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Gradual Semantics for Logic-Based Bipolar Graphs Using
T-(Co)norms

Martin Jedwabny1 and Madalina Croitoru2 and Pierre Bisquert3

Abstract. In this paper we consider a bipolar graph structure en-
coding conflicting knowledge with logic formulas. Gradual seman-
tics provide a way to assign strength values in the unit interval to
nodes (i.e. logical inference steps) in the bipolar graph. Here, we in-
troduce a new class of semantics based on the notions of T-norms and
T-conorms and show that they handle circular reasoning and satisfy
desirable properties such as provability and rewriting.

1 INTRODUCTION

Techniques for query answering over knowledge bases with existen-
tial rules mostly rely on the two classical ways of processing rules,
namely forward chaining and backward chaining.

In forward chaining (i.e. chase [11]) the rules are applied to enrich
the fact base and query answering is performed against the resulting
saturation.

The backward chaining process is divided into two steps: first, the
query is rewritten using the rules into a first-order query, then, sec-
ond, the rewritten query is evaluated against the fact base. Depend-
ing on the considered class of existential rules the chase and/or query
rewriting may terminate or not [6].

When considering knowledge bases where conflict arises, in order
to avoid the explosion principle, one has to deploy reasoning mech-
anisms that do not follow the classical logical inference. In this pa-
per we consider Statement Graphs, a bipolar (i.e. two-colored edges)
graph structure that is able to capture argumentation semantics, de-
feasible reasoning semantics [7] and maxi consistent reasoning se-
mantics [17] via node labeling functions. The nodes of this graph
(statements) contain logical formulae while the edges represent sup-
port and attack (respectively) between them.

Following on the steps of several semantics in the literature de-
fined for abstract argumentation frameworks [1, 9] and bipolar ar-
gumentation frameworks [3], we consider how to define gradual se-
mantics for statement graphs.

To this end we adapt existing principles of gradual semantics to
the context of statement graphs, taking into account the fact that the
nodes of our graphs are composed of logical formulae. We define
a scheme for generating gradual semantics based on the notions of
T-norms and T-conorms in order to satisfy those principles.

The significance of our work is two fold:

1. We extend Statement Graphs with T-norm and T-conorm inspired
operators allowing to reason in a non boolean manner.

1 INRIA GraphIK and University of Montpellier, France, email: mar-
tin.jedwabny@lirmm.fr

2 INRIA GraphIK and University of Montpellier, France, email:
madalina.croitoru@lirmm.fr

3 INRIA GraphIK and IATE INRA, France, email: pierre.bisquert@inra.fr

2. We propose a semantics for bipolar graphs that can handle circular
reasoning.

The paper is structured as follows. The Preliminaries section intro-
duces the basic notions of statement graphs. The Existing semantics
for statement graphs section places our semantics within the state of
the art, and two main guiding principles they should satisfy based
on its specificity. The New semantics based on T-(co)norms section
presents the newly introduced gradual semantics while the Properties
of the proposed semantics section discusses its properties. Finally, we
conclude with the Discussion section.

2 PRELIMINARIES

We consider a first order language L composed of (possibly in-
finite) constants C = {a, b, ...}, variables V = {X,Y, ...}, null
variables N = {Null1, Null2, ...}, no additional function symbols
(other than constants), a (finite) set of predicates P , and formulas
built with the quantifiers (∃, ∀) and the connectors for implication
(→) and conjunction (∧). An atom (or atomic formula) is �,⊥ (i.e.
top, bottom) or of the form t = p(t1, · · ·, tk), where p is a predicate
and ti are the terms i.e. ti ∈ C ∪ V ∪ N . Given a formula φ of L,
terms(φ) and vars(φ) are the set of terms and variables of φ.

A fact on L is a formula of the form ∃ �X p(�a, �X), where �a and �X
are tuples of constants and variables respectively.

Rules are used as an inference mechanism in order to gener-
ate new knowledge. We consider here defeasible rules r: formu-
lae of the form ∀ �X, �Y Body( �X, �Y ) → ∃�Z Head( �X, �Z) such
that �X, �Y are tuples of variables, �Z is a tuple of (existential) vari-
ables, Body( �X, �Y ), Head( �X, �Z) are finite non-empty conjunctions
of atoms, also denoted Body(r) and Head(r). Defeasible rules ex-
press a weak implication i.e. if Body(r) then generally Head(r)
also holds. We call them fact rules when Body(r) = �.

A knowledge base is a tuple KB = (T ,R,N ), where T is a set
of fact rules, i.e. � → ∃ �X p(�a, �X), R is a set of non-fact rules, i.e.
Body(r) 
= �, and N is the negative constraints ∀ �X Body( �X) →
⊥ expressing incompatibility.

Example 1. Let us consider an example about whether we should or
not keep a dog named oscar. The knowledge we formalize below is
the following: Oscar has a collar, a GPS tracker and is found alone. If
an animal is found alone then he is usually put for adoption; if he has
a collar then he usually has an owner; if he has a GPS tracker then he
usually has an owner. An animal with an owner is usually kept. It is
impossible to be kept and put for adoption at the same time.

T = {� → alone(oscar),� → hasCollar(oscar),

� → hasGPS(oscar)}
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R = {∀X alone(X) → adoption(X)

∀X hasCollar(X) → ∃Y hasOwner(X,Y )

∀X hasGPS(X) → ∃Y hasOwner(X,Y )

∀X,Y hasOwner(X,Y ) → keep(X)}

N = {∀X adoption(X) ∧ keep(X) → ⊥}

In order to characterize and reason with knowledge bases, [17]
proposed statement graphs, a general graph based representation
containing statements that support and attack each other. A state-

ment s = (Φ → ψ) expressed in L contains a logic formula in
L where Φ is either � or a non-empty conjunction of grounded
atoms and ψ is a grounded atom. We denote Premise(s) = Φ and
Conc(s) = ψ. We call s a query statement iff ψ = ∅ and Φ 
= �.

We can retrieve the statements produced by a knowledge base
KB = (T ,R,N ) expressed in L through forward or backwards
chaining. A statement graph expressed in L, is a directed graph
SG = (V , ES , EA):

• V is a set of statements.
• ES ⊆ V × V is the set of support edges. There is a support edge

e = (s1, s2) ∈ ES iff Conc(s1) ∈ Premise(s2).
• EA ⊆ V × V is the set of attack edges. There is an attack edge

e = (s1, s2) ∈ EA iff the statement s1 undercuts s2 on a premise
f , i.e. ∃f ∈ Premise(s2) s.t. f and Conc(s1) are in conflict
w.r.t. a set of negative constraints N .

A comprehensive description on retrieving statements using chase
can be found in [16]. However, such procedures are out of the scope
of this paper. Here, for a given knowledge base and a query we con-
sider the statement graph already built.
Example 2. Let us depict in Figure 1 the statement graph for Exam-
ple 1 and query Q = (keep(oscar) → ∅). In this graph, the state-
ment s1 = (� → alone(oscar)) supports s2 = (alone(oscar) →
adoption(oscar)) as the conclusion of the first is included in the
premise of the second. Also, s2 attacks Q as oscar cannot be
given for adoption and kept as we model the negative constraint
∀X adoption(X) ∧ keep(X) → ⊥ as an attack edge.

� →
alone(oscar)

� →
hasCollar(oscar)

� →
hasGPS(oscar)

alone(oscar) →
adoption(oscar)

hasCollar(oscar) →
hasOwner(oscar,Null1)

hasGPS(oscar) →
hasOwner(oscar,Null1)

hasOwner(oscar,Null1) →
keep(oscar)

keep(oscar) → ∅

Figure 1: Statement graph of Example 1.

Let us now introduce a key notion for the remainder of the pa-
per. The notion of complete support describes the situation where a
statement has a supporting statement for each one of its premises.

A complete support for a statement s is a set of statements C
such that:

• ∀f ∈ Premise(s), ∃s′ ∈ C such that s′ supports s on f .
• �C′ ⊂ C such that C′ is a complete support for s (minimality

w.r.t. set inclusion).

We also say that the empty set ∅ is a complete support for any
fact statement s = (� → ψ) i.e. Premise(s) = ∅. Then, we can
extend the notion of complete support to trees as follows. A complete

support tree for a statement s is a set of statements C such that:

• s ∈ C.
• ∀s′ ∈ C, ∀f ∈ Premise(s′), ∃s′′ ∈ C such that s′′ supports s′

on f .
• �s′, s′′ ∈ C such that s′ attacks s′′.
• �s′, s′′ ∈ C such that there is a directed cycle of support edges

between s′ and s′′.
• �C ′ ⊂ C such that C′ is a complete support tree for s (minimality

w.r.t. set inclusion).

We denote CST (s) the set of complete support trees of s. We say
that a complete support tree C ∈ CST (s) attacks C′ ∈ CST (s′)
with respect to a statement graph SG iff ∃s′′ ∈ C′ such that
(s, s′′) ∈ EA.

Example 3. In the statement graph of Figure 1, state-
ment (� → hasCollar(oscar)) is a complete support for
(hasCollar(oscar) → hasOwner(oscar,Null1)).

Moreover, the set of statements {(� → hasCollar(oscar)),
(hasCollar(oscar) → hasOwner(oscar,Null1)),
(hasOwner(oscar,Null1) → keep(oscar)),
(keep(oscar) → ∅)} is a complete support tree for the query
statement (keep(oscar) → ∅).

3 EXISTING SEMANTICS FOR STATEMENT
GRAPHS

In order to evaluate statements, [17] proposed the use of labeling
functions, which assign a truth value to each of the statements.

In this paper, we propose the use of gradual semantics to finer
grain characterize the set of statements from the most accepted one(s)
to the weakest one(s).

To this end we will need two notions, both expressed as values
between 0 and 1. On one hand we will need to characterize the con-
fidence in each statement. On the other we need to characterize the
confidence that complete support trees leading to a statement are cor-
rect.

Definition 1. (Gradual semantics) Given a statement graph SG =
(V , ES , EA), a gradual semantics W takes the statement graph and
an inner strength function I : V �→ [0, 1] and produces an outer
strength value for each statement, i.e.:

W (SG, I) = O : V �→ [0, 1].

We also denote the outer strength of s ∈ V as WSG,I(s) = O(s).

Unlike abstract argumentation, statement graph nodes contain for-
mulas. Their content plays an important role in the evaluation of
other nodes, so our semantics should take it into account. Consider
the following examples in Figure 2:

In case (a) the statement A(a) ∧ B(a) → C(a) has a support for
each of its premises, which is not the case in (b).
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A(a) ∧ B(a) →
C(a)

� → A(a) � → B(a)

A(a) ∧ B(a) →
C(a)

� → A(a)

Figure 2: Support in statement graphs.

In the second case that same inference step would be unjustified
under any presumption for the given graph.

To account for such a property we define the notion of provability.

Definition 2. (Provability) Let SG = (V , ES , EA) be a state-
ment graph, I : V �→ [0, 1] and W a gradual semantics such that
W (SG, I) = O. We say that W satisfies provability iff ∀s ∈ V
such that s is unsupported (i.e. there is a premise without any sup-
porting statement) then O(s) = 0.

Moreover, we desire our semantics to be resistant to some forms
of rule rewriting. Consider the following examples in Figure 3:

� → A(a)

I=0.7

� → B(a)

I=0.6

� → C(a)

I=0.5

A(a) ∧ B(a) ∧
C(a) → D(a)

I=0.5

(a)

� → A(a)

I=0.7

� → B(a)

I=0.6

� → C(a)

I=0.5

A(a) ∧ B(a) →
D′(a)

I=1.0
D′(a) ∧ C(a) →

D(a)

I=0.5

(b)

Figure 3: Rule rewriting

In case (a) we have three statements containing fact rules support-
ing s1 = (A(a)∧B(a)∧C(a) → D(a)). In case (b) we rewrite s1
by factoring out A(a) and B(a) through the intermediate statement
s2 = (A(a)∧B(a) → D′(a)) and s3 = (D′(a)∧C(a) → D(a)).

We would like our semantics to consider such rewriting, as the
length of a proof in our logical language must not necessarily affect
our confidence in it.

Definition 3. (Rewriting) Given SG = (S ∪ {s1, s2, s3}, ES , EA),
and I : S ∪ {s1, s2, s3} �→ [0, 1], where:

• s1 = (L1 ∧ ... ∧ Ln ∧ Ln+1 → L),
• s2 = (L1 ∧ ... ∧ Ln → L′),
• s3 = (L′ ∧ Ln+1 → L) ,
• L′ is a fresh atom (i.e. not in other statements of S),
• I(s1) = I(s3) = x and I(s2) = 1.

We say that a gradual semantics W satisfies rewriting iff
WSG,I(s1) = WSG,I(s3).

Gradual semantics have been studied in the literature in the context
of argumentation frameworks.

Let us explain how the previous properties render such semantics
not usable for Statement Graphs. For instance, consider the euler-
based semantics as defined by [3]. In this work, the authors present
a semantics for bipolar abstract argumentation.

In our terms, the outer strength of a statement in the graph would
be determined as:

O(s) = 1− 1− I(s)2
1 + I(s)eE , where

E =
∑

s′ supports s

O(s′)−
∑

s′ attacks s

O(s′).

� → A(a)

I=0.7, O=0.7
� → B(a)

I=0.6, O=0.6
� → D(a)

I=0.5, O=0.5

A(a) ∧ B(a) ∧
C(a) → E(a)

I=1.0, O=1.0
D(a) ∧ E(a) →

F (a)

I=0.5, O=0.67

Figure 4: Euler-based semantics.

Due to the fact that arguments are considered in an abstract man-
ner, these semantics cannot satisfy the properties defined above. Con-
sider Figure 4, statement (A(a) ∧ B(a) ∧ C(a) → E(a)) does not
have a support for each of its premises, yet its outer strength is equal
to 1 (thus violating provability).

4 NEW SEMANTICS BASED ON T-(CO)NORMS

In this section, we present a new class of gradual semantics for State-
ment Graphs based on the concepts of T-norms and T-conorms (also
called S-norms). These are inspired from and generalize the concepts
of conjunction and disjunction (respectively) in the context of fuzzy
logics [19, 8].

A T-norm (i.e. triangular norm) is a binary operation ⊗ : [0, 1]×
[0, 1] → [0, 1] satisfying the following conditions:

• ⊗(x, y) = ⊗(y, x) (i.e. commutativity)
• ⊗(x,⊗(y, z)) = ⊗(⊗(x, y), z) (i.e. associativity)
• y ≤ z ⇒ ⊗(x, y) ≤ ⊗(x, z) (i.e. monotonicity)
• ⊗(x, 1) = x (i.e. neutral element 1)

Some examples are the minimum ⊗(x, y) = min(x, y), the prod-
uct ⊗(x, y) = x ∗ y and Lukasiewicz t-norm ⊗(x, y) = max(x +
y − 1, 0).

A T-conorm (also called S-norm) is a binary operation ⊕ : [0, 1]×
[0, 1] → [0, 1] satisfying the following conditions:

• ⊕(x, y) = ⊕(y, x) (i.e. commutativity)
• ⊕(x,⊕(y, z)) = ⊕(⊕(x, y), z) (i.e. associativity)
• y ≤ z ⇒ ⊕(x, y) ≤ ⊕(x, z) (i.e. monotonicity)
• ⊕(x, 0) = x (i.e. neutral element 0)

The maximum function ⊕(x, y) = max(x, y), probabilistic sum
⊕(x, y) = x + y − x ∗ y and Lukasiewicz t-conorm ⊕(x, y) =
min(x+ y, 1) are all examples of T-conorms.

A negation is a function ¬ : [0, 1] �→ [0, 1] such that ¬(0) = 1
and ¬(1) = 0. It is strict if ¬ is continuous and strictly decreasing.
A negation is strong if it is strict and satisfies ¬(¬(x)) = x.
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The most widely used strong negation is the standard negation
¬(x) = 1− x.

The standard negation introduced t-conorms as duals of t-norms.
Given a t-norm ⊗ and a strict negation ¬, one obtains a t-conorm ⊕,
which is ¬-dual to ⊗ as:

⊕(x, y) = ¬−1(⊗(¬(x),¬(y)))

A triple (⊗,⊕,¬), where ⊗ is a t-norm, ⊕ is a t-conorm and ¬ is
a negation is called a De Morgan triple iff ∀x, y ∈ [0, 1]:

• ⊗(x, y) = ¬(⊕(¬(x),¬(y)))
• ⊕(x, y) = ¬(⊗(¬(x),¬(y)))

Given a t-norm ⊗, (⊗,⊕,¬) is a De Morgan triple if and only if
¬ is a strong negation and ⊕ is the ¬-dual of ⊗.

We generalize T-norms and T-conorms for n parameters induc-
tively i.e.:

•
⊗

(∅) = 1, and
⊗

i=0,...,n

xi =
⊗

(x0,
⊗

i=1,...,n

xi).

•
⊕

(∅) = 0, and
⊕

i=0,...,n

xi =
⊕

(x0,
⊕

i=1,...,n

xi).

To quantify the strength of a statement, we need to define a way to
aggregate the strength of all the statements supporting and attacking
each of its premises.

Given a statement s = (p1 ∧ ... ∧ pn → c), we use T-norms (rep-
resenting conjunction) to aggregate the strength of each complete
support tree that leads to s separately. Then, we use T-conorms (rep-
resenting disjunction) to aggregate the strength of all the mentioned
trees together. We do the same process for every statement which at-
tacks s as well. Finally, we use the negation ¬ to capture how the
strength of complete support trees attacking another affects the final
strength of a statement.

Definition 4. (T-norm semantics) Let SG = (V , ES , EA) be a
statement graph, I : V �→ [0, 1] an inner strength function, and
DT = (⊗,⊕,¬) a De Morgan triple, we define the T-norm seman-
tics as WDT (SG, I) = O such that:

O(s) =
⊕

C∈CST (s)

O(C)

O(C) = I(C)⊗ ¬
⊕

C′∈CST (s′∈V)

C′ attacks C

I(C′)

I(C) =
⊗

s∈C

I(s)

Recall that CST (s) denotes the complete support trees of s.

The intuition of this definition is that the outer strength of a state-
ment O(s) is given by the disjunction (e.g. max) of outer strength
value of all the complete support trees justifying it. The outer-
strength of a CST O(C) is given by the conjunction (e.g. min) be-
tween the inner strength of all the statements contained by it I(C)
and the inner-strength of all the CSTs attacking it I(C′).

Please note that this definition makes our semantics not to be im-
pacted by cycles. Indeed, the inner strength of statements are part
of the input, the outer strength of CSTs only depend on those inner
strengths, and the outer strengths of single statements only depend
on outer strengths of CSTs. Therefore they only depend on the inner
strength as given by the input.

Also, note that both the time and space complexity of an algorithm
that computes the outer strength of every statement would depend on

the amount of CSTs. For every CST, one has to check if it contains
a cycle, and iterate over all the CSTs that attack it. Each CST is a
directed tree in the graph, and an algorithm will find (n − 1)n−2

subtrees in a general directed graph with n nodes in the worst case.
However, such case will not happen in practice because of the in-
duced structure caused by the logical formulae.

Example 4. Consider the statement graph SG = (V , ES , EA) and
inner strength function I : V �→ [0, 1] as depicted in Figure 5, along-
side the triple DT = (⊗,⊕,¬) given by:

• ⊗(x, y) = x ∗ y (multiplication),
• ⊕(x, y) = x+ y − x ∗ y (probabilistic sum), and
• ¬(x) = 1− x (standard negation).

Statements containing fact rules, such as s1 = (� → A(a)), re-
ceive an outer strength equivalent to their inner strength i.e. O(s1) =
I(s1) = 0.6.

The outer strength of rules only supported by a fact rule which
are not attacked, such as s5 = (B(a) → A(a)), depend on the
conjunction of their own inner strength and that of their support,
which in this case is implemented as the multiplication function i.e.
O(s5) = I(s5) ∗ I(s2) = 0.5.

To calculate the strength of a statement that is both supported
and attacked, such as s7, we take the conjunctive strength of
its complete support trees

⊗
(I(s1), I(s4), I(s7)) = 0.3 and⊗

(I(s2), I(s5), I(s4), I(s7)) = 0.25.
Then, we repeat the process for the statements attacking any

complete support of s7 (in this case the one leading to s8):⊕
(
⊗

(I(s3, s6, s8))) = 0.2.
Finally, we merge them into a single outer strength value as

O(s7) = (0.3⊗ ¬0.2)⊕ (0.25⊗ ¬0.2) = 0.392.

s1 = � → A(a)

I=0.6, O=0.6
s2 = � → B(a)

I=0.5, O=0.5
s3 = � → C(a)

I=0.4, O=0.4

s4 =
A(a) → D(a)

I=0.5, O=0.475
s5 =

B(a) → A(a)

I=1.0, O=0.5
s6 =

C(a) → F (a)

I=0.5, O=0.2

s7 =
D(a) → E(a)

I=1.0, O=0.392
s8 =

F (a) → G(a)

I=1.0, O=0.2
s9 =

F (a) → H(a)

I=0.5, O=0.1

s10 = G(a) ∧
H(a) → I(a)

I=1.0, O=0.0525

Figure 5: Example semantics with probabilistic sum.

Let us exemplify how our semantics handles circular reasoning
and contradiction with the defined T-(co)norm operators.

Example 5. Now, consider the statement graph SG = (V , ES , EA)
and inner strength function I : V �→ [0, 1] as depicted in Figure 6,
alongside the triple DT = (⊗,⊕,¬) as defined previously:
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s1 = � → A(a)

I=0.7, O=0.7

s2 =
A(a) → B(a)

I=1.0, O=0.94

s3 = � → B(a)

I=0.6, O=0.6

s4 =
B(a) → C(a)

I=1.0, O=0.63
s5 = � →
notB(a)

I=0.6, O=0.6

s6 =
C(a) → D(a)

I=1.0, O=0.77

s7 = D(a) → ∅
I=1.0, O=0.95

s8 =
D(a) → A(a)

I=1.0, O=0.85

s9 = � → D(a)

I=0.8, O=0.8

Figure 6: Handling circular reasoning via CSTs.

As before, statements containing fact rules have the same inner
and outer strength values, i.e. O(s1) = I(s1), O(s3) = I(s3),
O(s5) = I(s5), and O(s9) = I(s9).

Then, to get the outer strength of statement s2, we observe that the
statement graph contains a cycle leading to it. In particular, the infer-
ence chain {s3, s4, s6, s8, s2} is not a CST of s2 because it contains
a cycle of support edges. Therefore, it does not improve the outer
strength of s2. Concretely, CST (s2) = {{s1, s2}, {s9, s8, s2}}.
Thus, O(s2) = (I(s1)⊗I((s2))⊕ (I((s9)⊗I((s8)⊗I((s2)) =
0.7⊕ 0.8 = 0.94.

Next, statement s4 has complete support trees CST (s4) =
{{s3, s4}, {s1, s2, s4}, {s9, s8, s2, s4}} with CST (s5) = {{s5}}
attacking all of them. Thus, O(s4) = (I(s3) ⊗ I(s4) ⊗ (1 −
I(s5))) ⊕ (I(s1) ⊗ I(s2) ⊗ I(s4) ⊗ (1 − I(s5))) ⊕ (I(s9) ⊗
I(s8)⊗I(s2)⊗I(s4)⊗ (1−I(s5))) = (0.6⊗ 1.0⊗ (1− 0.6))⊕
(0.7⊗1.0⊗1.0⊗(1−0.6))⊕(0.8⊗1.0⊗1.0⊗1.0⊗(1−0.6)) =
(0.6⊗ 0.4)⊕ (0.7⊗ 0.4)⊕ (0.8⊗ 0.4) = 0.63.

Likewise, we repeat the procedure for the rest of the statements.

5 PROPERTIES OF THE PROPOSED
SEMANTICS

In this section, we study properties that characterize our newly intro-
duced semantics.

Proposition 1. Given SG = (V , ES , EA) a statement graph, I :
V �→ [0, 1] an inner strength function and DT = (⊗,⊕,¬) a De
Morgan triple, WDT (SG, I) = O always exists and is unique.

Proof. It follows from the fact that O only computes its values us-
ing (⊗,⊕,¬), which themselves only depend on combinations, ac-
cording to the complete support trees, of the inner strengths I of
statements as given by the input. The complete support trees of each
statement are easily determined by the graph structure.

Proposition 2. Given SG = (V , ES , EA) a statement graph, I :
V �→ [0, 1] an inner strength function and DT = (⊗,⊕,¬) a De
Morgan triple, WDT (SG, I) = O satisfies provability.

Proof. Let s = (p1 ∧ ... ∧ pn → c) ∈ V be a statement of SG =
(V , ES , EA), if there is a premise f ∈ Premise(s) with no support,
then CST (s) = ∅ (there are no complete support trees for s). Thus,
O(s) =

⊕
(∅) = 0.

Proposition 3. Given SG = (V , ES , EA) a statement graph, I :
V �→ [0, 1] an inner strength function and DT = (⊗,⊕,¬) a De
Morgan triple, WDT (SG, I) = O satisfies rewriting.

Proof. Given SG, and I as defined in the property, let
WDT (SG, I) = O, then:

• ∀C ⊆ S \ {s1, s2, s3}, C ∪ {s1} ∈ CST (s1) iff
C ∪ {s2, s3} ∈ CST (s3). Let C ∪ {s1} ∈ CST (s1):⊗
s∈C∪{s1}

I(s) =
⊗

(I(s1),
⊗
s∈C

I(s)) =
⊗

(I(s2), I(s3),
⊗
s∈C

I(s)) =
⊗

s∈C∪{s2,s3}
I(s).

• ∀s ∈ S ∪ {s1, s2, s3}, s attacks s1 iff s attacks s2 or s3.
Thus, ∀C,C′ ⊆ S, C ∪ {s1} ∈ CST (s1) and C′ attacks C iff
C′ attacks C ∪ {s2, s3} ∈ CST (s3).

• Therefore, O(s1) = O(s3).

In the following we also adapt some of the principles described by
[3] in the context of statement graphs and show how the proposed
semantics satisfy them.

Definition 5. Let SG = (V , ES , EA) be a statement graph, I an
inner strength function, and W a gradual semantics, we say that it
satisfies:

• Directionality: if the strength of a statement only depends on the
statements that are connected to it. Given statement graph SG′ =
(V ∪ {s1}, E ′

S , E ′
A), where ∀e ∈ E ′

S ∪ E ′
A, e ∈ ES ∪ EA or s1

is the left or right part of e, then ∀s2 ∈ V such that there is no
directed path (either with attack and/or support edges) from s1 to
s2 in SG′, it holds that WSG,I(s2) = WSG′,I(s2).

• Support Reinforcement: if making a support stronger, makes a
statement stronger. Given statement graph SG = (V, ES , EA),
inner strength functions I1, I2, and statements s1, s2 ∈ V where
s2 is part of a CST of s1 but not of a CST attacking a CST of s1,
I1(s2) ≤ I2(s2) and ∀s 
= s2, I1(s) = I2(s), then it holds that
WSG,I1(s1) ≤ WSG,I2(s1).

• Attack Reinforcement: if making an attack stronger, makes a
statement weaker. Given statement graph SG = (V, ES , EA), in-
ner strength functions I1, I2, and statements s1, s2 ∈ V where
s2 is part of a CST attacking a CST of s1 but not of a CST that
supports s1, I1(s2) ≤ I2(s2) and ∀s 
= s2, I1(s) = I2(s), then
it holds that WSG,I1(s1) ≥ WSG,I2(s1).

• Support Monotonicity: if adding a support makes a statement
stronger. Given statement graphs SG = (V, ES , EA), SG′ =
(V ′, E ′

S , E ′
A), where:

– V = S ∪ {s1}, V ′ = S ∪ {s1, s2}.

– s2 is part of a CST of s1 but not of a CST attacking a CST of
s1 in SG′.

– ∀e ∈ E ′
S ∪ E ′

A, e ∈ ES ∪ EA or s2 is the left or right part of e.

Then, it holds that WSG,I(s1) ≤ WSG′,I(s1).
• Attack Monotonicity: if adding an attack makes a statement

weaker. Given statement graphs SG = (V, ES , EA), SG′ =
(V ′, E ′

S , E ′
A), where:

– V = S ∪ {s1}, V ′ = S ∪ {s1, s2}.

– s2 is part of a CST attacking a CST of s1 but not of a CST that
supports s1 in SG′.
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– ∀e ∈ E ′
S ∪ E ′

A, e ∈ ES ∪ EA or s2 is the left or right part of e.

Then, it holds that WSG,I(s1) ≥ WSG′,I(s1).

Proposition 4. Given SG = (V , ES , EA) a statement graph, I an
inner strength function and W a T-norm semantics defined by the
triple (⊗,⊕,¬), W satisfies directionality.

Proof. Given a statement s2, if there is no directed path from s1 to
s2, then the CSTs that attack and support s2 do not change, thus the
outer strength does not change either.

Proposition 5. Given SG = (V , ES , EA) a statement graph, I an
inner strength function and W a T-norm semantics defined by the
triple (⊗,⊕,¬), W satisfies support reinforcement.

Proof. Every CST C ∈ CST (s1) that supports s1 has an equal or
higher strength value using I2 than I1:

⊗
s∈C

I1(s) ≤
⊗
s∈C

I2(s) be-

cause
⊗

is a T-norm and thus, is monotonically increasing. Also,
every CST C ∈ CST (s3) attacking a CST of s1 has an equal
strength value using I2 or I1 i.e. ∀C ∈ CST (s3) such that C
attacks C′ ∈ CST (s1) it holds that I1(C) ≥ I2(C). Thus,
WSG,I1(s1) ≤ WSG,I2(s1) because

⊕
is monotonically increas-

ing.

Proposition 6. Given SG = (V , ES , EA) a statement graph, I an
inner strength function and W a T-norm semantics defined by the
triple (⊗,⊕,¬), W satisfies attack reinforcement.

Proof. Every CST C ∈ CST (s1) that supports s1 has an equal
strength value using I2 than I1, so

⊗
s∈C

I1(s) ≥
⊗
s∈C

I2(s). Then,

every CST C ∈ CST (s3) attacking C′ ∈ CST (s1) has an equal
or higher strength value using I2 than I1 i.e. it holds that I1(C) ≤
I2(C). Thus, WSG,I1(s1) ≥ WSG,I2(s1) because

⊕
is monoton-

ically increasing and ¬ is strictly decreasing.

Proposition 7. Given SG = (V , ES , EA) a statement graph, I an
inner strength function and W a T-norm semantics defined by the
triple (⊗,⊕,¬), W satisfies support monotonicity.

Proof. Given statement s1, CSTSG(s1) ⊆ CSTSG′(s1). Also,
a set C of statements is a CST attacking s1 in SG (i.e. C ∈
CSTSG(s3) and s3 attacks a CST of s1) if and only if it is also
present in SG′. Thus, it follows that WSG,I(s1) ≤ WSG′,I(s1).

Proposition 8. Given SG = (V , ES , EA) a statement graph, I an
inner strength function and W a T-norm semantics defined by the
triple (⊗,⊕,¬), W satisfies attack monotonicity.

Proof. Given statement s1, CSTSG(s1) = CSTSG′(s1). Also,
if a set C of statements is a CST attacking s1 in SG (i.e. C ∈
CSTSG(s3) and s3 attacks a CST of s1), then it will be also present
in SG′. Thus, it follows that WSG,I(s1) ≥ WSG′,I(s1).

6 DISCUSSION

In this work, we presented the first gradual semantics for Statement
Graphs and analysed their properties. Before laying our future work
directions let us place this paper in the context of existing literature.
The most prominent knowledge representation and reasoning domain
related to this work is that of bipolar argumentation frameworks.

Bipolar argumentation frameworks are built upon argumentation
graphs by considering as underlying representation a bi-colored
graph: the nodes represent arguments and the bi-colored edges rep-
resent, respectively, support and attack relations between the argu-
ments [26, 22, 13, 25, 29]. From this perspective Statement Graphs
can, indeed, be seen as a bipolar argumentation graph. The arguments
are the statements (i.e. logical implications), the support is repre-
sented by the support relation and the attack by the attack relation.

Bipolar argumentation systems enjoy the study of several kinds of
support relations: deductive support [31], evidential support [24], ne-
cessity support [23, 22] etc. If we view statement graphs as a bipolar
argumentation framework it is not straightforward to place the State-
ment Graph support as any of the supports in the argumentation lit-
erature (even for more general frameworks such as ADFs [10] where
arguments are not instantiated). This is due to the particular structure
of Statement Graphs. To illustrate this problem let us consider a sim-
ple example in which we can have a node n1 concluding to A, a node
n2 concluding to A as well, a node t concluding to not A and, finally,
a node n3 using A as a premise. The support of Statement Graphs
is not a necessary support because we could have n1 IN, n2 OUT,
t is OUT and therefore n3 IN (i.e if n3 is IN then n2 should be IN
according to the definition of necessity support). The support is not a
deductive support because if we can consider an example where n1

is IN, t is IN and n3 is AMBIG. A similar construction can be made
for evidential supports.

On bipolar graphs, existing ranking based semantics provide a
partial order between the arguments [18, 20, 14, 1, 9, 4, 5]. Ex-
isting ranking semantics for bipolar argumentation graphs that rely
on the intuition of a recursive aggregation of supports and attacks
[12, 30, 5], were proven not to be able to converge for the general
case of graphs without a particular structure other than the existence
of cycles [21] if they are calculated iteratively. Moreover, bipolar
weighted argumentation frameworks containing cycles can be made
to converge under certain conditions as in [28] by solving a linear
equation model as proposed in [15], or by continuizing the discrete
recursive algorithms as discussed in [27]. To this end, if viewing
statement graphs as a particular case of instantiated bipolar argumen-
tation frameworks, we provide a semantics considering all supports
and attacks for bipolar graph that avoids convergence problems in
the general case by not defining the nodes strengths recursively. Of
course, this is possible because our approach is based on the logical
instantiation of statement graphs, where recursive definition is less
crucial than in abstract argumentation.

Last, let us mention that when evaluating the semantics provided
in this paper we relied on the work of [9] regarding the postulates to
follow for the semantics. We mention here that, for bipolar argumen-
tation graphs, several works have been concerned with defining an
automatization of ranking semantics (see [2, 4]).

The actual practical motivation of this work comes from the expla-
nation needs of Statement Graphs. When we tried to apply Statement
Graphs to real world knowledge bases we noticed the important size
of the graphs. This hindered the visual capabilities of the formal-
ism. It was difficult to explain the status of a node because the set
of the nodes supporting it was very large (and therefore scattered on
the screen). To this end we proposed the semantics described in this
paper that could be used as a filtering mechanism on the graph visual-
ization software. For instance, it could be used to select the strongest
CST as a full justification for the state of a query. Such explanation
techniques would require, of course, empirical evaluation from the
users and will probably vary according to the needs of the applica-
tion at hand.
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However, please note that the definition of our semantics implies
considering all possible CST. This is a difficult algorithmic problem
to address in the context of large graphs. While the practical impact
of this problem is not as important (such computation can be per-
formed offline) it would be useful to be able to have incremental
algorithms allowing for online interaction with the Statement Graph.
Therefore, immediate future work is concerned with algorithmic as-
pects for the semantics and how the chase variants impact on the
computation of Statement Graphs and, subsequently, on their grad-
ual semantics.
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