From the above literature review, we provide our insights of the reviewed
papers.

1. Clustering of space time series data requires a lot of e�orts, especially in
terms of a suitable treatment of the spatial and temporal components of
the data. Existing space time series clustering algorithms have been de-
veloped in this direction. Still, much further work is needed to achieve
mature solutions. For instance, current algorithms consider temporal
and spatial dimensions in the same processing level. However, in some
cases, temporal dimension is more suitable than the spatial one, and
vice versa. One way to tackle this issue is to transform the space time
series clustering as multi-objective optimization problem, where some
aggregation functions may be used between the di�erent dimensions
(spatial and temporal dimensions in this case).

2. Space time series data are usually gathered from sensors, and should
be processed continually in a data streams environment. The major
concern with the existing clustering time series is that they do not
provide mechanism to deal with data streams. Incremental clustering
algorithms may be an alternative solution. The main merit of these
algorithms is that it is not necessary to store the whole data in the
memory. Thus, the space requirement of incremental algorithms is
relevant small. Typically, they are non-iterative; their time requirement
is also small. Adopting incremental clustering algorithms in a space
time series is bene�cial to practitioners for dealing with more real-
world applications relevant to manufacturing and smart city, among
others.
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Table 4: Characteristics of space time series clustering algorithms.
Category Merits Limits

Hierarchical Clustering Free-parameters High time and memory consuming
Di�erent level of granularities

Pure Clustering Fast time and memory consuming Di�cult to �x the number of clusters
Overlapping Clustering Finding Overlapping clusters High time consuming

Need parameters adjustments

In addition, we present the merits and limitations of the existing space
time series algorithms (See Table 4 for more details). We can classify the
space time series algorithms into three groups, according to various clustering
models:

1. Algorithms in the �rst group aim at �nding hierarchical clusters. They
do not need any parameter as the input (i.e., the number of clusters).
In addition, it is possible to examine partitions at di�erent granularity
levels. However, with large scale data, they require higher computation
and a huge memory usage. However, space time series data is normally
large scale, thus this model is not suitable for real-world situations.

2. The purpose of the algorithms in second group is to �nd the disjoint
partitions. These algorithms are fast compared to the algorithms in the
�rst category. They are thus more suitable for large scale space time
series data. Nevertheless, those algorithms require parameter setting
(i.e., the number of clusters), which is normally hard to decide, in
particular while considering more dimensions in space time series data.

3. Algorithms in the third group are overlapping partitioning algorithms,
which are used to �nd the overlapping partitions by using a member-
ship degree as input. These algorithms are slow compared to pure
partitioning algorithms due to the complexity of the space time series
data. Moreover, they are very sensitive to the membership rate and the
number of clusters. In addition, to determine the overlapping clusters,
they do not distinguish the spatial and temporal dimensions, which de-
grades the accuracy performance. In many real-world cases, some data
may overlap in one dimension but are disjoint in the other. In such
cases, overlapping partitioning algorithms would fail to determine the
optimal clustering.
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4. Evaluation

In this section, a performance evaluation of space time series clustering
is provided. Both standard time series databases1 and a real case study on
urban tra�c intelligent transportation are analyzed as follows.

4.1. Case Study: Urban tra�c Intelligent Transportation

With the popularization of GPS and IT devices, urban tra�c ow analy-
sis has attracted growing attention in the last decades.Zheng 2015 and Feng
and Zhu 2016 reviewed spatio-temporal urban data mining techniques. The
surveys included segmentation and clustering, detecting outliers and anomaly
ows, classi�cation sub-trajectories, and �nding frequent and periodical se-
quential patterns from clusters of trajectories. The tra�c ow is computed
by counting the number of objects (i.e., cars, passengers, taxis, buses, etc.)
across a given location during a time interval. This generates a high number
of time series captured in di�erent locations of the urban city. A trivial way
to represent these time series captured in di�erent locations is space time
series data. Space time series data mining is largely used in many number
of domains related to intelligent transportation Jensen et al. 2016; Feng and
Zhu 2016. They are used to adapt classical data mining techniques and pro-
pose new methods for discovering useful knowledge from urban tra�c space
time series data. Recent research works of space time series data mining tech-
niques for urban tra�c data including clustering, pattern mining, and outlier
detection can be found in Shekhar, Evans, et al. 2011; Zhou, Shekhar, and
Ali 2014; Koperski, Adhikary, and J. Han 1996; Gupta et al. 2014; Shekhar,
Z. Jiang, et al. 2015; Y. Djenouri, Belhadi, J. C.-W. Lin, D. Djenouri, et al.
2019; Y. Djenouri, Belhadi, J. C.-W. Lin, and Cano 2019; Y. Djenouri and
Zimek 2018; Y. Djenouri and Zimek 2018. One application of space time
series data mining for urban data is clustering. The goal is to �nd out the
similar clusters of urban tra�c ows represented in di�erent locations. This
section shows a case study of an application of space time series clustering
algorithms for dealing with urban tra�c data. In the experiments, we con-
sider various clustering algorithms with di�erent similarity measures on two
urban tra�c data (large dataset for Odense city in Denmark and big dataset
for Beijing city in China).

1https://archive.ics.uci.edu/ml/index.php
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4.2. Datasets

Two real Odense and Beijing tra�c ow data have been used for eval-
uation. These datasets are varied in terms of the number of ow values,
The Odense tra�c data is considered as a large dataset, where the Beijing
tra�c data is considered as big dataset. The detailed explanation of these
two datasets is given as follows:

Odense Tra�c Data: The �rst data is captured from several test
locations throughout the Odense city. Each data entry contains information
related to the vehicle or bike detected at speci�c locations such as: gap,
length, date, time, speed, and class (i.e., type of vehicle or bike). The location
is represented by latitude and longitude dimensions. The speed is calculated
by km/h, and the datetime represents the year, the month, the day, the hour,
the minute and the second that the vehicle or bike is passed by the given
location. The most important information of each vehicle or bike is given as
follows:

ˆ datetime: It represents the time that the vehicle or bike passed on the
location, and the format is: YYYY-MM-DD hh:mm:ss.

ˆ speed: It de�nes the actual speed of the vehicle or bike where it is
across the location.

ˆ class: It de�nes the type of vehicle or bike. For example, if the class is
set as 2, it represents a passenger car.

For ten locations, sensor infrastructure has been installed in a pilot exper-
iment. The ten locations have di�erent characteristics (i.e., tra�c density,
counters for cars/bikes) as described in Table 5. The tra�c data were ob-
tained between January 1st , 2017 and 30th April 2018. It consists of more
than 12 million vehicles and bikes. The data is made by Odense Kommune
2, and may be retrieved athttp://dss.sdu.dk/projects/its/fpd-lof.
html .

Beijing Tra�c Data: The second one is a real urban tra�c data
obtained from Beijing tra�c ow, and retrieved from 3. It consists of more
than 3 billion tra�c ow values during a two-months time period on more

2https://www.odense.dk/
3https://www.beijingcitylab.com/
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Table 5: Odense Data Description
Address ID Type #(Cars or Bikes)
Falen L 1 Cars 16.932
Anderupvej L 2 Cars 25.310
Al�kke Alle L 3 Cars 238.775
Thomas B Thriges Gade L 4 Bikes 46.978
Niels Bohrs Alle L 5 Bikes 445.883
R�deg�ardsvej �stg�aende L 6 Bikes 575.089
Rug�ardsvej L 7 Cars 2.318.852
Nyborgvej L 8 Cars 2.352.930
Gr�nlandsgade L 9 Cars 2.955.464
Odins Bro L 10 Cars 3.921.746

than one hundred locations. The most important information of each car is
given as follows:

ˆ datetime: It represents the time that the car passed on the location,
and format is: YYYY-MM-DD hh:mm:ss.

ˆ Class: It de�nes the type of vehicle or bus.

Figure 2 presents the distribution of urban tra�c data among Odense
and Beijing cities.

4.3. Tool

In this work, we used the algorithms that implemented in SPMF library4

to perform the space time series clustering. Thek-means, DBSCAN, fuzzy
c-means, CHA, and Density-Peak are the well-known clustering algorithms,
and cover all the categories of space time series clustering. Therefore, these
algorithms are chosen for performance evaluation. This library is �rst pro-
posed for pattern mining discovery Fournier-Viger et al. 2014 that has been
extended to di�erent data mining applications. It also provides algorithms
for analyzing time series data such as SAX J. Lin, Keogh, Wei, et al. 2007
and PAA J. Lin, Keogh, Lonardi, et al. 2003, among others. SPMF is an
open-source library implemented in Java. The current version of this tool
is v2.42b and was released on 11-th, March, 2020. It currently contains 196
data mining algorithms. We then used SPMF for space time series clustering
algorithms by implementing the distances related to space time series data,
adding class to space time series representation, and adapting the existing

4http://www.philippe-fournier-viger.com/spmf/
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Odense Locations

Beijing Locations

Figure 2: Urban Tra�c Odense and Beijing Locations

clustering algorithms provided in SPMF library for space time series repre-
sentation. We evaluate algorithms regarding three di�erent dimensions as
follows:

1. Runtime performance : We perform the runtime of each space time
series clustering algorithm including preprocessing step, computing sim-
ilarity, and determining clusters.

2. Quality of clusters : We evaluate the quality of the clusters by two
ways. The �rst way aims to compute the Error Sum of Squares (ESS).
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It is the sum of the squared di�erences between each space time series
data and the mean of its group. It can be used as a measure for
variation within a cluster. If all cases within a cluster are identical, the
ESS is equal to 0. A better clustering result obtains lower ESS value.
The ESS formula is given as:

ESS =
kX

i =1

X

x j 2 Ci

(x j � Ci )2; (4)

whereCi is the mean value of the space time series data belonging to
the cluster Ci .
The second way aims to evaluate the quality of clusters for the clas-
si�cation of tra�c ow Sumit and Akhter 2019; Rezaei and X. Liu
2019; Qu et al. 2019. The data labels are created for each time series
data based on the daily observed tra�c. We have obtained three dif-
ferent labels (WD: data for weekday, ST: data for Saturday, and SN:
data for Sunday). We have created two �les; the �rst �le contains the
data without labels, and the second �le contains data with labels. We
apply space time series clustering techniques on the �rst �le and set
the number of clusters as 3 (for DBSCAN and CHA algorithms). We
have adjusted their parameters to �nd 3 clusters in order to make a
fair comparison with k-means, and fuzzy c-means algorithms. After
construction of clusters, we compare each cluster for the data with the
same label, and we compute the number of corrected classi�ed data
for each cluster as the maximum number of common data between this
cluster and each label. We then computed the classi�cation ratio of
each algorithm to see evaluate the performance.
For both ways, we used thek-fold cross-validation technique, which
is largely used in the machine learning community Anand, Kirar, and
Burse 2013. This approach involves randomly dividing the set of ob-
servations intok groups or folds of approximately equal size. The �rst
fold is treated as a validation set and the model is �t to the remaining
folds. The procedure is then repeatedk times, where a di�erent group
is treated as the validation set.

3. Memory usage : We compute the memory consumption of the space
time series clustering algorithms by using theMemoryLoggerprovided
in SPMF tool.
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Table 6: Comparison of the space time series clustering in terms of runtime (seconds),
the quality of returned clusters (ESS), and the memory usage (MB) using standard time
series databases.

Algorithm Dataset CPU ESS Memory
Air Quality 25 1.80 29

Appliances energy prediction 29 2.21 31
kmeans EEG Eye State 31 2.25 35

Real-time Election 35 2.51 38
Beijing Multi-Site Air-Quality 38 2.59 40

Beijing PM2.5 42 2.71 45

Air Quality 27 1.71 30
Appliances energy prediction 31 2.25 33

DBSCAN EEG Eye State 32 2.28 37
Real-time Election 37 2.35 41

Beijing Multi-Site Air-Quality 39 2.57 43
Beijing PM2.5 41 2.95 47

Air Quality 25 1.80 29
Appliances energy prediction 33 2.57 39

Fuzzy cmeans EEG Eye State 41 2.59 45
Real-time Election 45 2.99 49

Beijing Multi-Site Air-Quality 49 3.11 59
Beijing PM2.5 55 3.05 52

Air Quality 42 0.99 40
Appliances energy prediction 43 1.05 51

CHA EEG Eye State 49 1.12 56
Real-time Election 56 1.19 62

Beijing Multi-Site Air-Quality 63 1.68 66
Beijing PM2.5 67 1.81 71

Air Quality 22 1.52 31
Appliances energy prediction 31 1.71 30

Density Peak EEG Eye State 32 1.75 40
Real-time Election 35 1.74 51

Beijing Multi-Site Air-Quality 39 1.77 53
Beijing PM2.5 45 1.92 54

4.4. Results on Standard Time Series Data

In this experiment, the evaluation of the space time series clustering is
carried out on standard time series databaseshttps://archive.ics.uci.
edu/ml/index.php . Table 6 lists the runtime, the ESS value, and the mem-
ory usage for di�erent used time series databases. From this table, we can
observe that thek-means and DBSCAN are the most powerful methods com-
pared to the other space time series clustering algorithms. Fuzzy c-means
and Density Peak are less competitive thank-means and DBSCAN. However,
they have obtained reasonable results compared to CHA. This latter is the
less competitive algorithm, which requires high computational and memory
resources, and it provides less quality of clusters.

23



4.5. Results on Urban Odense Tra�c Data

kmeans DBSCAN

Fuzzy cmeans CHA

Figure 3: Quality of Returned Clusters on Urban Odense Tra�c Data: ESS

Figure 4: Quality of Returned Clusters on Urban Odense Tra�c Data: Classi�cation Ratio
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The �rst experiments aim at comparing the space time series clustering
using the large urban Odense tra�c data. We have collected several time se-
ries in di�erent locations. Each time series constitutes the set of the number
of ow values in one hour, where each ow is the number of cars or bikes
during a time period. We set the time period to 1min, 2min, 3min, 4min,
and 5min, respectively. This allows to create di�erent time series with dif-
ferent sizes (60, 30, 20, 15, 12). We have captured more than 1 million of
time series for the experiments and constructed 20 datasets. Each dataset
namednXmY indicates that it contains n time series withm di�erent ow
values. In the experiments,n belongs to the setf 1,000, 10,000, 100,000,
1,000,000g, and m belongs to the setf 12, 15, 20, 30, 60g. Figures 3 and 4
showed the quality of the space time series clustering using ESS and classi�-
cation ratio. Figure 3 showed the ESS value of the di�erent space time series
clustering algorithms on dataset 1; 000; 000X 60Y, along with di�erent sim-
ilarity measures (Euclidean, Manhattan, DTW, STS, Dissim, and PC). We
have also observed that by varying the number of clusters ink-means and
fuzzy c-means, respectively, from 1 to 10, epsilon and maximum distance
in DBSCAN and hierarchical clustering, respectively from 0.1 to 1.0, DTW
provides better results whatever the case used. This is explained by the fact
that the DTW measure is well adopted for space time series data by con-
sidering both temporal and spatial dimensions of the space time series data.
This is why the DTW measure is used for the remaining experiments. Figure
4 presents the classi�cation ratio of di�erent clustering algorithms, and with
di�erent Odense locations. The results revealed that the classi�cation ratio
of the space time series clustering algorithms is decreased while increasing
the number of tra�c ow values. Thus, for low density locations, the clas-
si�cation ratio of all algorithms exceeds 80% (k-means and fuzzy c-means
reach 90%). However, for high density locations, the classi�cation ratio goes
under 70% for some algorithms such as DBSCAN and CHA. Figure 5, and
6 present the runtime in seconds and the memory usage in mega bytes for
the space time series clustering using the 20 datasets of the urban Odense
tra�c data. By varying the number of space time series data from 1,000
to 1,000,000, and the the number of ow values from 12 to 60, we remark
that CHA and c-means are slow. Actually, they require high computational
resources to handle the large urban Odense tra�c data. This con�rms the
discussion given in Section 3.4. In general, the space time series clustering al-
gorithms need reasonable memory usage (less than 250 mb), but they require
high computational resources (more than 3 hours) for handling 1,000,000 ow
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values. We can state that the existing space time series clustering algorithms
could handle the large data as the case of urban Odense tra�c data.

1,000 10,000

100,000 1,000,000

Figure 5: Runtime of Clustering on Urban Odense Tra�c Data

4.6. Results on Urban Beijing Tra�c Data

The next experiments aim to show the ability of the space time series
clustering algorithms for handling big dataset, as the case of the urban tra�c
data captured in the second largest city in the world. Figure 7 presents
the performance of the space time series clustering algorithms on Beijing
locations. When varying the number of ow values from 1 million to 30
million, we have observed that thek-means and c-means provide good results
in terms of quality of returned clusters for both ESS and classi�cation ratio
values. They also are very competitive in terms of runtime and memory
usage compared to the other space time series clustering. However, all space
time series clustering algorithms are high time consuming for dealing with
big dataset; they need several days to group Beijing data having 30 million
of ow values. More advanced clustering techniques Schubert et al. 2017;
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Pourkamali-Anaraki and Becker 2017; Q. Zhang et al. 2018; Xiaojun Chen et
al. 2018 are needed to be adopted for handling big space time series datasets.

5. Challenges and Future Directions

This section presents some challenges and future applications in space
time series clustering.

5.1. Challenges

In this section, we present four challenges in the future work on space
time series clustering.

Challenge I: Improving runtime performance of space time se-
ries clustering. Space Time series clustering approaches are very time
consuming in particular while dealing with many spatial points and huge
time series. To handle the big space time series, technologies from di�erent
domains could be adapted such as: i) High performance computing (HPC)
aims at using parallel frameworks to speed up the sequential solutions Shi et
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al. 2018; Y. Djenouri, D. Djenouri, et al. 2019; Y. Djenouri, Bendjoudi, et al.
2014. Some of the most well-known architectures apply the multi-core CPU
or GPU and perform on MapReduce or Spark platforms; ii) Computational
intelligence (CI) is a collection of intelligent methods aiming at optimizing
complex problems with strategies like meta-heuristics Queiroga, Subrama-
nian, and Luc�dio dos Anjos 2018; Y. Djenouri, Drias, and Bendjoudi 2014;
Y. Djenouri, Drias, and Habbas 2014; Y. Djenouri and Comuzzi 2017; and iii)
Database systems provide techniques to e�ciently store, update, and search
space time series data, such as query optimization and index optimization.
Adapting, combining, and optimizing technologies in space time series also
provide many open research questions and future directions.

Challenge II: Improving quality performance of space time se-
ries clustering. The quality of the existing space time series clustering
approaches became poor for the complex and big time series data. To solve
this limitation, the deep network Ni et al. 2018 model can be utilized and
applied for handling this situation. In this context, a suitable distribution of
the data in the deep network should be considered and performed.

Challenge III: Correlation between space time series data. The
existing algorithms for space time series clustering consider individual space
time series data and ignore the correlation between the time series data.
Studying the correlation between space time series using pattern mining al-
gorithms Yagoubi et al. 2017; Campisano et al. 2018; Y. Djenouri, J. C.-W.
Lin, et al. 2019; Y. Djenouri and Comuzzi 2017; Y. Djenouri, D. Djenouri,
et al. 2019 could be helpful for space time series. Such complex or extended
systems could be interesting for some excited applications such as urban
tra�c data Gonzalez et al. 2007.

Challenge IV: Adaptation of advanced and specialized clustering
methods Several variants of clustering models could also be adapted to
handle the space time series data. Many adaptations to speci�c scenarios
such as spatial data Ng and J. Han 2002; Birant and Kut 2007; J. C.-W. Lin,
Y. Li, Fournier-Viger, Y. Djenouri, and J. Zhang 2019, high dimensional
data McCallum, Nigam, and Ungar 2000; Rathore et al. 2018; Y. Djenouri,
Bendjoudi, et al. 2015; J. C.-W. Lin, Y. Li, Fournier-Viger, Y. Djenouri, and
L. S.-L. Wang 2019, time series data Keogh and J. Lin 2005, or streaming
data Eu�an, Ombao, and Ortega 2018; McDowell et al. 2018 remain potential
possibilities. All these special scenarios are somehow related to possible
scenarios in tackling space time series data and thus studied methods in
literature review for these scenarios could also be relevant for adaptations to
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Figure 8: Future directions in space time series clustering

space time series data and for tackling these di�erent aspects simultaneously.

5.2. Future Directions

Myriad volumes of space time series data are collected in several applica-
tions and domains such as social media, urban tra�c, and climate change. In
this section, we briey describe future directions and motivation for applying
space time series clustering in di�erent applications and domains.
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5.2.1. Social Media Analysis
Social media analysis has received a great attention in World Wide Web.

Finding structural properties in a social network such as Twitter is a chal-
lenge issue Kwon et al. 2013 in recent decades. Consider the example shown
in Figure 8(a) that the tweets mentioned the crude oil prices pro�le5. At each
location, we can observe that di�erent number of users have accessed this
page across several days for evaluation. Applying space time series cluster-
ing on these data can discover relevant information, for instance, the number
of people located in red countries are approximately the same when the oil
petrol changes a lot (highly increased or highly decreased). These could be
explained by the fact that the economy of these countries are highly depen-
dent of the oil prices, where people care for a high changes in the price of
such natural resources. In general, applying space time series clustering in
social media data allows creating user pro�ling in both spatial and temporal
dimensions.

5.2.2. Urban Tra�c Flows
Urban tra�c data consists of observations like number and speed of cars

or other vehicles at certain locations as measured by the deployed sensors.
These numbers can be interpreted as tra�c ow which in turn relates to the
capacity of streets and the demand of the tra�c system Belhadi, Y. Djenouri,
and J. C.-W. Lin 2019; Y. Djenouri and Zimek 2018; Y. Djenouri, Zimek,
and Chiarandini 2018. City planners are interested in studying the impact
of various conditions on the tra�c ow, leading to �nding the correlation
between the tra�c ows. Consider the example shown in Figure 8(b), it
illustrates urban tra�c ow of di�erent locations in a given city. For each
location, we have observed di�erent ow values represented by a time series.
Applying space time series clustering on these data allows to group locations
having similar tra�c behaviors. For instance, tra�c in red locations are quite
similar. If the tra�c ow increases in A, it increases inB as well.

5.2.3. Climate Change
Climate change directly e�ects on the precipitation all over the world.

Several research Singh, Lo, and Qin 2017; Karpatne et al. 2013 focus on the
changes in intensity and frequency of precipitation represented by a time

5https://twitter.com/CrudeOilPrices
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series. Studying propagation of climate changes around closer locations is a
challenge issue. One idea to solve this issue is to exploit space time series
clustering. Consider the example shown in Figure 8(c), it presents the tem-
peratures at di�erent locations. At each location, we have observed di�erent
temperature values represented by a time series. Applying the space time
series clustering on these data can allow us to group locations having simi-
lar climate change behaviors. For instance, temperature in red locations are
quite similar and if the climate changes inA, it is also changed inB. In this
case, we can say that there is a propagation in climate change betweenA
and B.

6. Conclusion

This paper presented an overview on space time series clustering ap-
proaches. First, we have discussed three categories of existing clustering
approaches, including hierarchical, partitioning, and overlapping space time
series clustering. We have also elaborated on how limitations in one case
could be bene�cial in another case depending on the scenario and available
knowledge. Second, we have explained four challenges of space time series
clustering and discussed how they might a�ect the clustering process. Third,
we have also provided a case study of existing space time series clustering al-
gorithms on intelligent transportation, targeting to two smart cities (Odense
in Denmark with large dataset and Beijing in China with big dataset). We
have �nally presented a summary of the most relevant directions that could
be concluded from the applications of space time series clustering. Over-
all, whereas solutions to time series clustering has gained high maturity in
domains such as image/speech processing, transportation, and bio-medical
data; the use of space time series clustering in these domains has become an
emerging issue. Our main conclusion from this study is that much explo-
ration and deep progress are still required in all directions to obtain more
mature solutions for end-user satisfaction.
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