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Abstract
Two prominent ways of handling inconsistency provided by the state of the art

are repair semantics and Defeasible Logics. In this paper we place ourselves in
the setting of inconsistent knowledge bases expressed using existential rules and
investigate how these approaches relate to each other. We run an experiment that
checks how human intuitions align with those of either repair-based or defeasible
methods and propose a new semantics combining both worlds.

1 Introduction
Conflicts in knowledge representation cause severe problems, notably due the principle
of explosion (from falsehood anything follows). These conflicts arise from two possible
sources: either the facts are incorrect (known as inconsistence), or the rules themselves
are contradictory (known as incoherence). In order to preserve the ability to reason in
presence of conflicts, several approaches can be used, in particular Defeasible Logics
[18] [8] and Repair Semantics [16]. These two approaches stem from different needs
and address conflicts in different ways. A key difference between defeasible logics and
Repair Semantics is that the first was designed for incoherence while the latter was
designed for inconsistence. However, since inconsistence is a special type of incoher-
ence [11], defeasible logics can be applied to inconsistent but coherent knowledge,
and thus be compared to the Repair Semantics. In this paper we want to investigate
how the different intuitions of defeasible logics and Repair Semantics relate to each
other. In order to attain the above mentioned objective, we make use of a combinatorial
structure called Statement Graph [13]. Statement Graphs have been defined as way to
reason defeasibly with existential rules using forward chaining. The reasoning is based
on labeling functions shown to correspond to various flavors of Defeasible Logics. This
paper proposes a new labeling for Repair Semantics and paves the way to combine both
conflict-tolerant approaches in one unifying formalism.
∗hecham@lirmm.fr
†pierre.bisquert@inrae.fr
‡croitoru@lirmm.fr
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2 Logical Language
We consider a first order language Ł with constants but no other function symbol com-
posed of formulas built with the usual quantifiers (∃,∀) and the connectives (→,∧),
on a vocabulary constituted of infinite sets of predicates, constants and variables. A
fact is a ground atom (an atom with only constants) or an existentially closed atom.
An existential rule (a.k.a. a tuple generating dependency) r is a formula of the form
∀ ~X, ~Y

(
B( ~X, ~Y ) → ∃~Z H( ~X, ~Z)

)
where ~X, ~Y are tuples of variables, ~Z is a tuple

of existential variables, and B, H are finite non-empty conjunctions of atoms respec-
tively called body and head of r and denoted Body(r) and Head(r). In this paper we
consider rules with atomic head (any rule can be transformed into a set of rules with
atomic head [4]). A negative constraint is a rule of the form ∀ ~X B( ~X) → ⊥ where B
is a conjunction of atoms and ~X is a set of variables with possibly constants. Negative
constraints are used to express conflicts. In this paper, we take into account binary neg-
ative constraints, which contain only two atoms in their body.1 A knowledge base is a
tuple KB = (F ,R,N ) where F is a finite set of facts,R is a finite set of rules, andN
is a finite set of negative constraints.

We denote the set of models of a knowledge base by models(F ,R∪N ).
A derivation is a (potentially infinite) sequence of tuples Di = (Fi, ri, πi) com-

posed of a set of facts Fi, a rule ri and a homomorphism πi from Body(ri) to Fi,
where D0 = (F , ∅, ∅) and such that Fi results from the application of rule ri to Fi−1
according to πi, i.e. Fi = α(Fi−1, ri, πi). A derivation from a set of facts F to a fact
f is a minimal sequence of rules applications starting from D0 = (F0 ⊆ F , ∅, ∅) and
ending with Dn = (Fn, rn, πn) such that f ∈ Fn.

A chase (a.k.a. forward chaining) is the exhaustive application of a set of rules over
a set of facts in a breadth-first manner (denoted chase(F ,R)) until no new facts are
generated, the resulting “saturated” set of all initial and generated facts is denoted F∗.
While this is not always guaranteed to stop, certain recognizable classes of existential
rules that are decidable for forward chaining have been defined [3]; we limit ourselves
to the recognizable FES (Finite Expansion Set) class [5] and use Skolem chase [17]. We
consider ground atomic queries. We denote that a query is entailed from a knowledge
base KB by KB |= Q (equivalent to chase(F ,R) |= Q [9]).

Inconsistence vs. Incoherence. Conflicts appear in a knowledge base whenever a neg-
ative constraint becomes applicable: we say that two facts f1 and f2 are in conflict if
the body of a negative constraint can be mapped to {f1, f2}. There are two possible
sources of conflicts, either the facts are incorrect (known as inconsistence), or the rules
themselves are contradictory (known as incoherence). A KB = (F ,R,N ) is incon-
sistent iff it has an empty set of models (i.e. models(F ,R ∪ N ) = ∅). A knowledge
base is incoherent iff R ∪ N are unsatisfiable, meaning that there does not exist any
set of facts S (even outside the facts of the knowledge base) where all rules in R are
applicable such that models(S,R∪N ) 6= ∅ [11].

Example 1 (Inconsistence) Consider the followingKB = (F ,R,N ) that describes a
simplified legal situation: If there is a scientific evidence incriminating a defendant then

1It should be noted that this restriction does not lead to a loss of expressive power, as [2] shows.
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he is responsible for the crime, if there is a scientific evidence absolving a defendant
then he is not responsible for the crime. A defendant is guilty if responsibility is proven.
If a defendant is guilty then he will be given a sentence. If a defendant has an alibi then
he is innocent. There is a scientific evidence “e1” incriminating a female defendant
“alice”, while another scientific evidence “e2” is absolving her of the crime. She also
has an alibi. Is Alice innocent (i.e. Q1 = innocent(alice))? Is she guilty (i.e. Q2 =
guilty(alice))?

• F = {incrim(e1, alice), absolv(e2, alice), alibi(alice), female(alice)}

• R = {r1 : ∀X,Y incrim(X,Y )→ resp(Y ),
r2 : ∀X,Y absolv(X,Y )→ notResp(X),
r3 : ∀X resp(X)→ guilty(X),
r4 : ∀X alibi(X)→ innocent(X),
r5 : ∀X guilty(X)→ ∃Y sentence(X,Y )}

• N = {∀X resp(X) ∧ notResp(X)→ ⊥,
∀X guilty(X) ∧ innocent(X)→ ⊥}

The saturated set of facts resulting from the chase is

• F∗ = {incrim(e1, alice), absolv(e2, alice), alibi(alice),
female(alice), resp(alice), notResp(alice), guilty(alice), innocent(alice),
sentence(alice, null1)}.

This knowledge base is inconsistent, because a negative constraint is applicable,
(thus models(F ,R ∪ N ) = ∅). This inconsistency is due to an erroneous set of
facts (either one of the evidences, the alibi, or all of them are not valid). The clas-
sical answer to the Boolean queries Q1 and Q2 is “true” (i.e. Alice is guilty and in-
nocent), because from falsehood, anything follows. However, the knowledge base is
coherent because the set of rules are satisfiable i.e. there exists a set of facts (e.g.
F ′ = {incrim(e1,bob), absolv(e3,alice), alibi(alice)}) such that all rules are
applicable and models(F ′,R∪N )) 6= ∅.

Inconsistency Handling. Defeasible Logics and Repair Semantics are two approaches
to handle conflicts. Defeasible Logics are applied to potentially incoherent situations
were two types of rules are considered: strict rules expressing undeniable implications
(i.e. if B(r) then definitelyH(r)), and defeasible rules expressing weaker implications
(i.e. if B(r) then generallyH(r)). In this context, contradictions stem from either rely-
ing on incorrect facts, or from having exceptions to the defeasible implications.

Repair Semantics are applied to situations where rules are assumed to hold in the
true state of affair and hence inconsistencies can only stem from incorrect facts. A
repair D is an inclusion-maximal subset of the facts D ⊆ F that is consistent with
the rules and negative constraints (i.e. models(D,R ∪N ) 6= ∅). We denote the set of
repairs of a knowledge base by repairs(KB). In presence of an incoherent set of rules,
Repair Semantics yield an empty set of repairs [10].
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3 Statement Graphs for Defeasible Reasoning.
A Statement Graph (SG) [13] is a representation of the reasoning process happening
inside a knowledge base, it can be seen as an updated Inheritance Net [15] with a cus-
tom labeling function. An SG is built using logical building blocks (called statements)
that describe a situation (premises) and a rule that can be applied on that situation.

A statement s is a pair that is either a ‘query statement’ (Q, ∅) where Q is a query,
a ‘fact statement’ (>, f) where f is a fact, or a ‘rule application statement’ (Φ, ψ) that
represents a rule application α(F , r, π) s.t. π(B(r)) = Φ and π(H(r)) = ψ. We denote
by Prem(s) the first element of the statement and by Conc(s) the second element. A
statement can be written as Prem(s)→ Conc(s).

A statement s1 supports another statement s2 iff ∃f ∈ Prem(s2) s.t. Conc(s1) =
f . A statement s1 attacks s2 ∃f ∈ Prem(s2) s.t. Conc(s1) and f are in conflict.

Statements are generated from a knowledge base, they can be structured in a graph
according to the support and attack relations they have between each other.

Definition 1 (Statement Graph) A Statement Graph of a KB = (F ,R,N ) is a di-
rected graph SGKB = (V, EA, ES): V is the set of statements generated from KB;
EA ⊆ V × V is the set of attack edges and ES ⊆ V × V is the set of support edges.

For an edge e = (s1, s2), we denote s1 by Source(e) and s2 by Target(e). For
a statement s we denote its incoming attack edges by E−A (s) and its incoming sup-
port edges by E−S (s). We also denote its outgoing attack edges by E+A (s) and outgoing
support edges by E+S (s).

A Statement Graph (SG) is constructed from the chase of a knowledge base. Start-
ing facts are represented by fact statements and rule applications are represented using
rule application statements. Figure 1 shows SG of Example 1.

An SG provides statements and edges with a label using a labeling function. Query
answering can then be determined based on the label of the query statement. Con-
tinuing the previous example, in an ambiguity propagating setting (such as [12]),
innocent(alice) is ambiguous because guilty(alice) can be derived, thus the ambi-
guity of guilty(alice) is propagated to innocent(alice) and consequently KB 2prop

innocent(alice) and KB 2prop guilty(alice) (�prop denotes entailment in ambi-
guity propagating). On the other hand, in an ambiguity blocking setting (such as
[18]), the ambiguity of resp(alice) blocks any ambiguity derived from it, meaning that
guilty(alice) cannot be used to attack innocent(alice). Therefore innocent(alice)
is not ambiguous, thus KB �block innocent(alice) and KB 2block guilty(alice)
(�block denotes entailment in ambiguity blocking). The labeling function ‘PDL’ (Prop-
agating Defeasible Logic) was proposed for Statement Graphs in [13] that yields equiv-
alent entailment results to Defeasible Logics with ambiguity propagating [1]. Similar-
ily, the labeling function ‘BDL’ (Blocking Defeasible Logic) was proposed by [13] to
obtain entailment results equivalent to Defeasible Logics with ambiguity blocking [7].
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> → female(alice)

female(alice), ∅

innocent(alice), ∅

sentence(alice, null1), ∅

> → alibi(alice)

alibi(alice)→ innocent(alice) resp(alice)→ guilty(alice)

guilty(alice)→ sentence(alice, null1)

incrim(e1, alice)→ resp(alice) absolv(e2, alice)→ notResp(alice)

> → incrim(e1, alice) > → absolv(e2, alice)

Figure 1: Example 1’s Statement Graph (fact statements are gray).

4 Statement Graphs for Repair Semantics
In this paper we focus on two well-known semantics for inconsistent databases: IAR
and ICAR repair Semantics. The Intersection of All Repairs semantic [16] is the most
skeptical of the Repair Semantics. A query Q is IAR entailed (KB �IAR Q) iff it is
classically entailed by the intersection of all repairs constructed from the starting set
of facts (i.e.

⋂
repairs(KB) ∪ R � Q). The Intersection of Closed ABox Repairs

semantic [16] computes the repairs of the saturated set of facts. A query Q is ICAR
entailed KB �ICAR Q iff it is classically entailed by the set of facts in the intersection
of the repairs constructed after generating all facts.

Example 2 Consider the KB in Example 1. The repairs constructed from the starting
set of facts are:

- D1 ={absolv(e2, alice), alibi(alice), female(alice)}

- D2 = {incrim(e1, alice), female(alice)}

D1 ∩ D2 = {female(alice)} therefore only female(alice) is entailed: KB �IAR

female(alice). The repairs constructed from the saturated set of facts are:

- D′1 = {absolv(e2, alice), alibi(alice), female(alice), notResp(alice),
sentence(alice, null1)}

- D′2 = {incrim(e1, alice), female(alice), resp(alice), guilty(alice),
sentence(alice, null1)}

D′1∩D′2 = {female(alice), sentence(alice, null1)} thusKB �ICAR female(alice)
∧ sentence(alice, null1).
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4.1 New labeling for IAR Semantics
The intuition behind IAR is to reject any fact that can be used to generate conflicting
atoms, meaning that only the facts that produce no conflict will be accepted. From an
SG point of view, any statement that is attacked, or that supports statements that lead
by an attack or support edge to an attacked statement is discarded. This can be ob-
tained by first detecting all conflicts, then discarding any statement that either leads
to a conflict or is generated from conflicting atoms. In order to detect conflicts using
Statement Graphs, we need to ensure that all conflicts are represented. Given that state-
ments attack each other on the premise, it is necessary to handle in a particular way
statements with no outgoing edges (i.e. statements that do not support or attack other
statements) as they might still generate conflicting atoms. That is why any statement
with no outgoing edges must be linked to a query statement. We first apply PDL to de-
tect ambiguous statements, then backwardly broadcast this ambiguity to any statement
that is linked (by a support or attack edge) to an ambiguous statement (cf. Figure 2).
Labelings for Defeasible Logics start from fact statements and propagate upward to-
wards query statements, however, for Repair Semantics, the labelings have to conduct
a second pass from query statements and propagate downward towards fact statements.
We use the labeling function ‘IAR’ to obtain entailment results equivalent to IAR [16].
IAR is defined as follows: edges have the same label as their source statements (i.e.
given an edge e, IAR(e)= IAR(Source(e)). Given a statement s:

(a) IAR(s) = IN iff IAR(s) 6= AMBIG and PDL(s) = IN.

(b) IAR(s) = AMBIG iff either PDL(s) = AMBIG or ∃e ∈ E+S (s) ∪ E+A (s) such
that IAR(Target(e)) = AMBIG.

(c) IAR(s) = OUT iff PDL(s) = OUT.

A statement is labeled AMBIG if it was labeled ambiguous by PDL or if it leads to
an ambiguous statement. Otherwise, it is IN if it has an IN complete support and is not
attacked (i.e PDL labels it IN).

In the following proposition, we will denote by SGIAR
KB an SG built on the KB KB

that uses the ICAR labeling function and by SGIAR
KB 〈s〉 the label of a statement s.

Proposition 1 Let f be a fact in a KB that contains only defeasible facts and strict
rules. KB �IAR f iff SGIAR

KB〈(f, ∅)〉 = IN and KB 2IAR f iff SGIAR
KB〈(f, ∅)〉 ∈

{AMBIG, OUT}.

We split the proof of (1.) in two parts, first we prove by contradiction that if
KB �IAR f then SGIAR

KB 〈(f, ∅)〉 = IN: Suppose we have a fact f such thatKB �IAR

f and SGIAR
KB 〈(f, ∅)〉 6= IN:

1. KB �IAR f means that there is a derivation for f from an initial set of facts
T ⊆ F and there is no consistent set of initial facts S ⊆ F such that S ∪ T is
inconsistent (i.emodels(S,R∪N ) 6= ∅ andmodels(S∪T,R∪N ) = ∅), which
means that there is no derivation for an atom conflicting with an atom used in
the derivation for f i.e. f is not generated from or used to generate ambiguous
atoms, thus PDL((f → ∅)) = IN.
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> → female(alice)
IN

female(alice), ∅
IN

innocent(alice), ∅
AMBIG

sentence(alice, null1), ∅
AMBIG

> → alibi(alice)
AMBIG

alibi(alice)→ innocent(alice)
AMBIG

resp(alice)→ guilty(alice)
AMBIG

guilty(alice)→ sentence(alice, null1)
AMBIG

incrim(e1, alice)→ resp(alice)
AMBIG

absolv(e2, alice)→ notResp(alice)
AMBIG

> → incrim(e1, alice)
AMBIG

> → absolv(e2, alice)
AMBIG

AMBIG AMBIG

AMBIG

AMBIG AMBIG

AMBIG
AMBIG

IN

AMBIG

AMBIG
AMBIG

Figure 2: IAR applied to Example 1’s Statement Graph.

2. SGIAR
KB 〈(f, ∅)〉 6= IN means that either:

(a) SGIAR
KB 〈(f, ∅)〉 = OUT which is impossible given 1. (i.e. PDL(f, ∅) = IN)

(b) or SGIAR
KB 〈(f, ∅)〉 = AMBIG which means either:

i. PDL(f, ∅) = AMBIG (impossible given 1.),
ii. or ∃e ∈ E+S (s) ∪ E+A (s) such that IAR(Target(e)) = AMBIG which

means that f is used to generate ambiguous atoms (impossible given
1.).

Now we prove by contradiction that if SGIAR
KB 〈(f, ∅)〉 = IN then KB �IAR f :

Suppose we have a fact f such that SGIAR
KB 〈(f, ∅)〉 = IN and KB 2IAR f :

1. SGIAR
KB 〈(f, ∅)〉 = IN means that IAR(f, ∅) 6= AMBIG and PDL(f, ∅) = IN,

which means that (f, ∅) is not attacked (i.e. there is no derivation for an atom
conflicting with f ) and is not used to generate conflicting atoms (no outgoing
edge leads to an AMBIG statement).

2. KB 2IAR f means that either f is generated by conflicting atoms (impossible
given 1.) or is used to generate conflicting atoms (impossible given 1.).

From (1.) the proposition (2.) directly holds ( SGIAR
KB 〈(f → ∅)〉 6= IN means

SGIAR
KB 〈(f → ∅)〉 ∈ {AMBIG, OUT} given that IAR is a function).

4.2 New labeling for ICAR Semantics.
The intuition behind ICAR is to reject any fact that is used to generate conflict, while
accepting those that do not (even if they were generated after a conflict). From an SG
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point of view, any statement that is attacked or that supports statements that lead to
an attack is considered “ambiguous”. This is done by first applying PDL to detect am-
biguous and accepted statements then the ICAR labeling starts from query statements
and propagates downward towards fact statements (cf. Figure 3). We use the labeling
function ‘ICAR’ to obtain entailment results equivalent to ICAR [16]. ICAR is defined
as follows: given an edge e, ICAR(e) = ICAR(Source(e)). Given a statement s:

(a) ICAR(s)=IN iff ICAR(s) 6= AMBIG and PDL(s) ∈ {IN,AMBIG}.

(b) ICAR(s) = AMBIG iff

1. either PDL(s) = AMBIG and ∃e ∈ E−A (s) s.t. PDL(e) ∈ {IN,AMBIG},
2. or ∃e ∈ E+S (s) ∪ E+A (s) such that ICAR(Target(e)) = AMBIG.

(c) ICAR(s) = OUT iff PDL(s) = OUT.

A statement is labeled AMBIG if it was labeled ambiguous by PDL and it is at-
tacked, or if it leads to an ambiguous statement. It is labeled IN if it was labeled IN or
AMBIG by PDL and does not lead to an ambiguous statement.

> → female(alice)
IN

female(alice), ∅
IN

innocent(alice), ∅
AMBIG

sentence(alice, null1), ∅
IN

> → alibi(alice)
AMBIG

alibi(alice)→ innocent(alice)
AMBIG

resp(alice)→ guilty(alice)
AMBIG

guilty(alice)→ sentence(alice, null1)
AMBIG

incrim(e1, alice)→ resp(alice)
AMBIG

absolv(e2, alice)→ notResp(alice)
AMBIG

> → incrim(e1, alice)
AMBIG

> → absolv(e2, alice)
AMBIG

AMBIG AMBIG

AMBIG

AMBIG AMBIG

AMBIG
AMBIG

IN

AMBIG

AMBIG
AMBIG

Figure 3: ICAR applied to Example 1’s Statement Graph.

In the following proposition, we will denote by SGICAR
KB an SG built on the KB KB

that uses the ICAR labeling function and by SGICAR
KB 〈s〉 the label of a statement s.

Proposition 2 Let f be a fact in a KB that contains only defeasible facts and strict
rules:KB �ICAR f iff SGICAR

KB 〈(f, ∅)〉 = IN andKB 2ICAR f iff SGICAR
KB 〈(f, ∅)〉∈

{AMBIG, OUT}.
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We split the proof of (1.) in two parts, first we prove by contradiction that if
KB �ICAR f then SGICAR

KB 〈(f, ∅)〉 = IN. Suppose we have a fact f such that
KB �ICAR f and SGICAR

KB 〈(f, ∅)〉 6= IN:

1. KB �ICAR f means that there is a derivation for f and there is no consistent set
of facts S ⊆ F∗ such that S ∪ {f} is inconsistent (models(S,R∪N ) 6= ∅ and
models(S ∪ {f},R∪N ) = ∅) i.e f is not used to generate ambiguous atoms.

2. SGICAR
KB 〈(f, ∅)〉 6= IN means that either:

(a) SGICAR
KB 〈(f, ∅)〉 = OUT which is impossible given 1. (there is a derivation

for f i.e. PDL(f, ∅) ∈ {IN,AMBIG}).
(b) or SGICAR

KB 〈(f, ∅)〉 = AMBIG which means either:

i. PDL(f, ∅) = AMBIG and there is an edge attacking it (impossible
given 1. i.e. there is no derivable conflicting atom with f ).

ii. or ∃e ∈ E+S (s)∪E+A (s) such that ICAR(Target(e)) = AMBIG which
means that f is used to generate ambiguous atoms (impossible given
1.).

Now we prove by contradiction that if SGICAR
KB 〈(f, ∅)〉 = IN then KB �ICAR f :

Suppose we have a fact f such that SGICAR
KB 〈(f, ∅)〉 = IN and KB 2ICAR f :

1. SGICAR
KB 〈(f, ∅)〉 = IN means that ICAR(f, ∅) 6= AMBIG and PDL(f, ∅) ∈

{IN,AMBIG}, which means that (f, ∅) is not attacked (i.e. there is no derivation
for an atom conflicting with f ) and it is used to generate ambiguous atoms (no
outgoing edge leads to an AMBIG statement).

2. KB 2ICAR f means that either f is not derivable (impossible given 1. since
PDL(f, ∅) ∈ {IN,AMBIG}), or there is a derivation for an atom conflicting
with f , or f is used to generate ambiguous atoms (impossible given 1.).

From (1.) the proposition (2.) directly holds ( SGICAR
KB 〈(f, ∅)〉 6= IN means

SGICAR
KB 〈(f, ∅)〉 ∈ {AMBIG, OUT} given that ICAR is a function).

5 Human intuitions for conflict management
The contribution of the paper is two fold. On one hand we have provided new labelings
for Statement Graphs shown to capture repair semantics. In this section we go one step
further and show (1) there is practical value into combining defeasible reasoning and
repair semantics and (2) provide a Statement Graph labeling for this new semantics.

In order to get an idea of what intuitions humans follow in an abstract context, we
ran an experiment with 41 participants in which they were told to place themselves in
the shoes of an engineer trying to analyze a situation based on a set of sensors. These
sensors (with unknown reliability) give information about the properties of an object
called “o”, e.g. “Object ‘o’ has the property P” (which could be interpreted for example
as ‘o’ is red). Also, as an engineer, they have a knowledge that is always true about the
relations between these properties, e.g. “All objects that have the property P, also have
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the property Q”. Some of the properties cannot be true at the same time on the same
object, e.g. “An object cannot have the properties P and T at the same time”. Using
abstract situations allowed us to avoid unwanted effects of a priori knowledge while
at the same time representing formal concepts (facts, rules and negative constraints)
in a textual simplified manner. A transcript of the original text that the experiment
participants have received is shown in the following Example 3.

Example 3 (Situation 1) Textual representation: Three sensors are respectively indi-
cating that “o” has the properties S, Q, and T. We know that any object that has the
property S also has the property V. Moreover, an object cannot have the properties S
and Q at the same time, nor the properties V and T at the same time. Question: Can
we say that the object “o” has the property T?

Let us also provide here the logical representation of the above text. Please note
that the participants have not also received the logical transcript.

• F = {s(o), q(o), t(o)}

• R = {∀X s(X)→ v(X)}

• N = {∀X s(X) ∧ q(X) → ⊥,
∀X v(X) ∧ t(X)→ ⊥}

• Query Q = t(o)

Participants were shown in a random order 5 situations containing inconsistencies.
For each situation, the participant was presented with a textual description of an incon-
sistent knowledge base and a query. Possible answers for a query is “Yes” (entailed)
or “No” (not entailed). The 41 participants are second year university students in com-
puter science, 12 female and 29 male aged between 17 and 46 years old.

Table 1 presents the situations and the semantics under which their queries are
entailed (X) or not entailed (−). The “% of Yes” column indicates the percentage
of participants that answered “Yes”. The aim of each situation is to identify if a set of
semantics coincides with the majority, for example the query in Situation 1 (Example 3)
is only entailed under �block 2. Not all cases can be represented, for example �IAR f
and 2prop f , due to productivity (c.f. Section 4.2).

Table 1: Situations Entailment and Results.

Situations �block �prop �IAR �ICAR % of “Yes” �blockIAR

#1 X - - - 73.17% X

#2 X X - - 21.95% -

#3 X X - X 21.95% -

#4 - - - X 4.87% -

#5 X X X X 78.04% X

From the results in Table 1, we observe that blocking and IAR are the most intuitive
(Situations 1 and 5), however blocking alone is not sufficient as shown by Situations

2Situations and detailed results are available at https://www.dropbox.com/s/
4wkblgdx7hzj7s8/situations.pdf
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2 and 3, and IAR alone is not sufficient either (Situation 1). One possible explanation
is that participants are using a semantics that is a mix of IAR and ambiguity blocking
(�blockIAR ). Such a semantics is absent from the literature as it is interestingly in between
Repair Semantics and Defeasible Logics. Please note that we do not argue that this
particular semantics is better than existing ones, our aim is to bridge Defeasible Logics
and Repair Semantics by defining new inference relations based on intuitions coming
from both of them, and then studying properties of these new inference relations.

5.1 New semantics for reasoning in presence of conflict
The intuition behind this new semantics is to apply IAR or ICAR on an SG which has
been labeled using BDL rather than PDL. This would amount to replacing PDL by BDL
in the definitions of IAR and ICAR. As it turns out, IAR with BDL fully coincides with
the answers given by the majority of the participants in our experiment. To illustrate
this semantics, consider Example 4.

Example 4 Applying IAR with ambiguity blocking on Example 1’s SG givesKB �blockIAR

female(alice)∧ alibi(alice)∧ innocent(alice). Note that the difference with BDL is
that KB 2block

IAR incrim(e1, alice) and KB 2block
IAR absolv(e2, alice). The difference

with IAR is that KB 2IAR alibi(alice) and KB 2IAR innocent(alice).

Let us now analyse the productivity and complexity of new semantics. We say
that a semantics �1 is less productive than �2 (represented as �1→�2) if, for every
KB and every f , it results in fewer conclusions being drawn (i.e. if KB �1 f then
KB �2 f ). Productivity comparison of Repair Semantics has been discussed in [6]
while the productivity between Defeasible Logics semantics can be extracted from the
inclusion theorem in [8]. It can be seen that �IAR→ �prop since �prop only rejects
facts that are challenged or generated from challenged facts, while �IAR also rejects
facts that would lead to a conflict.

Proposition 3 Let KB be a knowledge base with only defeasible facts and strict rules.
Given a fact f :

1. if KB �IAR f then KB �prop f

2. if KB �IAR f then KB �blockIAR f

3. if KB �blockIAR f then KB �block f

4. if KB �blockIAR f then KB �blockICAR f

5. if KB �ICAR f then KB �blockICAR f

We prove (1.) by contradiction. Suppose there is a fact f such that KB �IAR f
and KB 2prop f . KB �IAR f means that there is a derivation for f from an initial
set of facts T ⊆ F and there is no consistent set of initial facts S ⊆ F such that
S ∪ T is inconsistent (i.e models(S,R ∪ N ) 6= ∅ and models(S ∪ T,R ∪ N ) = ∅)
[16]. This means that f is derivable and does not rely conflicting facts, therefore the
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statement (f → ∅) has a complete IN support and no IN or AMBIG attack edges, i.e.
SGPDL
KB 〈(f, ∅)〉 = IN, thus KB �prop f which is a contradiction.
We prove (2.) by contradiction, suppose we have KB �IAR f and KB 2block

IAR f :

1. KB �IAR f means that there is a derivation for f from an initial set of facts
T ⊆ F and there is no consistent set of initial facts S ⊆ F such that S ∪ T is
inconsistent (i.emodels(S,R∪N ) 6= ∅ andmodels(S∪T,R∪N ) = ∅), which
means that f is not generated by conflicting atoms and is not used to generate
conflicting atoms i.e. PDL(f, ∅) = IN which implies that BDL(f, ∅) = IN [8].

2. KB 2block
IAR f means that either BDL(f, ∅) 6= IN (impossible given 1.) or f is

used to generate conflicting atoms (impossible given 1.)

We prove (3.) by contradiction, suppose we have KB �blockIAR f and KB 2block f :

1. KB �blockIAR f means that BDL(f, ∅) = IN and f is not used to generate conflict-
ing atoms.

2. KB 2block f means that BDL(f, ∅) 6= IN (impossible given 1.).

We prove (4.) by contradiction, suppose we haveKB �blockIAR f andKB 2block
ICAR f :

1. KB �blockIAR f means that BDL(f, ∅) = IN and f is not used to generate conflict-
ing atoms.

2. KB 2block
ICAR f means that either BDL(f, ∅) 6= IN (impossible given 1.) or there

is a derivable atom conflicting with f or f is used to generate conflicting atoms
(impossible given 1.)

We prove (5.) by contradiction, suppose we have KB �ICAR f and KB 2block
ICAR

f :

1. KB �ICAR f means that PDL((f → ∅)) ∈ {IN,AMBIG}, there is no derivable
fact conflicting with f , and f is not used to derive conflicting atoms.

2. KB 2block
ICAR f means that BDL((f → ∅)) 6= IN and BDL((f → ∅)) = AMBIG

and either there is a derivable fact that is conflicting with f (impossible given 1.)
or f is used to generate conflicting atoms (impossible given 1.).

�block

�prop �AR

�IAR

�ICAR

�CAR

�blockIAR

�blockICAR

Figure 4: Productivity and complexity of different semantics under Skolem-FES fragment of
existential rules.
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6 Discussion
In this paper we build upon Statement Graphs for existential rules and their labeling
functions for ambiguity blocking, ambiguity propagating [13], and provide custom la-
beling functions for IAR, and ICAR. These labelings explicitly show how to transition
from ambiguity propagating to IAR and ICAR, and how to obtain a combination of
blocking with IAR and ICAR. Using an experiment, we have shown that bringing to-
gether Defeasible reasoning and Repair semantics allows for the definition of new and
potentially interesting semantics with respect to human reasoning. Implementing these
new labelings, for instance in the platform presented in [14], would allow to study
further the links between labeling functions and human reasoning.

The modeling choices used in this paper (the use of forward chaining, specific
Repair Semantics, particular intuitions of Defeasible Logics, and no account for pref-
erences) stem from several rationale. More precisely:

• Skolem chase: the focus on the forward chaining mechanism is due to its ability
to handle transitive rules [19] contrary to backward chaining [3]. Regarding the
choice of chase, we focused on the Skolem chase given its relatively low cost and
its ability to stay decidable for all known concrete classes of the FES fragment
[5].

• Language: Repair Semantics make the assumption of a coherent set of rules be-
cause incoherence might yield to the trivial solution of an empty set of repairs
[10]. Therefore allowing defeasible rules with the restriction of coherence de-
feats the purpose of having defeasible rules in the first place.

• Considered Repair Semantics: the appeal of IAR and ICAR is in their simplicity
and low complexity. Considering other Repair Semantics such as ICR, AR, etc.
would require using and defining a more complex version of SG and defeasible
reasoning such as well founded semantics which is one favored future research
avenue.

• Defeasible reasoning intuitions: ambiguity handling is, of course, not the only
intuition in defeasible reasoning, however other intuitions such as team defeat,
handling of strict rules, etc. are meaningless in this context given the absence of
preferences and defeasible rules. However, floating conclusions are applicable in
the considered language, nevertheless, neither Defeasible Logics nor IAR/ ICAR
accept floating conclusion.
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