
HAL Id: lirmm-03054114
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03054114

Submitted on 11 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Automatic Exploration of Weight Sharing for
Deep Neural Network Compression

Etienne Dupuis, David Novo, Ian O’Connor, Alberto Bosio

To cite this version:
Etienne Dupuis, David Novo, Ian O’Connor, Alberto Bosio. On the Automatic Exploration of
Weight Sharing for Deep Neural Network Compression. DATE 2020 - 23rd Design, Automa-
tion and Test in Europe Conference and Exhibition, Mar 2020, Grenoble, France. pp.1319-1322,
�10.23919/DATE48585.2020.9116350�. �lirmm-03054114�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03054114
https://hal.archives-ouvertes.fr


On the Automatic Exploration of Weight Sharing
for Deep Neural Network Compression

Etienne Dupuis1, David Novo2, Ian O’Connor1, and Alberto Bosio1
1Ecole Centrale de Lyon, Institut des Nanotechnologies de Lyon, France

2LIRMM, Université de Montpellier, CNRS, France
{etienne.dupuis, ian.oconnor, alberto.bosio}@ec-lyon.fr, and david.novo@lirmm.fr

Abstract—Deep neural networks demonstrate impressive levels
of performance, particularly in computer vision and speech
recognition. However, the computational workload and associated
storage inhibit their potential in resource-limited embedded
systems. The approximate computing paradigm has been widely
explored in the literature. It improves performance and energy-
efficiency by relaxing the need for fully accurate operations.
There are a large number of implementation options with very
different approximation strategies (such as pruning, quantization,
low-rank factorization, knowledge distillation, etc.). To the best
of our knowledge, no automated approach exists to explore, select
and generate the best approximate versions of a given convolu-
tional neural network (CNN) according to the design objectives.
The goal of this work in progress is to demonstrate that the
design space exploration phase can enable significant network
compression without noticeable accuracy loss. We demonstrate
this via an example based on weight sharing and show that our
method can obtain a 4x compression rate in an int-16 version
of LeNet-5 (5-layer 1,720-kbit CNNs) without re-training and
without any accuracy loss.

Index Terms—Deep Neural Networks, Approximate Comput-
ing, Model Compression, Weight Sharing, Design Space Explo-
ration, Embedded System, Hardware Accelerator

I. INTRODUCTION

Deep Learning, and in particular Convolutional Neural
Networks (CNNs), are currently one of the most widely used
predictive models in the field of machine learning. CNNs are
used today in various applications such as object recognition,
drug discovery and natural language processing, as well as
safety-critical applications like autonomous driving. Unfortu-
nately, the computational cost of CNNs is often out of reach
for low-power embedded devices [1].

Novel computing paradigms and emerging technologies are
under investigation to render CNNs sustainable and really
usable by edge computing end users. Among them, the Ap-
proximate Computing (AxC) paradigm leverages the inherent
resilience of CNNs to errors to improve energy efficiency, by
relaxing the need for fully accurate operations.

CNNs have a high degree of redundancy in terms of
their architecture and parameters. This observation has paved
the way for a number of highly recognized approximation
techniques [1]. The most popular ones include pruning [2],
quantization [3], low-rank factorization [4], knowledge dis-
tillation [5] and weight-sharing [2]. We focus on the latter
technique, which has already demonstrated impressive results.

The basic idea of weight sharing is to merge similar values
and replace them with a single one, thus leading to a reduction

in memory footprint. Weight sharing has already proved its
efficiency to correctly represent weight ranges and values. In
the literature, there are many practical applications of weight
sharing. For example, Hashed net [6] proposes to randomly
group weights into buckets sharing the same value prior to
the training step. A more efficient method, involving a 3-step
process and based on the retraining of a model, is presented
in DeepCompress [2], achieving impressive results due to the
use of various levels of redundancy in deep neural networks
through pruning, clustering and Huffman coding. Deep K-
means [7] uses regularization terms to encourage weights to
concentrate at re-training time and proposes interesting data
re-shaping techniques optimized for higher data reuse with
row-stationary dataflow [8] at inference time. It is also possible
to reduce complexity by encoding both weights and features
map, then compute multiplications using a lookup table. Both
LookNN [9] and Quantized CNNs [10] are based on this
concept and achieve good results at inference time, particularly
if energy efficiency is taken into account.

While the direct training approach shows excellent results in
the literature [11], it is often inconvenient due to the necessity
to adapt the training framework and methods. Furthermore, re-
training the model requires access to the full training data and
framework, which is not always possible due to the potential
size of the entire dataset, and also for legal and privacy
compliance reasons. This is where conversion algorithms offer
an alternative by working directly on pre-trained models. An
instance of this approach can be found in vector quantization
[12], where a K-means clustering of fully connected (FC)
layers is proposed with a systematic approach.

Despite the promising results, all existing approaches suffer
from important limitations: requiring retraining or the use of
several steps, or not covering the whole network. Our goal is
to compress a neural network targeting embedded devices. We
choose to address this problem using a systematic exploration
to convert a pre-trained model, without requiring retraining
(which can be costly or even impossible) and targeting both
FC and CONV layers to leverage redundancies where they
exist.

The rest of the paper is organized as follows: Section II
describes the proposed method for design space exploration,
while Section III presents the preliminary results obtained.
Finally, Section IV concludes the paper.



Fig. 1. Overall flow of the proposed method

II. PROPOSED METHOD

Fig. 1 sketches the overall flow of the proposed method.
First of all, we start from a trained network (i.e., the reference
model in the figure). For the training phase, we use the
open-source framework N2D2 [13] (however, any available
framework can be used). It is important to notice that we
export the trained network in an already quantized form,
rather than with the usual full precision (i.e., with weights
represented by 32-bit floating-point data). This is due to the
fact that we want to further compress the network after the
quantization step. Our AxC framework applies a so-called
“hierarchical approximation” to the reference network. Within
the framework, all the layers of the network are processed. The
result is an approximate network characterized by its accuracy
loss and its compression rate as compared to the reference.
This section firstly presents a well-known and suitable weight
sharing approximation technique, and a new design space
exploration method.

A. Weight Sharing Approximation Method

As seen in previous sections, neural network approxima-
tion can be achieved using different approaches. The weight
sharing technique identifies values that will be shared between
weights.

In this way, instead of storing the weight values, only the
indexes for accessing them are required and thus stored in the
memory. Accordingly, the size of the weight matrix can be
reduced from B bits for each value to log2(K) with K being
the number of different values. The size of the network then
becomes N ∗ log2(K) + K ∗ B instead of N ∗ B. Further
compression can be achieved using K-means clustering to
reduce K.

Fig. 2 shows an example to clarify the benefits of weight
sharing. The first matrix corresponds to a 5× 5 convolutional
kernel whose values were computed during training. The
matrix contains N = 25 values in the range from 0 to
20, which can be quantized in 5bits, resulting in a total
Size = N ∗B = 25 ∗ 5 = 125bits.

Fig. 2. Network compression using lookup table

In this example we identified 5 clusters, namely ‘a’, ‘b’,
‘c’, ‘d’ and ‘e’, replacing the 25 original values as shown
in the second matrix. Instead of still storing 25 values, we
store only the indexes of the clusters. 5 clusters only require
three bits for the encoding. The cluster index is finally used to
access a lookup table (LUT, as shown in the figure) to retrieve
the weight value. Accordingly, with 5 clusters (K = 5), we
obtain WeightMatrixSize = N ∗ log2(K) = 75bits and
LUTSize = K ∗ B = 25bits resulting in a total Size =
100bits. We can thus save 25 bits with respect to the original
kernel matrix, achieving a 20% compression ratio.

According to the literature, the K-means based weight shar-
ing method has achieved outstanding performance compared
to other methods [7], by using a scalar pool of values instead
of data-representation based values. This maintains a very low
accuracy loss and benefits from good network compression
rates.

The K-means algorithm results are variable and based on
random initialization. Some works try to find better initializa-
tion methods, such as using linear initialization in order to
improve weight range representation [2]. We choose to main-
tain standard random initialization for the sake of simplicity,
but this will be further explored in future work.

B. Hierarchical Exploration of Weight Sharing Opportunities

Weight sharing can be applied at different granularities,
ranging from the level of a single convolutional kernel (see
Fig. 2), up to the level of the whole network. The simplest
approach is to perform clustering on all network weights in a
single step, but this technique lacks a clear representation of
the data range, which is a crucial element to avoid accuracy
losses [1].

In order to identify the most promising granularity, we apply
the weight sharing at the following levels:

• 2D-Kernel: targets a single layer of a 3D convolutional
kernel matrix (2D kernel);

• Channel: targets the 3D convolutional kernel matrix;
• Layer: targets all the 3D convolutional kernel matrices of

a network layer.
Each of the above levels of granularity lead to different com-

pression ratios and accuracy loss figures with respect to the
reference network. The accuracy is evaluated by checking the
top-1 accuracy; hence, an approximate network is considered
to have an accuracy loss if the top-1 classification accuracy
differs from the reference. Fig. 3 plots the trade-off obtained
at different levels of granularity. Each solution corresponds
to a network with a certain number of clusters. The results
clearly show that the “kernel” and “channel” granularity do
not lead to a good tradeoff between compression and accuracy.
On the other hand, the “layer” granularity allows up to 3x
higher compression ratios for the same accuracy loss. For the
remainder of the paper, we thus exploit the layer granularity
in our weight sharing technique.

As reported in the previous section, weight sharing allows
the memory footprint to be compressed because we reduce the
number of stored values. However, we have to also include a



Fig. 3. Top-1 accuracy loss and memory compression over varying numbers
of clusters at different clustering levels

Look-up Table (LUT) in order to associate indexes to weight
values. The designer has thus two possibilities:

1) Resort to a LUT for each layer;
2) Resort to a LUT for the whole network.
Once the level of granularity has been identified, we explore

the impact of different clusters among the layers. We thus
develop a simple exploration framework to identify the best
number of clusters per each layer.

Fig. 4 gives the basic concept of the proposed exploration
framework, where we target one layer at a time. For the
current layer, we apply the K-means algorithm several times
by varying the number of clusters from 1 to N . Each solution
is characterized by its accuracy loss.

For each solution, we thus need to run the approximate
network on the test set to quantify the accuracy loss. In our
case, the database is the MNIST and we run the network on
the 10k test database. We use a greedy approach aimed at
minimizing the accuracy loss.

As the number of distinct combinations of suitable high-
level approximation parameters for a network is very large, it
is probable that the first solution to be found is not optimal.
For this reason, we use several iterations to improve the
exploration of the solution space by attempting to escape from
potential local optimization extrema. At each iteration, the
combination found in the previous iteration is used as a base,
and the hierarchical exploration algorithm is executed. This

1 2 N

Starting 
Layer

Clusterization

i j NClusterization

Next Layer

Last Layer

1 l NClusterization

Fig. 4. Layer by layer hierarchical design space exploration graph

improves the high-level approximation parameter values by
adapting them to each other, and the initialization is a non-
approximated network. We do stop the process after a user-
defined maximum number of iterations.

For each identified solution (i.e., one per iteration) we
compute the compression ratio with respect to the reference
network.

III. EXPERIMENTS

This section presents the preliminary results obtained by
the proposed approach. The target CNN is LeNet-5 [14],
composed of 3 convolutional layers (CONV) followed by 2
fully connected (FC) layers, with a total of 61,470 parameters
(of which 50% are in the convolutional layers). One difference
with our own LeNet is the removal of the last SoftMax layer in
order to bind the last FC layer to the classification output. We
trained on the MNIST handwritten digit dataset using 28x28
cropped pictures. The training set contained 48,000 images,
with an additional 12,000 for the validation set, and 10,000
for the testing set. The learning rate started at 0.05, with the
decay of 5.10−4 every 375(∗128) iterations, and momentum
was set to 0.9.

The training was carried out using the open-source frame-
work N2D2 [13]. The LeNet-5 model description we used is
available in the framework itself. It is important to mention
once again that the proposed approach is independent of the
adopted training tool. We used the top-1 classification accuracy
as an evaluation metric: at the end of the training, we reached
a 0.89% error rate. We vary the number of clusters of the
K-means algorithm from 1 to N = 25, where the maximum
value corresponds to the number of values in a LeNet-5 kernel
and thus, the minimum number of weights in a layer. The
exploration algorithm was set to iterate using previous values
as initialization until it found an already identified solution,
with a limit of 30 iterations. We explored in two different
modes: natural order, from the first layer to the last; and
reversed order. Execution of the optimization algorithm took
7.2 hours on an Intel I7 (8 core CPU).

Table I shows the obtained results. The first column specifies
the type of network. For each result, we compute the accuracy
loss and the compression ratio (CR) as reported in the second
column. The latter is calculated by dividing the size of the
int-16 trained model by the size of the approximate network,
and the accuracy loss corresponds to the degradation induced

TABLE I
COMPRESSING LENET-5 ON MNIST

Id Type Network Top-1 CR
accuracy loss (%)

1 N2D2 export 16-bit (ref) 0.00 1
2 N2D2 export 8-bit 0.05 2
3 AxC 16-bit first to last 0.02 4.06
4 AxC 16-bit last to first 0 4.04
5 AxC 8-bit first to last 0.05 4.37
6 AxC 8-bit last to first 0.05 4.83



Fig. 5. Comparison of different LUT scopes

by the compression. The first two rows correspond to our
reference networks. The first is the 16-bit quantized network
used as reference (i.e., accuracy loss = 0 and compression
ration = 1), while the second is the same network quantized
using 8-bits. For this case, we only obtained a 2x compression
at the cost of a slight accuracy loss. with respect to the 16-bit
network.

The last four rows correspond to the network approxi-
mated using the proposed approach. AxC networks 3 and
4 are obtained starting with the 16-bit network. Using our
exploration tool, we can achieve a compression rate over
4x from the 16-bit version, without any accuracy loss on
the top-1 classification accuracy performance. The difference
between 3 and 4 is the order of analysis of the layers.
Indeed, we investigated the impact of layer ordering during
the approximation (i.e., from the first to the last and vice
versa). We obtained slightly better results when we perform
clustering from the last layer to the first layer, but we observe
in each case that the resulting approximation network is more
approximated in the first layers, which correspond to feature
extractors and are less sensitive to approximation degradation.
AxC networks 5 and 6 are obtained by starting from an int-8
network, allowing the clustering to be more efficient as the
range of values is smaller than the int-16 counterpart. This
results in a slightly higher compression rate, but the accuracy
loss is higher. In this case, the approximate layer order does
not impact the accuracy loss.

Finally, we also compare the memory footprint required by
using a single LUT for the whole network versus the use of
one LUT for each layer. Fig. 5 represents the different memory
requirements, showing that it is more advantageous to use one
LUT per layer. Moreover, we can see that the LUT size is
negligible with respect to the size of the weight matrix. We
cannot draw a generic conclusion based on a single CNN, but
this can nevertheless be considered as an promising way to
evaluate the impact of given design parameters.

IV. CONCLUSION

This paper presented a smart design space exploration
method for compressing trained deep neural networks. We

have proven that our method is able to compress a deep neural
network with negligible accuracy loss. The most important
advantage is the fact that our approach is a one-shot conver-
sion, and thus, we are able to avoid the prohibitive cost and
constraints tied to network re-training.

Future work will first target the application of the proposed
approach to larger networks. Then, we intend to extend the
framework to support other types of approximate computing
techniques like pruning, as the use of a combination of approx-
imation methods allows more levels of redundancy inherent to
neural networks to be leveraged. We also plan to evolve our
greedy algorithm to include an optimization function taking
compression and other hardware implementation dedicated
metrics into account. For the approximation method itself,
further parameters will be added such as initialization method
for K-mean allowing the design space to be enlarged and to
explore potentially better parameter combinations.

V. ACKNOWLEDGEMENT

This work has been funded by the French National Research
Agency (ANR) through the AdequatedDL research project
(ANR-18-CE23-0012).

REFERENCES

[1] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, pp. 2295–2329, Dec 2017.

[2] W. J. D. Song Han, Huizi Mao, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv, 2016.

[3] C. Baskin, E. Schwartz, E. Zheltonozhskii, N. Liss, R. Giryes, A. M.
Bronstein, and A. Mendelson, “UNIQ: Uniform Noise Injection for Non-
Uniform Quantization of Neural Networks,” arXiv, Apr. 2018.

[4] A. Acharya, R. Goel, A. Metallinou, and I. Dhillon, “Online Embedding
Compression for Text Classification using Low Rank Matrix Factoriza-
tion,” arXiv, Nov. 2018.

[5] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” arXiv, Mar. 2015.

[6] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen,
“Compressing neural networks with the hashing trick,” CoRR,
vol. abs/1504.04788, 2015.

[7] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin,
“Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster
Assignments for Compressing Deep Convolutions,” arXiv, June 2018.

[8] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 367–379, June 2016.

[9] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “LookNN: Neu-
ral Network with No Multiplication,” in Proceedings of the Conference
on Design, Automation & Test in Europe, pp. 1779–1784, 2017.

[10] Y. W. Q. H. Jiaxiang Wu, Cong Leng and J. Cheng, “Quantized
convolutional neural networks for mobile devices,” IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[11] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and 1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[12] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing Deep
Convolutional Networks using Vector Quantization,” arXiv, Dec. 2014.

[13] CEA-LIST, “N2D2.” https://github.com/CEA-LIST/N2D2. [Accessed:
Dec-2019].

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
pp. 2278–2324, Nov 1998.


