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Abstract
This paper presents a case study on the combination of a few static code optimization with an
FPGA prototype of heterogeneous multicore architecture to address the energy-efficient execu-
tion of machine learning algorithms at the edge computing nodes. Two kinds of optimizations
are applied : usual compiler optimizations and real number representations (fixed-point ver-
sus floating-point). This study is conducted while accounting for the trade-off between training
precision, performance, and energy.
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1. Introduction

Edge computing [3, 13, 19] is a recent paradigm for Internet-of-Things (IoT) systems, where
computations are distributed across a broad range of compact devices, so as to bring computing
capability closer to data sources, e.g. environmental sensors and cameras. Given the limited
hardware resources and energy constraints on edge computing nodes, one major design issue
is the implementation of data analytics, in particular, machine learning (ML) techniques.
The major part of ML algorithms implemented on edge devices concerns inference (i.e. the pro-
cess of straightforwardly using pre-trained models to solve an ML problem) instead of training
(i.e. the process of minimizing the error as a function of the ML model parameters). Among
the reasons [14], is the excessive bandwidth and latency costs required for exchanging network
updates back and forth between different edge devices. In addition, energy and hardware cost
represents another concern in the edge node design. Inference usually operates on structured
labeled data. It is not the case of deep learning [16], which achieves training tasks necessitating
high precision. Here, complex multi-layer artificial neural networks (ANNs) and huge amounts
of raw data are processed. This requires high computing power and data storage capacity una-
vailable on edge devices.
Authors in [4] presented a survey to shed light on the expectations of future computing ar-
chitectures for edge nodes. Such nodes will execute a diversity of workloads, which require
various computing resources. Heterogeneous architectures [6,8] are good candidates to fill this
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demand as they give access to different CPU types or memory technologies that can be selected
for executing various kinds of workloads.
This paper describes a small case study to raise some opportunities in hardware-software co-
design for the edge nodes. By considering a FPGA prototype of heterogeneous architecture [11]
built from low-power cores, we evaluate the implementation of three typical ML algorithms.
This architecture was designed with the ultra-low-power technology from Cortus [2], one of the
world-leading semiconductor IP companies in the embedded domain. As a software-hardware
codesign approach, we explore some static design optimizations w.r.t. training accuracy, exe-
cution time and energy consumption. Instead of using high-level modeling for design space
exploration (e.g. cycle-approximate design of heterogeneous architectures in gem5 [5, 10]), we
use a FPGA support for accurate ML workload evaluation [17].

2. Case study : FPGA design for ML at the edge

We first assess the impact of various compiler optimizations when implementing typical ML
algorithms. Then, we show for these algorithms, how the underlying microarchitecture is better
leveraged with floating-point versus fixed-point number representations to find a compromise
between accuracy, latency and energy.

2.1. Experimental setup

Experimental architecture design for ML. We consider a heterogeneous multicore architecture
[11], composed of seven CPU cores (referred to as heptacore) as shown in Fig. 1a. It includes
six low power cores devoted to highly parallel workloads for higher throughput, and a single
high-performance core for weakly parallel workloads. This architecture is developed with the
cost-effective embedded cores provided by the Cortus Company. Here, the high-performance
core referred to as HP-core is implemented with the Cortus APSX2 CPU. The three low power
cores referred to as LP-core, are implemented with the Cortus APS25 CPU. The remaining three
low power cores referred to as LPF-core, are implemented with the Cortus FPS26 CPU.

(a) Architecture organization (b) Components dimensioning on FPGA

FIGURE 1 – Considered asymmetric heptacore architecture.

While the APSX2 core is an application processor alike with advanced microarchitecture fea-
tures, the APS25 and FPS26 are microcontrollers. The key difference between the two micro-
controllers is the FPS26 includes a floating-point unit (FPU) while the APS25 does not. This
provides a tradeoff on precision, latency and power consumption when executing programs
on such CPU cores. The communication interconnect is implemented by a hierarchical crossbar.
All CPU cores share both the program and data memory but possess local data and instruction



Compas’2020 : Parallélisme / Architecture/ Système/ Temps Réel
MILC - Lyon, France, du 30 juin au 3 juillet 2020

caches. A 128 kb L2-memory caches all the memory accesses to the external 2 Gb DDR4 me-
mory, contributing to reducing the memory access latency. Fig. 1b summarizes FPGA synthesis
characteristics of the main architectural components.
The architecture is implemented on the VCU108 FPGA board of Xilinx [1]. This board integrates
an external and useful memory for storing the data to be analyzed during the execution of ML
algorithms. It also embeds current and voltage sensors on most of its power rails, e.g. power rail
of the FPGA chip. This enables us to obtain measures, by leveraging an API developed by Xilinx
named SysMon. In our subsequent experiments, only the dynamic power consumption of the
FPGA will be measured to evaluate the energy-efficiency of explored designs, by adopting a
similar approach as in [9]. This is a commonly admitted basis for reasoning [15].

Selected ML algorithms. Three kinds of ML workloads are considered in our experiments :
clustering, classification, and regression algorithms. The K-means clustering method is a popu-
lar algorithm for unsupervised cluster analysis in data mining. Given a data-set of size n, it
produces a partitioning of n data into k clusters according to their proximity.
The logistic regression (LogReg) algorithm enables us to determine the probability for a given
data to belong to a certain data class. The last ML model considered in the sequel is a ANN with
back-propagation (Backprop), which exploits gradient descent to realize training and inference
tasks. For the sake of simplicity, we consider a three-layer neural network : input, hidden and
output layers. The network is composed of 30, 10 and 1 neurons in its input, hidden and output
layers respectively. Its total number of weights is 310. The size of this network is deliberately
kept small due to the limited hardware resources in the used FPGA.
To carry out our experiments with the above algorithms, we consider a partitioning of data
items into two subsets (T, I), where the subset T is used for model training, and the subset I
is used for inference based on the trained model. We use (260, 59) and (2000, 80) partitioning
for Backprop and LogReg respectively. A set of 2000 items is handled to evaluate the K-means
clustering. Note that for each algorithm, we considered as many data items as supported by the
memory available in the FPGA prototype. The size of the program corresponding to Backprop
is the biggest among the three, hence leaving less space for storing training and test data.

2.2. Software-hardware codesign considerations
In the sequel, we evaluate the impact of two kinds of static code optimizations w.r.t. the consi-
dered multicore architecture.

Impact of compiler optimizations. Given the implementation constraints of the target FPGA
prototype system in terms of area and power consumption, some relevant optimizations of the
GNU Compiler Collection (GCC) are applied to statically select the most efficient binary code
versions to execute on the FPGA.
The following options are exercised : -O1 which aims at reducing the execution time and the
code size. It is the lightest optimization option ; -O2 which is often considered as one of the sa-
fest options, it is commonly recommended ; -O3 which applies more aggressive optimizations
to the code beyond those applied by the previous one ; -Ofast that includes all -O3 optimi-
zations and aggressively reduces the execution time (however, it applies optimizations that are
not valid for all standard-compliant programs, and can lead to biased program behavior) ; and
-Os which mainly aims to minimize the code size (it is especially interesting for systems with
limited memory resources like FPGAs).
As a preliminary analysis, we evaluate the impact of the above GCC optimizations on the pro-
grams corresponding to our selected ML algorithms (Figs. 2 and 3). We compare their respec-
tive impacts on the code size for each core type in the architecture, to save FPGA resources. In
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(a) Backprop (b) LogReg (c) K-means

FIGURE 2 – Program size for different compiler optimizations, by core type.

addition, we execute them on different core types to assess the related energy outcome.
More generally, moving towards more aggressive performance optimizations causes increased
code size (see Fig. 2). This is a well-known impact of such optimizations, which also increase
the code build time while degrading debug experience. Globally, the role of the optimization
option in the code size is dependent of its composition. The -Ofast option increases the code
size by more than 20% compared to -O1 for Backprop because it contains the highest number
of loop iterations. The -O1 and -Os options result in a similar code size. The code size for the
-O2 option is 2% larger than for -O1 and -Os. Regarding energy consumption when executing
the different code versions, the -O1 and -Os options do not bring any gain compared to the
-O2, -O3 and -Ofast options (see Fig. 3). The latter option, i.e. -Ofast, even shows a gain of
about 135% compared to -O1 in the case of the Backprop algorithm executed by the LPF-core.
The reported energy consumption covers both training and inference phases.

(a) Backprop (b) LogReg (c) K-means

FIGURE 3 – Energy gain when executing optimized program versions, by core type.

From this preliminary observation, the -O1 and -Os options are less attractive than -O2, -O3.
On the other hand, the -Ofast option has the disadvantage of leading to biased program
behaviors, which would make the comparison a bit difficult in our subsequent experiments.
Therefore, for the rest of our experiments, we will only consider the -O3 option.
Now, when focusing on the -O3 scenarios in Fig. 3, the HP-core and LPF-core far outper-
form the LP-core in terms of energy consumption. This is due in major part to the lack of
the FPU support in LP-core, which is heavily detrimental to the execution time of the conside-
red algorithms. Floating-point computations are only software-emulated on LP-core, hence the
slowdown. The energy gains provided by the LPF-core over the HP-core are respectively +5%,
+8.5% and -2% for Backprop, LogReg and K-means respectively.
A preliminary interesting insight is the LPF-core microcontroller represents a priori a very re-
levant alternative to the HP-core application processor from the energy perspective. Moreover,
further gains could be expected from the LPF-core regarding the static power consumption
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(a) Backprop (b) LogReg

(c) K-means

FIGURE 4 – Energy and accuracy evaluation : fixed-point vs. floating-point LP-Cores.

since its area is 15 times smaller than that of HP-core (see Fig. 1b).
Evaluation of number representations : fixed-point versus floating-point precision. The lack
of FPUs in LP-cores for addressing floating-point computations is a clear inconvenient com-
pared to HP-core and LPF-core. To mitigate this limitation, we consider fixed-point number
representation for program execution on LP-cores. Such a representation of real numbers de-
fines a fixed number of digits after the radix point, thus inducing a reduction of the arithmetic
precision compared to floating-point representation.
We devised code variants for all the three ML algorithms (Backprop, LogReg and K-means)
with 32-bit fixed-point number representations. In our experiments, six fixed-point representa-
tion instances are evaluated on the LP-core. They are denoted as "LP X-Y", where X represents
the number of digits before the radix point and Y represents the number of digits after the radix
point (i.e. X + Y = 32). In other words, the integer part of the 32-bit fixed-point arithmetic units
is composed of X digits, while the fractional part is composed of Y digits. For example, in the
fixed-point instance denoted by LP 8-24, the 8 first digits are dedicated to the integer part of
the real number, while the remaining 24 digits are dedicated to the decimal part.
Next, we evaluate the following arbitrary fixed-point instances : LP 8-24, LP 12-20, LP 16-16,
LP 20-12, LP 24-8 and LP 28-4. Each of these instances is executed on a single LP-core, and
compared with the floating-point variants of the ML algorithms on LP-core, LPF-core and HP-
core. Fig. 4 summarizes this comparison in terms of energy and prediction error trade-off : the
lower the energy (i.e. near 0), the better the evaluated instance ; and the lower the prediction
error (i.e. near 0), the more accurate the instance. Note that the reported energy consumption is
normalized w.r.t. that of HP-core. In Figs. 4b and 4c, we added a zoom on some regions of the
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plots in order to better highlight the difference between the concerned scenarios.
First of all, compared to floating-point algorithm variants executed on LP-core, the fixed-point
variants globally reduce the energy consumption by 200% at least, at the cost of an acceptable
training accuracy loss, i.e. less than 20% error difference. They even show energy improve-
ments compared to floating-point algorithm variants executed on HP-core and LPF-core, which
include an FPU in their microarchitecture. For Backprop and LogReg, the energy reduction
grows up to 20%. The best fixed-point precision candidates vary from one algorithm to ano-
ther. For instance, for LogReg, LP 12-20 appears as the most beneficial, while for the ANN LP
16-16 is the best fixed-point instance. Only the K-means algorithm does not show any energy
improvement due to the fact that it manipulates less floating-point arithmetic.
The fixed-point precision therefore represents a relevant alternative to the lack of FPU sup-
port in LP-cores. In addition, FPGAs are known to be traditionally energy-efficient for fixed
precision computations [20] (even though state-of-the-art FPGAs such as the Stratix 10 2 from
Altera/Intel now integrate competitive FPUs. We note that throughout all the above experi-
ments, the power consumption estimation of the considered FPGA system only varies between
1.3 W to 1.5 W, where the static part represents about 80%.

TABLE 1 – Key performance numbers of considered cores w.r.t. ML model inference (BP and LR
respectively denote Backprop and LogReg)

Hardware
configurations HP-core LPF-core LP-core

LP-core
(fixed-point)

3x LP-core
(fixed-point)

Algorithms BP LR BP LR BP LR BP LR BP LR
Best perf.

(#inferences/sec) 161.64 41.38 149.36 46.83 0.47 2.87 842.85 47.50 2023.56 169.13

Best energy-eff.
(#inferences/J) 806.20 173.16 865.14 275.03 2.53 16.03 4617.13 254.86 10749.33 891.77

Table 1 summarizes some key performance scores obtained from these experiments. It exclu-
sively reports the best inference scores achieved by each type of core on the Backprop and
LogReg algorithms. The shown metrics indicate the number of inferences (or predictions) per
second and joule. Interestingly, we observe the improved score provided by the fixed-point pre-
cision combined with the throughput optimization enabled by the parallel execution on three
low-power LP-cores.

3. Summary and closing remarks

This paper presented a case study on static code optimization for the energy-efficient imple-
mentation of selected ML algorithms on low-power heterogeneous multicore system. Further
optimization opportunities still remain for drastic improvements in the illustrated FPGA de-
sign. First, the major part of the data manipulated in our experiments is stored in the DDR4
memory, separated from the FPGA chip itself. As a result, expensive data accesses are induced
both in terms of latency and energy. This issue goes beyond our case study and concerns more
generally FPGA designs. Data access pattern analysis for better data locality and model para-
meters buffering (e.g. ANN weights) have been hitherto considered to improve deep learning
networks execution on FPGAs [20]. Finally, designers should be assisted by user-friendly au-
tomation tools, capable of supporting all the suitable code optimizations. Existing high-level
synthesis tools and approaches targeting FPGAs [7,12,18] are an interesting basis to start with.

2. https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10.
html#family-table
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