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Representing Pure Nash Equilibria in
Argumentation

Bruno YUN a,1, Srdjan VESIC b and Nir OREN a

a Department of Computing Science, University of Aberdeen, Scotland
b CRIL Lens, University of Artois, France

Abstract. In this paper we describe an argumentation-based representation of nor-
mal form games, and demonstrate how argumentation can be used to compute pure
strategy Nash equilibria. Our approach builds on Modgil’s Extended Argumenta-
tion Frameworks. We demonstrate its correctness, prove several theoretical proper-
ties it satisfies, and outline how it can be used to explain why certain strategies are
Nash equilibria to a non-expert human user.
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1. Introduction

Game theory studies how multiple rational decision-makers should act given interactions
between their strategies, and preferences over the resultant outcomes. Game theory has
been applied to myriad fields [8]. Within game theory, decision-makers (referred to as
players), their strategies, preferences and outcomes are represented within a game, and
the solutions to a game identify some form of rational outcome. One such solution con-
cept is that of a dominant strategy, where a player has a strategy or a set of strategies
that will always result in the best outcome for them, regardless of what other players do.
However, such dominant strategies often do not exist. In this work, we consider instead
the notion of a Nash equilibrium, which identifies optimal strategies given that other
players also pursue their own optimal strategies. Such Nash equilibria therefore represent
a form of best response, and provide a well understood solution concept in game theory.
However, finding Nash equilibria is computationally difficult, and it is sometimes diffi-
cult for a non-expert to understand why a given strategy is (or is not) a Nash equilibrium.
We believe that by providing an argumentation-based representation of games, dialogues
can be used to explain a Nash equilibrium to such non-experts. While work such as [6]
has considered game theory in the context of ABA, to our knowledge, this work is the
first to link abstract argumentation and Nash equilibria. We consider only so-called pure
strategies for normal form games and intend to relax this restriction in future work.

The remainder of the paper is structured as follows. In Section 2, we provide a brief
overview of argumentation and game-theory concepts necessary to understand our arti-
cle. In Section 3, we describe how a normal form game can be encoded using argumen-
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ar
X

iv
:2

00
6.

11
02

0v
1 

 [
cs

.A
I]

  1
9 

Ju
n 

20
20



2 B. Yun et al. /

tation. Section 4 examines some formal properties of our approach. Lastly, we discuss
related and future work in Section 5 before concluding.

2. Background

We begin by providing the necessary background in game theory and argumentation
required for the rest of the paper.

2.1. Game Theory

In this paper, we use the usual normal form for games [13].

Definition 1. (Normal Game) A (normal) game is G = (Ag,Ac,Av,Ou,Ef,≤)
where Ag = {0, 1, . . . , n} is a finite set of players; Ac is a finite set of strate-
gies; Av = [Ac0, . . . , Acn] with Aci ⊆ Ac denoting the strategies available to i;
Ou = {o0, . . . , om} is a set of possible outcomes; Ef : Acn → Oun captures the conse-
quences of the joint strategies for each player; and≤= [≤0, . . . ,≤n] with≤i⊆ Ou×Ou
denoting the preference relation for player i.

The notation ok ≤i ol means that player i prefers outcome ol to ok. As commonly
done, we write oi <i oj iff oi ≤i oj and oj 6≤i oi

2. A pure strategy profile S is a tuple
containing one strategy from each player in the game. The set of all such pure strategy
profiles is SG = Πi∈AgAci, and represents one joint strategy of all players. A partial
strategy profile is a tuple containing a single strategy for a subset of the players. Given
any pure strategy profile S = [s0, . . . , sn], we write S−i to denote the partial strategy
profile [s0, . . . , si−1, ∅, si+1, . . . , sn], where the strategy for player i is not specified. We
then write S−i ⊕ si to denote strategy profile S. With a slight abuse of notation, for any
S, S′ ∈ SG we write that S ≤i S

′ iff Ef(S)i ≤i Ef(S′)i
3.

Example 1. Let us consider the stag hunt game G = ({0, 1}, Ac,Av,Ou,Ef,≤),
where Ac = {stag, hare}, Av = [Ac,Ac], Ou = {4, 3, 2, 1}, ≤ is the standard less
than relation over numbers. Table 1a graphically illustrates this game in normal form,
and specifies Ef . For example, the tuple (1, 3) in the column “hare” and row “stag”
means that Ef([stag, hare]) = (1, 3). Given the pure strategy profile S = [stag, hare],
S−0 = [∅, hare] and S−0 ⊕ hare = [hare, hare]. Here [stag, hare] ≤0 [hare, hare]
because (1, 3)0 ≤0 (2, 2)0 but [hare, hare] ≤1 [stag, hare].

In asking why a player should pursue a some strategy, we must take into account
the strategies of others. A Nash equilibrium is the best response a player can make given
optimal play by all other players.

Definition 2. Let G = (Ag,Ac,Av,Ou,Ef,≤), we say that S ∈ SG is a Nash equilib-
rium if for every i ∈ Ag and for any strategy s ∈ Aci, it holds that S−i ⊕ s ≤i S.

2We assume that our preferences are acyclic. I.e., if a <i b <i c then c 6≤i a.
3The notation Ef(S′)i means the i-th element of Ef(S′).
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Player 0

Player 1

stag hare

stag
4

4
3

1

hare
1

3
2

2

(a) Stag Hunt

Player 0

Player 1

heads tails

heads
−1

1
1

−1

tails
1

−1
−1

1

(b) Matching pennies.

Table 1. Two games in normal form.

A simple algorithm to identify all Nash equilibrium in the presence of pure strategies
involves iterating through every player and identifying the best strategy profile (in terms
of Ef for that player) given all other players’ possible joint strategies. Any strategy
profile which all players consider best is then a Nash equilibrium.

Given a game in normal form, the above algorithm involves – for a two player game
– scanning down each column and marking the best strategy for the row player, and then
doing the same for each row marking the best strategy for the column player. Each cell
marked for both players is a Nash equilibrium. In the remainder of this paper, we show
an argumentation-based alternative.

Example 2 (Cont’d). There are two Nash equilibria in the stag hunt game: [stag, stag]
and [hare, hare]. The strategy profile [stag, stag] is a Nash equilibrium because
[hare, stag] ≤0 [stag, stag] and [stag, hare] ≤1 [stag, stag]. Similarly, [hare, hare]
is also a Nash equilibrium as [stag, hare] ≤0 [hare, hare] and [hare, stag] ≤1

[hare, hare].

2.2. Argumentation

We encode normal form games in terms of arguments and attacks by building on Mod-
gil’s Extended Argumentation Frameworks (EAF) [11].

Definition 3. An Extended Argumentation Framework is a triple 〈A,C,D〉 where A is
a set of arguments, C ⊆ A × A, D ⊆ A × C and if (z, (x, y)), (z′, (y, x)) ∈ D then
(z, z′), (z′, z) ∈ C.

Definition 4 (Defeat). Let AS = (A,C,D) be an EAF, x, y ∈ A and Y ⊆ A. We say
that y defeats x w.r.t. Y , denoted y →Y x iff (y, x) ∈ C and there is no z ∈ Y s.t.
(z, (y, x)) ∈ D.

Definition 5 (Argumentation semantics). Let AS = (A,C,D) be an EAF and E ⊆ A.
We say that:

• E is conflict-free iff for every x, y ∈ E, if (y, x) ∈ C then (x, y) 6∈ C, and there
exists z ∈ E s.t. (z, (y, x)) ∈ D.

• x ∈ A is acceptable w.r.t. E iff for every y ∈ A s.t. y →E x, there exists z ∈ E
s.t. z →E y and there exists RE = {x1 →E y1, . . . , xn →E yn} s.t. for every
i ∈ {1, . . . , n}, xi ∈ E, z →E y ∈ RE and for every xj →E yj ∈ RE , for every
y′ s.t. (y′, (xj , yj)) ∈ D, there exists x′ →E y′ ∈ RE

• E is an admissible extension iff every argument in E is acceptable w.r.t. E
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• E is a preferred extension iff E is a maximal (w.r.t. ⊆) admissible extension
• E is a stable extension iff for every y /∈ E, there exists x ∈ E such that x→E y.

We will use the notation Exts(AS) (resp. Extp(AS)) to denote the set of all stable
(resp. preferred) extensions.

3. Argumentation-based approach for games

We consider an argumentation framework with multi-level arguments. At the base level,
we consider all possible strategy profiles as arguments. Since only a single strategy pro-
file can ever occur (as players execute one set of strategies in the interaction), every ar-
gument at this level must attack every other argument. We refer to such arguments as
game-based arguments, and note that they are equivalent to pure strategy profiles.

Definition 6 (Game-based argument). Let G = (Ag,Ac,Av,Ou,Ef,≤) be a game, a
game-based argument (w.r.t. G) is a pure strategy profile S ∈ SG.

The set of all game-based arguments for a game G is denoted by Ag(G).
Next, we introduce preference arguments. Intuitively, these can be interpreted as

statements of the form: “Given that the other players are performing a given set of strate-
gies, the remaining player’s preferred strategy should be playing x”.

Definition 7 (Preference argument). Let G = (Ag,Ac,Av,Ou,Ef,≤) be a game, S ∈
SG be a pure strategy profile and i ∈ Ag. A preference argument (w.r.t. G) is a tuple
(S−i, s), where s ∈ Aci.

The set of preference arguments for a game G is denoted by Ap(G). A cluster of prefer-
ence arguments is a maximal set of preference arguments sharing the same partial strat-
egy profile.

Finally, we introduce valuation arguments, which can be interpreted as statements
of the form: “Given that the other players are performing a given set of strategies, it is
the case that the outcome of strategy s is better than the outcome of strategy s′ for the
remaining player”.

Definition 8 (Valuation argument). Let G = (Ag,Ac,Av,Ou,Ef,≤) be a game, i ∈
Ag, (S−i, s), (S−i, s

′) ∈ Ap(G) be two preference arguments and S−i⊕ s′ <i S−i⊕ s.
A valuation argument (w.r.t. G) is the pair (S−i, s

′ < s).

The set of valuation arguments for a game G is denoted by Av(G).

Example 3 (Cont’d). The sets of game-based, preference and valuation arguments w.r.t.
G are shown in Table 2. The argument a1 represents the case where player 0 chooses
to hunt a stag and player 1 chooses to hunt a hare. The argument a9 represents the
argument: “Given that player 0 chooses to hunt a hare, player 2’s preferred strategy
should be to hunt a stag”. The argument a16 represents the argument: “Given that player
1 chooses to hunt a hare, the outcome of hunting a hare is better than the outcome of
hunting a stag for player 0”.



B. Yun et al. / 5

Game-based arguments Preference arguments Valuation arguments

a1 = [stag, hare] a5 = ([stag, ∅], stag) a13 = ([stag, ∅], stag > hare)

a2 = [stag, stag] a6 = ([stag, ∅], hare) a14 = ([∅, stag], stag > hare)

a3 = [hare, stag] a7 = ([∅, stag], stag) a15 = ([hare, ∅], hare > stag)

a4 = [hare, hare] a8 = ([∅, stag], hare) a16 = ([∅, hare], hare > stag).
a9 = ([hare, ∅], stag)
a10 = ([hare, ∅], hare)
a11 = ([∅, hare], stag)
a12 = ([∅, hare], hare)

Table 2. Arguments for the stag hunt game

We now turn our attention to attacks. We note that preference and valuation argu-
ments provide reasons why one argument should not attack another, and therefore intro-
duce not only attacks between arguments, but also attacks on attacks.

Definition 9 (Attack). For a game G = (Ag,Ac,Av,Ou,Ef,≤), a1, a2 ∈ Ag(G),
a3 = (S1, s2), a4 = (S3, s4) ∈ Ap(G) and a5 = (S5, s6 > s7) ∈ Av(G). We say that:

• a1 attacks a2, denoted (a1, a2) ∈ Cr(G), iff a1 6= a2.
• a3 attacks a4, denoted (a3, a4) ∈ Cp(G), iff S1 = S3 and s2 6= s4.
• a3 attacks (a1, a2) ∈ Cr(G), denoted by (a3, (a1, a2)) ∈ Cu(G), iff there exists

s ∈ Ac such that S1 ⊕ s = a1 and S1 ⊕ s2 = a2.
• a5 attacks (a3, a4) ∈ Cp(G), denoted by (a5, (a3, a4)) ∈ Cv(G), iff S5 = S3,

s6 = s4 and s7 = s2.

The first attack captured within Definition 9 is between every two distinct game-
based arguments. As each player has to choose exactly one strategy, different strategy
profiles are clearly incompatible. The second bullet point represents attacks between
preference arguments. In the stag hunt example for instance, a5 attacks a6 (and vice-
versa) because in the event of player 0 hunting a stag, player 1 can either hunt a stag
or a hare. The third type of attack captures attacks from preference arguments to attacks
between game-based arguments. Within the stag hunt, a5 attacks (a1, a2) because a5
states that it is preferable for player 1 to hunt a stag when player 0 is also hunting a
stag. Note that in general, the preference argument (S1, s2) attacks all attacks against
the game-based argument S1 ⊕ s2 coming from any other game-based arguments of the
form S1 ⊕ s′, for any s′ ∈ Ac such that s′ 6= s2. The last type of attack captures attacks
from valuation arguments to attacks between preference arguments. Returning to the stag
hunt, a13 attacks (a6, a5) as a13 states that the strategy “hunt a stag” is better than the
strategy “hunt a hare” for player 1 when player 0 is hunting a stag.

The arguments and attacks induce a very specific type of extended argumentation
framework, where object-level (game-based) arguments have their attacks attacked by
meta-arguments (preference arguments) at level one, and where attacks between these
meta-arguments are attacked by meta-arguments at level two (valuation arguments).

Definition 10 (Argumentation framework). Let G be a game. The argumentation frame-
work corresponding to G is the tuple ASG = (A,C,D) where A = Ag(G) ∪ Ap(G) ∪
Av(G), C = Cr(G) ∪ Cp(G) and D = Cu(G) ∪ Cv(G).
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Figure 1. Argumentation graph corresponding to stag hunt game

Example 4 (Example 3 Contd). Figure 1 represents the game-based, preference and
valuation arguments of G using blue, yellow and green nodes respectively. The attacks
between arguments (C) and on attacks (D) are represented using solid black arrows and
dashed red arrows respectively.

For our framework to be an EAF, it must satisfy some constraints, as described in
[10], and we can easily show that this is the case.

Proposition 1. Let G be a game and ASG = (A,C,D) be the corresponding argumen-
tation framework, it holds that if (z, (x, y)), (z′, (y, x)) ∈ D then (z, z′), (z′, z) ∈ C.

Proof. There are only two types of attacks on attacks: (1) attacks coming from valuation
arguments to attacks between preference arguments and (2) attacks coming from prefer-
ence arguments to attacks between game-based arguments. In the rest of this proof, we
prove that Proposition 1 is satisfied for the two types of attacks on attacks.

• Considering (1), for a fixed partial strategy profile Si, and fixed strategies sj , sk ∈
Ac, there is exactly one (or no) valuation argument of the form (Si, sj > jk) or
(Si, sk > sj). As a result, the condition in Proposition 1 is trivially satisfied for
attacks coming from valuation arguments.

• We now study the case (2) and show that Proposition 1 is also satisfied for
attacks coming from preference arguments on attacks between game-based ar-
guments. Assume that (a3, (x, y)), (a4, (y, x)) ∈ D, where a3 = (S1, s2),
a4 = (S1, s4), x = S1 ⊕ s4 and y = S1 ⊕ s2. By Definition 9, s2 6= s4 thus
(a3, a4), (a4, a3) ∈ Cp(G) ⊆ C.

Since – given Proposition 1 – our argumentation system is an EAF, we can use EAF
semantics to evaluate it.
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Example 5 (Example 4 Contd). In our running example, a5 defeats a6 w.r.t. A as
(a5, a6) ∈ C and there is no argument z ∈ A such that (z, (a5, a6)) ∈ D. However,
a6 does not defeat a5 w.r.t. A because (a13, (a6, a5)) ∈ D. All extensions contain argu-
ments {a16, a15, a14, a13, a12, a10, a7, a5}, while one preferred extension contains {a2}
and the other contains {a4}.

4. System Properties

Having described our system, we now consider its properties. The most important re-
sult we seek to show is the correspondence between argumentation semantics and Nash
equilibria, and we begin by laying the groundwork for this. We then consider how many
arguments will be generated for an arbitrary normal form game.

We begin by considering which preference arguments will appear in a preferred
extension. This result is used in later proofs.

Lemma 1. Let G = (Ag,Ac,Av,Ou,Ef,≤) be a game, and ASG be the correspond-
ing AS. For each preferred extension E of ASG, for each cluster C of preference argu-
ments, there exists a unique argument c ∈ C such that c ∈ E.

Proof. Assume a partial strategy profile S = [s0, . . . , si−1, ∅, si+1, sn] and the corre-
sponding cluster of preference arguments C. Because our preferences are acyclic, we
know that there exists a strategy s∗ such that for every s ∈ Aci, S ⊕ s ≤i S ⊕ s∗. From
the definition of the valuation argument, there are no valuation arguments attacking the
attacks from the preference argument (S, s∗) to other preference arguments. As a result,
we conclude that (S, s∗) is in a preferred extension E and that all the other preference
in C are not E. Moreover, you need to choose one of such arguments from the cluster C
for each preferred extension to satisfy the maximality condition of the semantics.

Next, we show that if there is a preferred extension with game-based arguments,
then each such extension has exactly one game-based argument.

Lemma 2. If any preferred extension of ASG contains a game-based argument, then it
contains exactly one game-based argument.

Proof. Let E be a preferred extension containing game-based arguments. We prove by
contradiction that it is not possible for E to have more than one game-based argu-
ment. Assume that E contains two game-based arguments a1 and a2. By definition of
the attack relation, there is a symmetric attack between a1 and a2. Hence there must
exist two preference arguments p3 and p4 with (p3, (a1, a2)), (p4(a2, a1)) ∈ D and
(p3, p4), (p4, p3) ∈ C. It is not possible for both (p4, p3) and (p3, p4) to be attacked
by valuation arguments as this would require an inconsistency or cycle in ≤. By this
observation, E contains only p3 or p4. Hence, {a1, a2} is not conflict-free, contradiction.

We now show that a game-based argument which is not a Nash equilibrium will not
appear in any preferred extension of the associated argumentation system.
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Lemma 3. Let G = (Ag,Ac,Av,Ou,Ef,≤) be a game, and ASG be the correspond-
ing AS. If S ∈ SG such that S is not a Nash equilibrium then for every preferred exten-
sion E,S /∈ E.

Proof. Assume there is a non-Nash equilibrium game-based argument S′ = [s′0, . . . , s
′
n]

in a preferred extension E. Then, from Lemma 2, E does not contain any other game-
based arguments. Since S′ is not a Nash equilibrium, there exists i ∈ Ag and s ∈ Aci
such that S′−i ⊕ s′i <i S′−i ⊕ s. In the rest of this proof, we consider the strategy s∗

such that for every s ∈ Aci, S
′
−i ⊕ s ≤i S′−i ⊕ s∗. By definition, the attack from S′

to S′−i ⊕ s∗ is attacked by the preference argument (S′−i, s
∗). Moreover, the preference

argument (S′−i, s
∗) attacks all the other preference arguments (S′−i, s

′), where s′ ∈ Aci
and s′ 6= s. By definition of the valuation arguments, none of the attacks from (S′−i, s

∗)
to those other preference arguments is defeated. As a result, we conclude that there is
preferred extension that contains (S′−i, s

∗). Let s+ = {s ∈ Aci | S′−i ⊕ s ≤i S′−i ⊕
s∗ and S′−i ⊕ s∗ ≤i S′−i ⊕ s}, we can conclude that there is at least one argument
(S′−i, so), so ∈ s+ in E (Lemma 1) and (S′−i, so) attacks the attack from S′ to S′−i⊕ so,
contradiction.

Corollary 1. Let G = (Ag,Ac,Av,Ou,Ef,≤) be a game, and ASG be the corre-
sponding AS. If E is a preferred extension that contains a game-based argument S, then
S is a Nash equilibrium.

In the next proposition, we show that if there is only one preferred extension that
contains a game-based argument, then there is an equivalence between preferred and
stable extensions.

Proposition 2. Let G be a game and ASG = (A,C,D) be the corresponding argumen-
tation framework. If E ∈ Extp(ASG) and E ∩ Ag(G) 6= ∅ then E ∈ Exts(ASG).

Proof. We show that if a preferred extension possesses a game-based argument, then it is
also a stable extension. Assume E contains a single game-based argument. By Lemma
2, E contains exactly one game-based argument. Therefore, all game-based arguments
not in the extension are defeated by the game-based argument within the extension with
respect to E, meaning that the game-based argument is a member (at the game-based
level) of the stable extension.

It may seem intuitive that the preferred and stable extension should coincide where
multiple preferred extensions exist. However, this is not the case, as demonstrated by the
following counter-example.

Example 6. Consider the matching pennies game G = (Ag,Ac,Av,Ou,Ef,≤) where
Ag = {0, 1}, Ac = {heads, tails}, Av = [Ac,Ac], Ou = {1,−1}, ≤ is defined as the
“less-than relation” for each player, and Ef is defined in Table 1b.

The set of arguments is A = {b1, b2, b3, . . . , b16} and are listed in Table 3. There is
only one preferred extension {b16, b15, b14, b13, b12, b10, b8, b6} but no stable extensions.

Furthermore, even when multiple preferred extensions exist, these may not coincide
with the stable extensions.
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Game-based arguments Preference arguments Valuation arguments

b1 = [heads, heads] b5 = ([heads, ∅], heads) b13 = ([heads, ∅], tails > heads)

b2 = [heads, tails] b6 = ([heads, ∅], tails) b14 = ([∅, tails], tails > heads)

b3 = [tails, tails] b7 = ([∅, tails], heads) b15 = ([tails, ∅], heads > tails)

b4 = [tails, heads] b8 = ([∅, tails], tails) b16 = ([∅, heads], heads > tails)

b9 = ([tails, ∅], tails)
b10 = ([tails, ∅], heads)
b11 = ([∅, heads], tails)
b12 = ([∅, heads], heads)

Table 3. Arguments for the matching pennies game

Player 0

Player 1

heads tails edge

heads
−1

1
1

−1
1

−1

tails
1

−1
−1

1
−1

1

edge
1

−1
−1

1
−1

1

Table 4. Three strategy variant of the matching pennies game.

Example 7. Let us consider the following variant of the matching pennies game with
three strategies for each player. We have G = (Ag,Ac,Av,Ou,Ef,≤) where Ag =
{0, 1}, Ac = {heads, tails, edge}, Av = [Ac,Ac], Ou = {1,−1}, ≤ is defined as the
”less-than” relation for numbers for each player, and Ef is defined in Table 4. This
variant of the game has eight distinct preferred extensions, but none contain any game-
based arguments.

We now turn to our main result, namely the equivalence of the Nash equilibrium
with the game-based arguments found in the preferred extensions.

Proposition 3 (Equivalence). Let G = (Ag,Ac,Av,Ou,Ef,≤) be a game, and ASG
be the argument framework for the game. A strategy profile S = [s0, . . . , sn] ∈ SG is a
Nash equilibrium iff there exists E ∈ Extp(ASG) such that S ∈ E.

Proof. We split this proof in two parts:

(⇒) We need to show that if S is a Nash equilibrium, then it is within a preferred
extension of ASG. Let us consider the set of arguments E = {S} ∪ Av(G) ∪
{(S−i, si) | i ∈ Ag}. We now show that E is a preferred extension of ASG. It
is clear that E is conflict-free as for every x, y ∈ E, (x, y) /∈ C. Every argument
in Av(G) is acceptable w.r.t. E as valuation arguments are not attacked. Every
argument a = (S−i, si) is also acceptable w.r.t. E because for every s′ ∈ Aci and
s′ 6= si, the attacks from a′ = (S−i, s

′) to a, is either not a defeat w.r.t. E (if there
is a valuation argument that attacks (a′, a)) or it is a defeat but a′ is defeated by
a w.r.t. E. The argument S is also acceptable w.r.t. E because for every S′ ∈ SG

and S′ 6= S, the attack from S′ to S is not a defeat w.r.t. E as the arguments
(S−i, si) are attacking those attacks. We conclude that the set E is admissible.
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Following Lemma 2 and 1, we conclude that E is maximal for set inclusion as
it contains all the valuation arguments, one preference argument per cluster and
exactly one game-based argument.

(⇐) We need to show that if S is within a preferred extension, then S is a Nash
equilibrium. This follows directly from the result from Corollary 1.

Returning to the stable extensions, the following result shows that there is a one-to-
one correspondence between the sets of Nash equilibria and the set of classes of stable
extensions4, where each Nash equilibrium S corresponds to the class of stable extensions
containing argument S.

Corollary 2. Let G = (Ag,Ac,Av,Ou,Ef,≤) be a game, and ASG be the corre-
sponding EAF. There is a bijection between Y = {S ∈ SG | S is a Nash equilibrium}
and {{E ∈ Exts(ASG) | S′ ∈ E} | S′ ∈ Y }

Proof. Follows directly from Proposition 3 and Proposition 2.

Finally, we consider how many arguments an argumentation system containing repre-
senting a normal form game will contain.

Proposition 4 (Number of arguments). Let G = (Ag,Ac,Av,Ou,Ef,≤) be a game
s.t. |Ag| = n and m = max

i∈Ag
|Aci|, the number of arguments in ASG is in O(mn+1 · n).

Proof. The proof is split into three parts.

1. Suppose n players and m strategies per player. Each game-based argument cor-
responds to a pure strategy profile, i.e., there are mn game-based arguments.

2. Consider the number of the preference arguments. There are mn−1 · n partial
strategy profiles. Roughly speaking, a preference argument is obtained from a
partial strategy profile by replacing the empty set with a strategy. Hence, there
are up to mn−1 · n ·m = mn · n preference arguments.

3. We estimate the number of valuation arguments. Each valuation argument is
obtained from one partial strategy profile and one pair of different strategies.
There are mn−1 · n partial strategy profiles and up to m · (m − 1) pairs
of different strategies. Furthermore, if a strategy x is preferred to strategy y,
then y is not preferred to x. Thus, there are up to m·(m−1)

2 possible combina-
tions to consider. Hence, the total number of valuation arguments is limited by
mn−1·m·(m−1)·n

2 which is in O(mn+1 · n). Thus, the total number of arguments
is in O(mn) +O(mn · n) +O(mn+1 · n) which is in O(mn+1 · n).

We note that computing Nash equilibria is known to be computationally difficult,
and the result regarding the number of arguments is therefore unsurprising.

4We say two stable extensions are equivalent iff they have the same game-based argument
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5. Discussion, Related and Future Work

In this paper, we described how normal form games can be given an argumentation-based
interpretation so as to allow – via argumentation semantics – for pure Nash equilibria
to be computed. Intuitively, a Nash equilibrium identifies the best strategy a player can
pursue given others’ strategies. However, explaining – to a non-expert – why some set of
strategies forms a Nash equilibrium is often difficult, and our argument-based interpre-
tation is the first step towards an explanatory dialogue for such explanation. Other work
has shown the utility of providing such dialogue-based explanations [4, 7, 12]. In the cur-
rent context, such an explanation could build on Modgil’s proof dialogues for extended
argumentation frameworks [10], and could result in a dialogue as follows for the Stag
hunt game shown in Figure 1.

User “Why should both players hunt a stag?” (why a2?)
System “It is the best response because a2 defeats all the other game-based arguments,

namely a1, a3 and a4”.

Assume now that the user agrees that a2 defeats a3 and a4; hence they ask further about
why a2 defeats a1.

User: “Why should player 1 play stag if player 0 plays stag?” (why does a2 defeats a1?)
System: “Because playing stag gives a better outcome to player 1 if player 0 plays stag”

(a5 defeats the attack (a1, a2))
User: “Why does player 1 not prefer the outcome when hare is played”? (why not a6)?
System: “Because of the valuation defined for player 1” (a13)
User: “I understand.”

In the short term, we intend to formalise the dialogue and empirically evaluate its
explanatory capability with human subjects. Other extensions which we intend to inves-
tigate include providing an argumentation semantics for mixed Nash equilibria (perhaps
through the use of some form of ranking semantics [1, 3, 9]), and investigating other so-
lution concepts (e.g., Pareto optimality) for more complex types of games. Finally, there
are clear links between game theory and group-based practical reasoning. Building on
work such as [2, 15], we intend to investigate how an argument-based formulation to
practical reasoning underpinned by game theory can be created.

Several other authors have investigated some links between game theory and argu-
mentation. For example, in his seminal paper, Dung [5] noted that the stable extension
corresponds to the stable solution of an cooperative n−person game, but did not seem to
deal with non-cooperative games as we do here. Game theory was also used to describe
argument strength by Matt and Toni [9], and Rahwan and Larson [14] investigated the
links between argumentation and game theory from a mechanism design point of view.
Perhaps most closely related to the current work is Fan and Toni’s work [6] exploring the
links between dialogue and assumption-based argumentation (ABA). Here, the authors
showed how admissible sets of arguments obtained from their ABA constructs are equiv-
alent to Nash equilibria. In contrast to the current work, they only considered two player
games and utilised structured argumentation, allowing them to describe a proof dialogue
with associated strategies.
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6. Conclusions

In this paper, we provided an argumentation-based interpretation of pure strategies in
normal form games, demonstrating how argumentation semantics can be aligned with
the Nash equilibrium as a solution concept, and examining some of the argumentation
system’s properties.

We believe that this work has significant application potential in the context of
argument-based explanation. At the same time, we recognise that there are significant
open avenues for research in this area, but believe that the current work is an important
step in investigating the linkages between the two domains.
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