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Abstract—Deep artificial Neural Networks (DNNs) are cur-
rently one of the most intensively and widely used predictive
models in the field of machine learning. However, the computa-
tional workload involved in DNNs is typically out of reach for low-
power embedded devices. The approximate computing paradigm
can be exploited to reduce the DNN complexity. It improves
performance and energy-efficiency by relaxing the need for fully
accurate operations. There are a large number of implementation
options leveraging many approximation techniques (e.g., pruning,
quantization, weight-sharing, low-rank factorization, knowledge
distillation, etc.). However, to the best of our knowledge, a few or
no automated approach exists to explore, select and generate the
best approximate version of a given DNN according to design
objectives. The goal of this paper is to demonstrate that the
design space exploration phase can enable significant network
compression without noticeable accuracy loss. We demonstrate
this via an example based on weight sharing and show that our
direct conversion method can obtain a 4.85x compression rate
with 0.14% accuracy loss in ResNet18 and 4.91x compression
rate with 0.44% accuracy loss in SqueezeNet without involving
retraining steps.

Index Terms—Deep Neural Networks, Approximate Comput-
ing, Model Compression, Weight Sharing, Design Space Explo-
ration, Embedded System, Hardware Accelerator

I. INTRODUCTION

Deep Neural Networks (DNNs) are currently one of the
most widely used predictive tools in the field of machine learn-
ing. They are used today in various applications such as object
recognition, drug discovery and natural language processing,
as well as safety-critical applications like autonomous driving.

Recent DNNs are articulated around the use of multiple
chained convolution layers, called convolutional neural net-
works (CNNs), using a dot product between input and filter.
They also rely on fully-connected layers composing the end
of the network and pooling layers to reduce the dimension
of activation maps, and thus, the number of parameters to
be trained. More recently, Dropout, Batch-normalization were
introduced to permit or to accelerate convergence during
training. Trained parameters are used by convolutional and
fully connected layers (e.g., the 50-layer ResNet [1] network
has around 26 million weight parameters), making these kinds
of layers the main memory needing and the de-facto main
target of most compression methods [2].

Unfortunately, the computational workload and memory
needs of CNNs are often out of reach for low-power embedded
devices [3]. Novel computing paradigms and emerging tech-
nologies are under investigation to make CNNs available for

edge computing. Among them, the Approximate Computing
(AxC) paradigm leverages the inherent resilience of CNNs
to errors to improve energy efficiency, by relaxing the need
for fully accurate operations. CNNs have a high degree of
redundancy in terms of their architecture and parameters,
this redundancy is not necessary for accurate prediction. This
observation has paved the way for several highly recog-
nized approximation techniques [3]. The most popular ones
include pruning [4], quantization [5], low-rank factorization
[6], knowledge distillation [7] and weight-sharing [4]. In this
work, we focus on the weight-sharing technique because of
its remarkable model compression results.

The weight-sharing technique identifies clusters of values
that will be shared between weights (see Section II for
details). In the literature, there are many practical applications
of weight-sharing. Existing works can be divided into two
groups. The first one involves training steps after or during
the weights-sharing, while the second group targets weight-
sharing without retraining. Hashed net [8] proposes to ran-
domly group weights into buckets sharing the same value be-
fore the training step. A more efficient method is presented in
DeepCompression [4], it achieves impressive results due to the
use of various levels of redundancy in deep neural networks
through pruning, clustering, and Huffman coding. Deep K-
means [9] uses regularization terms to encourage weights to
concentrate at retraining time and proposes interesting data
re-shaping techniques optimized for higher data reuse with
row-stationary dataflow [10] at inference time. Soft weight-
sharing [11] uses a simple (re)training step with a regularizer
to efficiently compress the network using pruning and weight-
sharing. It is also possible to reduce complexity by encoding
both weights and features map, then compute multiplications
using a lookup table. Both LookNN [12] and Quantized CNNs
[13] are based on this concept and achieve good results at
inference time, particularly if energy efficiency is taken into
account.

Although retraining the model after compression allows
accuracy loss recovery, there are many reasons to develop
design methods that can largely benefit from clustering without
requiring any further retraining. For example, retraining may
requires access to the full training data that cannot always
possible due to the size of the entire dataset, but also for legal
and privacy compliance reasons. Furthermore, it is a long and
computation-intensive step, and thus, it is costly and can delay



the CNN time-to-market.
This is where conversion algorithms offer an alternative

by working directly on trained models. An example of this
approach can be found in vector quantization [14], where a
clustering approach based on K-means is applied to fully
connected layers of a trained network.

Despite the promising results, all existing approaches suffer
from important limitations: requiring (re)training [8] [4] [9]
[11] [12], [13], or target only fully-connected layers network
[14]. Our goal is to compress a deep neural network target-
ing embedded device constraints. We choose to address this
problem using a systematic exploration to convert a trained
model, without requiring retraining, and targeting both fully-
connected and convolutional layers to leverage redundancies
where they exist.

In the proposed method, model weights are clustered us-
ing the K-means algorithm with a layer-specific number
of clusters. To achieve compression of fully-connected and
convolutional layers of a CNN, we perform a layer-specific
sensitivity analysis of the trained network. Then, a hierarchical
exploration of the design space is exploited to get the final
result. The main contributions of this paper can be summarized
as follows:

1) We propose a method to analyze the sensitivity of
network layers and identifies the good range of clusters;

2) We propose a design space exploration framework
guided by the sensitivity analysis to efficiently compress
the overall CNN.

The rest of the paper is organized as follows: Section II
introduces the concepts and advantages of the weight-sharing
method. Section III describes the proposed method for the
layer sensitivity analysis and the design space exploration,
while section IV presents the results obtained. Finally, section
V concludes the paper.

II. WEIGHT-SHARING APPROXIMATION

As seen in the previous section, deep neural network
approximation can be achieved using different approaches.
Among them, the weight-sharing technique identifies clusters
of weights that will share a common value. Usually, clusters
are identified by using the K-means [15] algorithm. According
to the literature, the K-means based weight-sharing method
achieved outstanding performance compared to other methods
by using a scalar pool of values instead of data-representation
based values [9].

Fig. II shows an example to clarify the benefits of weight-
sharing. The first matrix corresponds to a 5× 5 convolutional

kernel (filter) whose values were computed during training.
The matrix contains N = 25 values in the range from 0 to
20, which can be represented using 5bits, resulting in a total
Size = N ∗ B = 25 ∗ 5 = 125bits. In this example we
identified 5 clusters, namely ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’, replacing
the 25 original values as shown in the second matrix.

Instead of storing each weight value, only the indexes of
the corresponding shared values are required and thus stored
in the memory. Accordingly, the size of the weight matrix
can be reduced from B bits for each value to log2(K) with
K being the number of different shared values. The size of
the network then becomes N ∗ log2(K) + K ∗ B instead of
N ∗B. The main objective of K-means clustering is to reduce
K while still having a good representation of the original data.

Coming back to the example of Fig. II, instead of storing
25 values, we store only the indexes of the clusters. 5 clusters
indexes can be represented using 3bits. The index is finally
used to access shared values in the table (as shown in the fig-
ure) to retrieve the weight value. Accordingly, with 5 clusters
(K = 5), we obtain IndexMatrixSize = N ∗ log2(K) =
75bits and V alueTableSize = K ∗ B = 25bits resulting in
a total Size = 100bits. We can thus save 25 bits with respect
to the original kernel matrix, achieving a 1.25× compression
ratio (CR).

However, choosing the scope of the weight-sharing method
is not obvious. To compress a network, one could try to find
shared values in the whole network or different shared values
for each layer or even reduce further the scope to the channel
or kernel level. In our previous work [16], we found that
working at the level of the layer is enough to achieve a good
compression ratio without inducing substantial accuracy loss.
Accordingly, in this work, we apply weight-sharing at the layer
level.

III. PROPOSED METHOD

This section presents the proposed method for approximat-
ing models using weight-sharing. We need to find out the
suitable number of clusters K to represent the convolution
and fully connected layers weights. Indeed, minimizing K
maximizes the compression rate and maximizing K minimizes
induced accuracy loss. Solving this trade-off is not a simple
task, it involves a complete design space exploration and
computation of the accuracy loss by scoring the network (i.e.,
measuring accuracy of the network using testing data set)
many times. In this work, we propose a hierarchical method
aiming to reduce the complexity of such exploration. The
proposed method is based on a layer sensitivity analysis to
evaluate the weight-sharing opportunity for each layer. The
next subsections detail the main steps.

A. Layer Sensitivity Analysis

Each layer of a deep neural network has a specific role
during the inference (i.e., when the trained CNN is used to
infer/predict the input samples), it is reasonable to assume that
different layers may have a different sensitivity w.r.t weight-
sharing. Some layers can be drastically approximated with a



very small number of clusters without noticeable accuracy
loss, while others are more sensitive and require a larger
number of clusters. Identifying and quantifying the sensitivity
of a particular layer can be achieved by measuring the impact
of clustering that layer on the whole network accuracy. For
each layer, we are varying the number of clusters and then we
study the variation of the accuracy loss over the compression
ratio.

Finding a suitable number of clusters K for each layer can
be done by following the procedure illustrated in Algorithm 1.
For now, we are only using the resulting accuracy loss to
prune the solution space. The appropriate level of clustering
for each layer is then the one that has the smallest impact on
the network accuracy loss.

Algorithm 1: Layer sensitivity identification algorithm
featuring a layer-wise design space exploration

Input: network(Trained Network), minCluster
(integer), maxCluster (integer)

Output: layerK (number of cluster for each layer)
layerK ← list();
for layer in network do

bestAccLoss← None;
for K ← minCluster to maxCluster do

tempNet←K−means(layer,K);
accLoss← score(tempNet, valDataset);
if accLoss < bestAccLoss then

bestAccLoss← accLoss;
bestK ← K;

end
end
layerK[layer]← bestK;

end

This algorithm involves a lot of scoring steps (i.e., network
accuracy evaluation). This could be avoided by stopping the
analysis after reaching a user-defined accuracy loss threshold.
Defining a range of clusters has the benefit of avoiding falling
in local minima. At the cost of having to carefully choose the
cluster number range to obtain satisfying results.

The result of the sensitivity analysis is the range of clusters
number that can be used for each layer. That range will further
be exploited by the proposed design space exploration as
detailed in the next subsection.

B. Design Space Exploration

Fig. 1 sketches the overall flow of the proposed design space
exploration framework. First of all, we start from a trained
network (i.e., the baseline model in the figure). We use trained
models from the open-source framework ONNX [17] model
zoo as input. Allowing our framework to be fully compatible
with any model that can be converted in ONNX format.
And so, any available framework can be used for training.
We are using MXNET [18] for network scoring. Within the
framework, all the layers of the network are processed. The

Fig. 1. Overall flow of the proposed method

result is an approximate network characterized by its accuracy
loss and its compression rate as compared to the baseline.

The developed framework applies the clustering layer by
layer, allowing to solve trade-offs locally, and thus, reduce
the design space complexity. We call this method hierarchical
exploration because in our study layers are arranged by rank,
i.e., meaning the order in the network from input to output. We
used a greedy algorithm to choose the best number of clusters
based on the accuracy loss.

For each solution, we thus need to score the approximate
network on the testing set to quantify the accuracy loss. We
then use a greedy approach to choose the best number of
clusters for each layer, aimed at minimizing the accuracy
loss. The identification of the best number of clusters is done
accordingly to the sensitivity analysis step outcomes. This will
reduce the overall number of evaluation since the number of
clusters have been already identified and here refined when
taking account the overall CNN. Each identified solution (i.e.,
each compressed CNN) is finally evaluated by computing the
compression ratio and by the accuracy loss induced by the
clustering w.r.t. the baseline model.

IV. EXPERIMENTS

In this section, we will first describe the framework and the
experimental setup used to evaluate our compression method
on existing CNNs and the results we obtained.

A. Experimental Setup

The experiments target large image classifier CNNs trained
and tested using the LSVRC2012 [19], a popular dataset
having a testing set of 50k images (50 images per class). The
chosen CNNs are ResNet [1] for its near state-of-the-art classi-
fication accuracy and SqueezeNet [20] for its implementation-
oriented approach that includes a relatively small number of
parameters. We took the trained model from the ONNX model
zoo and fed directly to our weigh-clustering framework as
input. The following subsection describes results on ResNet
and Squeezeneet. Both are designed for the ImageNet dataset
and resize the image to 224x224 and have a 1000 class
output. ResNet-18 reaches a top-1 accuracy of nearly 69.69%



while SqueezeNet reaches 55.99%. We are working on a
full precision model (i.e., network weights are stored using
32 bit floating point representation) without using reduced
quantization or fixed-point representation.

All the experiments were executed on a server equipped
with a single NVIDIA TESLA V100 GPU and the latest
CUDA version of MXNET [18] for the network scoring
task. We are using the latest version of ResNet18 and
SqueezeNetV1.1 from one model zoo as an input network.
Scoring one network on the 50 000 pictures Imagenet testing
data set take respectively 80s and 50s. From this data, it is
clear that the scoring of the model to compute accuracy is
an intensive task and it corresponds to the bottleneck of the
proposed framework. This is why the sensitivity analysis plays
an important role because it already provides a reduced set of
clusters to be further refined (i.e., modified). In this sense, we
can save execution time because we can reduce the overall
number of scoring tasks.

The following subsection presents the results obtained using
the proposed approach on both ResNet and SqueezeNet.

B. Identifying a Layer Sensitivity

For a given input network we are looking to measure the
resilience to the approximation of each layer. To achieve this
task, we are monitoring the accuracy loss and the compression
rate induced by weight sharing when the number of clusters
varies.

Compression rate (CR) is calculated for each layer using
the following formula:

CR =
baselineModelMemory

approximatedModelMemory

=
W ∗B

W ∗ ceil(log2(K)) +K ∗B

(1)

Having W the number of weights of the layer, K the
number of clusters of the approximated layer and B the
number of bits used to represent a single value. We have a
direct impact of K variation on the compression rate.

Fig 2 shows the accuracy loss related to the compression
rate for each cluster number (K). We have seen previously that
we have a direct impact of cluster number on compression rate
but this is not true for the accuracy loss, which largely depends
on the clustering results representing data. For a different
number of clusters, the distance between clusters centroid and
original data representation varies drastically. For the example
the figure, we are varying the number of clusters used in the
K-means algorithm from 20 to 60 with a step of 2. The gap
in compression rate value between the two groups of points
is explained by K crossing a threshold allowing the index
value (ceil(log2(K))) to be represented with one bit less. For
example, moving from 256 to 255 different clusters allow
lowering the index bit from 9 to 8 bit, which has a large
impact on the compression rate, because this index bit count
is multiplied by the number of weight of the layer. We can
observe some clusterized version of the layer that has better

Fig. 2. Sensitivity Analysis: Accuracy loss and compression rate of different
version of the Layer 28 of SqueezeNet, the range of value for K is from 20
to 60

accuracy than the baseline layer (negative accuracy loss, like
K = 45). These unexpected improvements of the accuracy
might be due to the fact that training step fall into a local-
minima.

The Pareto front represents optimal points. From this set
of pareto optimal K, applying the Greedy discrimination
algorithm results in selecting the one with the lowest accuracy
loss. In the example of Fig. 2, the best solution is the one
with 48 clusters, which also lead to achieve a better accuracy
compared to the baseline model.

Fig. 3 shows the number of clusters achieving the best
accuracy for each layer of the network and the corresponding
compression rate of the layer. Layers are ordered by size
(number of weight). We can see 3 layers with higher com-
pression opportunity (more resilience to high clustering) for
ResNet and 4 for SqueezeNet. From the results depicted in
Fig. 3, we set the range of the number of clusters from 20 to
60 (corresponding to the minim and maximum plotted in the
histograms). This range is used as input for our hierarchical
design space exploration framework.

C. Hierarchical Design Space Exploration

The results of the proposed framework are presented in
Table I. Each row of the table corresponds to an experiment.
For each experiment, we detail the Network topology, the
Cluster Range and the type of experiment (column “Keep layer
Bool”). Two types of experiments were carried out:

1) The results of the sensitivity analysis are not considered
during the exploration (ID 1 to 4);

2) The results of the sensitivity analysis are considered
during the exploration (ID 5 to 8).

For each experiment, we considered the Accuracy loss of the
AxC model w.r.t. the top-1 of the baseline model. Finally, we
reported the memory footprint in MegaBytes for the Baseline
and AxC model. The Compression Ration (CR) is the last
column The Cluster Range set 20 to 60 is determined from
the sensitivity analysis. The second one 40 to 80 is used to



Fig. 3. Network sensitivity to clustering, layer-wise analysis on ResNet and SqueezeNet, layer are ordered by number of weights

variate the results of the sensitivity analysis and explore other
solutions.

The results have shown that better results in terms of
memory compression are obtained by using the range 20 to
60 thus confirming the efficiency of the sensitivity analysis.
For these cases, higher CR leads to lower accuracy loss that
was expected.

Another interesting result is the comparison between the
type of experiments confirming once again the importance of
the sensitivity analysis. For ID 5 we got 5.80% against ID 1
of 5.71%. However, CR is not the only important point. Even
if we got a higher CR, the accuracy loss is lower (thus better).
Again for ID 4, we got an accuracy loss of 0.54% while for
ID 1 we got 0.73%.

To conclude, the best results either in terms of CR or
accuracy loss are obtained when cluster range came from
results of sensitivity analysis corresponding to IDs 1, 3, 5 and
7. Concerning the type of experiments, we got for one case
(ID 5) the best result compared to ID 1. On the other hand, for
experiment ID 7, obtained accuracy and compression rate are
slightly lower than ID 3 meaning that keeping layer weights
clustered during the next layers analysis is efficient in this
case. We plan in our future works to check other directions
for the design space exploration. More details are given in the
next section.

Analyzing the resulting approximated networks we discover
that storing values represent less than 1% of the memory
occupation after clustering. As shown in Fig 4, the value table
(i.e., weight values stored in the look-up table) is negligible
compared to the index table representing the memory of
each layer for a SqueezeNet after optimization using our
hierarchical exploration method.

V. CONCLUSION AND FUTURE WORK

This paper presented our work towards a design space
exploration method for compressing trained deep neural net-

Fig. 4. Layer compression analysis for SqueezeNet

works. We have shown that our method can sucessfully
compress a deep neural network with very small accuracy
loss. Reaching around 5x compression with less than 1% top-
1 accuracy loss. The most important advantage is the fact that
our approach is a one-shot conversion, and thus, we can avoid
the prohibitive cost and constraints tied to network retraining.

We intend to continue our work on approximating deep
neural networks by first exploring other design space param-
eters for the weight sharing compression. More in detail, our
approximation method includes several parameters that can be
explored to produce different solutions:

1) The order of exploration: Layers can be treated in
different orders, the more intuitive method is to process
layers in a topological order (i.e., from the input to the
output). Alternatively, they can also be sorted by ascend-
ing or descending weights count, aiming to address first
the layer with the highest compression opportunity and
then recover accuracy loss with the others.

2) The candidate number of clusters: Defined as a range



TABLE I
COMPRESSING RESNET AND SQUEEZENET ON IMAGENET

ID Network #Cluster Range Keep layer Baseline Model AxC Model Accuracy loss Baseline Model AxC Model CR
[min, max, step] Bool top-1 (%) top-1 (%) top-1 (%) memory (Mb) memory (Mb)

1 ResNet18 [20, 60, 1] True 69.69 68.95 0.73 356.4 62.4 5.71
2 ResNet18 [40, 80, 1] True 69.69 69.55 0.14 356.4 73.5 4.85
3 SqueezeNet [20, 60, 1] True 55.99 54.69 1.30 37.6 6.9 5.44
4 SqueezeNet [40, 80, 1] True 55.99 55.52 0.44 37.6 7.7 4.91
5 ResNet18 [20, 60, 1] False 69.69 69.15 0.54 356.4 61.5 5.80
6 ResNet18 [40, 80, 1] False 69.69 69.13 0.56 356.4 69.8 5.11
7 SqueezeNet [20, 60, 1] False 55.99 53.58 2.41 37.6 7.1 5.30
8 SqueezeNet [40, 80, 1] False 55.99 54.74 1.25 37.6 8.0 4.70

of values, described by min, max, and step. It can be
either the same for all layers of a network or specific
and depends on layer size. It can even be a logarithmic
scale, considering that for a sufficiently high number of
clusters, a slight change in cluster count has a negligible
impact on the accuracy loss of the network.

We then address performance and hardware metrics. By
using a different algorithm for choosing parameters, because
we rely on a greedy algorithm taking only the accuracy loss
into account. Target metrics are firstly deep neural network-
specific metrics like accuracy loss and compression rate,
secondly performance metrics like throughput rate and latency
and thirdly hardware-oriented metrics like energy consumption
and surface used in case of FPGA implementation. We also
intend to add parameters like K-means initialization and layer-
specific cluster range. Allowing the design space to be en-
larged and explore potentially better parameter combinations.

Finally, we will extend the framework to support different
approximation strategies such as pruning, quantization, low-
rank factorization, knowledge distillation, etc.. As the use of
a combination of orthogonal approximation methods allows
more levels of redundancy inherent to neural networks to be
leveraged.
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