
HAL Id: lirmm-03059686
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03059686v1
Preprint submitted on 12 Dec 2020 (v1), last revised 17 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inequalities for space-bounded Kolmogorov complexity
Peter Gács, Andrei Romashchenko, Alexander Shen

To cite this version:
Peter Gács, Andrei Romashchenko, Alexander Shen. Inequalities for space-bounded Kolmogorov
complexity. 2020. �lirmm-03059686v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03059686v1
https://hal.archives-ouvertes.fr

ar
X

iv
:2

01
0.

10
22

1v
1

 [
cs

.I
T

]
 2

0
O

ct
 2

02
0

Inequalities for space-bounded Kolmogorov

complexity*

Peter Gács†, Andrei Romashchenko‡, Alexander Shen§

Abstract

There is a parallelism between Shannon information theory and algorithmic information

theory. In particular, the same linear inequalities are true for Shannon entropies of tuples of

random variables and Kolmogorov complexities of tuples of strings (Hammer et al., 1997),

as well as for sizes of subgroups and projections of sets (Chan, Yeung, Romashchenko,

Shen, Vereshchagin, 1998–2002). This parallelism started with the Kolmogorov–Levin

formula (1968) for the complexity of pairs of strings with logarithmic precision. Longpré

(1986) proved a version of this formula for space-bounded complexities.

In this paper we prove an improved version of Longpré’s result with a tighter space

bound, using Sipser’s trick (1980). Then, using this space bound, we show that every

linear inequality that is true for complexities or entropies, is also true for space-bounded

Kolmogorov complexities with a polynomial space overhead.

*Authors want to thank the members of the ESCAPE team (especially Ruslan Ishkuvatov for the help with the

proof of Lemma 1), participants of the Kolmogorov seminar (Moscow) and Algorithmic Randomness workshop

for discussions.
†Boston University, gacs@bu.edu, ORCID 0000-0003-2496-0332
‡LIRMM, University of Montpellier, CNRS, Montpellier, France and IITP RAS, Moscow (on leave),

https://www.lirmm.fr/~romashchen/, andrei.romashchenko@lirmm.fr, ORCID 0000-0001-7723-7880.

Supported by ANR-15-CE40-0016 RaCAF grant
§LIRMM, University of Montpellier, CNRS, Montpellier, France and IITP RAS, Moscow (on leave),

www.lirmm.fr/~ashen, alexander.shen@lirmm.fr, ORCID 0000-0001-8605-7734. Supported by ANR-15-

CE40-0016 RaCAF. Part of the work was done while participating in the American Institute of Mathematics Work-

shop on Algorithmic Randomness (August 2020)

1

http://arxiv.org/abs/2010.10221v1
https://www.lirmm.fr/~romashchen/
www.lirmm.fr/~ashen

1 Space-bounded Kolmogorov complexity

Kolmogorov in his seminal paper of 1965 [4] defined the complexity of a finite string as the

minimal length of a program that produces this string:

CI(x) = min{|p| : I(p) = x}.

Here I is a machine (considered as an interpreter of some programming language) and p is a

binary string (considered as a program without input). In a similar way Kolmogorov defined

CI(y|x), the conditional complexity of y given x, as the minimal length of a program that trans-

forms x to y:

CI(y|x) = min{|p| : I(p,x) = y}.

In this case the interpreter I has two arguments (considered as a program and an input for this

program).

Since there is an interpreter that is optimal to within an additive constant, these functions can

be considered as an intrinsic property of the strings involved—their individual information con-

tent. Their relation to the entropy of probability distributions is well established: in particular it

is shown in [3] that the same linear inequalities hold for both.

To information theorists, the uncomputability of the complexity functions may obscure

somewhat their combinatorial significance. A natural approach to the question is to consider

versions of Kolmogorov complexity in which the interpreter has some resource (time, space)

bounds. However, the basic inequalities for these resource bounded versions become more

complex, with different resource bounds on the two sides. The present paper shows a way to

overcome these difficulties, on the example of space bounds (see the remarks after Theorem 4).

Each linear inequality holding for entropies holds also for many space-bounded versions of

Kolmogorov complexity: the space bound can be chosen from a dense infinite hierarchy of

possibilities.

Kolmogorov was aware of these issues: in the last paragraph of [4], he writes that the

description complexities introduced above:

“. . . have one important disadvantage: They do not take into account the difficulty of

transforming a program p and an object x into an object y.1 Introducing necessary

definitions, one can prove some mathematical statements that may be interpreted as

existence of objects that have very short programs, so their complexity is very small,

but the reconstruction of an object from the program requires enormous amount of

time. I plan to study elsewhere2 the dependence of the necessary program com-

plexity Kt(x) on the allowed difficulty t for its transformation into x. Then the

complexity K(x) as defined earlier will be the minimum of Kt(x) for unbounded

t.”[4, p. 11]3.

1The English translation mentions the “difficulty of preparing a program p for passing from an object x to an ob-

ject y”. However, the original Russian text is quite clear: Kolmogorov speaks about complexity of decompression,

not compression.
2Unfortunately, Kolmogorov did not publish those “mathematical statements” about resource-bounded com-

plexity (though he gave some talks on this topic), and his ideas about algorithmic statistics, as the subject is known

now, were understood only much later. It turned out that the dependence of Kt(x) on t (if the resource bound

t is measured in “busy beaver units”) gives, for every string x, some curve that can be equivalently defined in

terms of Kolmogorov structure function, (α,β)-stochasticity, or two-part descriptions. See [13, 14] for a survey of

algorithmic statistics.
3Kolmogorov used the notation K(x) for complexity function; now it is usually denoted by C(x), while the

notation K(x) is used for the so-called “prefix complexity”. We follow this convention.

2

Defining Ct(x) and Ct(y|x) as the minimal length of the programs that generate x or trans-

form x to y with resource bound t, we need to fix some computational model and the exact

meaning of the resource bound. It is natural to consider time-bounded or space-bounded compu-

tations. The study of time-bounded complexity immediately bumps into P vs. NP problem [6, 7],

so in this paper we consider only the space-bounded version of complexity.

We need to fix some computational model. For technical reasons, it is convenient to use

machines that have one-directional read-only input tapes (with end markers), one-directional

write-only output tape, and two binary stacks as memory devices. All these devices are con-

nected to the finite-state control unit. The alphabet is binary, and the sum of the stack lengths is

considered as the amount of memory used. Note that two stacks are equivalent to a finite tape

that can be extended by inserting an empty cell near the head of the Turing machine (stacks

correspond to the parts of the tape on the left and on the right of the head). We will refer to this

combination of stacks as “work tape” in the sequel.

One could consider other models (say, multitape Turing machines) and other ways of pro-

viding inputs and generating outputs. For example, the input and output can be written on a

work tape. This changes the space complexity: simulation of one model by another one re-

quires some overhead. In our example, if we do not consider separate input and output tapes,

we need to allocate space for input and output on the work tape, and the overhead is propor-

tional to the input/output size. If we consider machines with a different number of tapes, the

simulation of space s computation with large number of tapes on a machine with a smaller

number of tapes requires s+O(logs) space (we need to combine the information from differ-

ent tapes, and the information about the head position and the length of the used part of each

simulated tape requires O(logs) bits). The same is true for simulations on the insertable tape (=

two stacks). Most of our results are insensitive to these differences since we will allow O(logs)
and O(input/output length) increase in the space bounds anyway. Still for some arguments it is

convenient to use separate one-directional input/output tapes and two stacks.

Definition 1. Let I be a machine of the described type with two one-directional read-only input

tapes, one one-directional write-only output tape and two binary stacks. We say that Is(p,x) = y

if machine I with inputs p and x produces y and the amount of used memory does not exceed s

during the computation. We define the conditional space-bounded Kolmogorov complexity as

Cs
I(y|x) = min{|p| : Is(p,x) = y}.

The unconditional version is obtained when the condition is an empty string.

Then, as usual, we need a version of the Kolmogorov–Solomonoff universality theorem

that says that there exists an optimal machine making the complexity minimal. Now the space

bounds should be taken into account, and for our model O(1) additional space is enough:

Proposition 1. There exists an optimal machine V such that for every machine P there exists a

constant c such that

Cs+c
V (y|x)6 Cs

P(y|x)+ c

for all x,y.

Proof sketch. As usual, consider a universal machine U(r, p,x) that can simulate the behavior

of an arbitrary machine (an arbitrary finite-state program for the control unit) knowing its de-

scription r, for arbitrary inputs p,x:

U(r, p,x) = Mr(p,x).

3

Here r is a binary string that describes some machine Mr.

The construction of the optimal machine goes as usual. Let us double each bit in r and

denote the result by r. Then the required optimal machine V is defined in such a way that

V (r01p,x) =U(r, p,x) = Mr(p,x).

This guarantees, if r is the description of machine P (i.e., Mr = P), that

CV (y|x)6 CP(y|x)+2|r|+2,

but now we have to care about the space bounds and should specify in more detail how the

machine V works. It starts with copying the description r onto the work tape with low density

(say, using one cell out of two), so the remaining cells can be used for the auxiliary computations.

This part of the tape is a “simulation block” that is moved along the tape; this block also has

some zone that keeps the current internal state of the simulated machine, and some free space of

fixed size needed for the local computations of the simulation (comparison of the current state of

simulated machine with the transition table, etc.). Then the actions of machine P are simulated

step by step, using the computations inside the simulation block, while the tape outside the

simulation block is exactly the same as the tape for P. Note that we have one-sided input tapes,

so after reading all bits of r01 in r01p the input tape behaves exactly as for the input p of P.4

Therefore, the space used is the space used by P, plus the size of the simulation block (that

depends on r but not on p or x).

Now we fix some optimal machine V , call the corresponding function Cs
V (y|x) the space-

bounded Kolmogorov conditional complexity function and denote it by Cs(y|x). The uncon-

ditional space-bounded complexity Ct(x) can be defined then as Ct(x|ε) for empty condition

ε .

2 Space-bounded complexity of pairs

The Kolmogorov–Levin theorem (formula for the complexity of pairs) says that

C(x,y) = C(x)+C(y|x)+O(logC(x,y)).

Here C(x,y) is the complexity of a pair of strings that is defined as the complexity of some

computable encoding for it. For the unbounded complexity the choice of encoding is not im-

portant, since any computable transformation changes the unbounded complexity only by an

O(1) additive term. For the space-bounded version this is no more the case, and we define the

complexity Cs(x,y) as Cs(x01y).

Proposition 2.

Cs+O(|x|+|y|)(y,x)6 Cs(x,y)+O(1)

for all s,x,y.

As usual, this means that there exists some c such that Cs+c(|x|+|y|)(y,x) is bounded by

Cs(x,y)+ c for all s, x, and y.

4For two-sided input tapes we would have a problem: during the simulation the machine should know when it

reaches the left end of p (and symbols 01 could appear anywhere in p).

4

Proof sketch. Consider the optimal machine, and modify it by transforming the output: if it

were x01y, now it should be y01x. Then we use the Kolmogorov–Solomonoff theorem to com-

pare the complexity functions for this modified machine and the optimal one, and get the re-

quired inequality with O(1) precision. However, we need to estimate the space overhead caused

by the output transformation. First, instead of writing the pair x,y on the output tape, we need

to keep it in a special zone on the work tape that is carried along the tape with the head. In our

model with “insertable tape” (or two stacks) this is easy. Note that we do not need to know in

advance the output size, since we can enlarge this zone when necessary; this is the advantage of

the insertable tape.5 Then we should copy x,y from this zone to the output tape in the reversed

order, doubled bits for y and 01 separated. The maximal size of the special zone is O(|x|+ |y|),
as claimed.

The formula for the complexity of pairs consists of two inequalities: one in each direction.

The first is almost straightforward:

Proposition 3.

Cs+O(|x|+|y|)(x,y)6 Cs(x)+Cs(y|x)+O(logCs(x)).

Note the general structure of this statement: we consider an arbitrary bound s on the right-

hand side, and on the left side we have to use a slightly bigger bound (for our model s+O(|x|+
|y|) is enough).

Proof sketch. Let p and q be the minimal programs for x and for x 7→ y. Then the pair (x,y)
can be described by a string l01pq where l is the length of p in binary. The decoding machine

first reads l and stores it in the special zone, then reads and stores p (knowing its length), and

then simulates the program p, carrying the special zone around the head position, and keeping

the output bits (i.e., x) in the special zone. Then it reads and stores also q and simulates the

computation of q using the bits of x instead of the input bits. The space overhead is then

O(|p|+ |q|+ |x|), and there is some subtle (though trivial) problem: for small s we cannot

guarantee that |p|+ |q|6 O(|x|+ |y|), so the space overhead (that includes |p|+ |q|) may not be

O(|x|+ |y|). However, if |p|+ |q| significantly exceeds |x|+ |y|, then we may use the inequality

CO(|x|+|y|)(x,y)6 |x|+ |y|+O(log |x|) instead.

Another subtle but trivial remark: we can replace O(logCs(x)) by O(logCs(x,y)) on the

right-hand side. It is subtle, because we cannot bound Cs(x) by Cs(x,y) with exactly the same s

— and trivial, since for the “paradoxical” case Cs(x,y)<Cs(x) the entire inequality is obviously

true.

The other direction is more difficult (both for unbounded and space-bounded complexity).

Theorem 1. For all strings x,y and numbers s we have

Cs′(x)+Cs′(y|x)6 Cs(x,y)+O(logCs(x,y)) (1)

for s′ = s+O(logs)+O(|x|+ |y|).

Here we use the notation s′ for the space bound on the left-hand side to avoid repetitions.

The exact meaning of this statement: there exists a constant c such that for all x,y,s we have

Cs′(x)+Cs′(y|x)6 Cs(x,y)+ c logCs(x,y) for s′ = s+ c logs+ c(|x|+ |y|).

5A similar argument for standard Turing machines would give additional O(logs) overhead.

5

Longpré [6, Theorem 3.13, p. 35] proved essentially6 the same result with 2s+O(logs)
instead of s+O(logs); in his paper he uses 3s, but his argument gives 2s+O(logs) without

changes. We improve this bound using Sipser’s technique from [12].

Proof sketch. To prove this result, we need to look at the standard argument and see what

changes are necessary for the space-bounded version. This was done in [6]. The standard

argument goes as follows. Assume that C(x,y) = m. Then we consider the set of all pairs

〈x′,y′〉 such that C(x′,y′) 6 m. They can be enumerated, and there are O(2m) of them. Our

pair 〈x,y〉 is an element of this set. Count the pairs 〈x,y′〉 in this set that have the same first

coordinate x. Assume that we have about 2k of them for some k, choosing k in such a way that

the number of pairs is between 2k and 2k+1. Note that y can be reconstructed from x if we know

the ordinal number of y in the enumeration of pairs 〈x,y′〉 in this set (this requires k+O(1) bits)

and know m (so we can start the enumeration). In total we get O(logm)+ k bits (including

the separation overhead), so C(y|x) 6 k+O(logm). On the other hand, we can enumerate all

x′ such that there are at least 2k different y′ such that C(x′,y′) 6 m; there are at most O(2m−k)
of them, and x appears in this enumeration. So we can specify x by the ordinal number in the

enumeration (m− k +O(1) bits), and also the m and k needed for the enumeration. The total

number of bits is O(logm)+m− k, therefore C(x) 6 m− k+O(logm). (Note that k 6 m, so k

also has a prefix-free encoding of size O(logm).) Combining the bounds for C(x) and C(y|x),
we get the desired result.

The enumeration used in this argument needs a lot of space, since the lists of enumerated

objects are exponential in m. However, another approach is possible: knowing the space bound

s, we can compute the value of Cs(u) by trying all programs of size at most |u|+O(1) and

choosing the minimal one that produces u. We need to keep the current program we are trying,

and for that we need O(|x|+ |y|) space. Also for each program we have to check whether

it produces u with space bound s. What space do we need to perform this check? We need

O(logs) bits to remember the space bound s. Then we simulate the program, but should prevent

it from going into an infinite loop. The simplest way to avoid loops is to keep a step counter:

if we made more than 2s+O(logs) steps while using only space s, then some configuration has

appeared twice, so we are in a loop and the current program can be rejected. To keep the counter,

we need additional space of size s+O(logs), so in total we need 2s+O(logs)+O(|x|+ |y|)
space.

Then, instead of enumerating all pairs 〈x,y〉 with C(x,y) 6 m (in some order), we just con-

sider them in some standard ordering. We consider (in this ordering) all pairs of strings 〈x′,y′〉
with |x′|, |y′| 6 n, where n is an upper bound for the lengths of x and y. For each pair we may

check in space 2s+O(logs)+O(n) if Cs(x,y) 6 m. Also, for each x′ of length n we may enu-

merate all y′ such that Cs(x′,y′) 6 m in the standard ordering, and count them, so we know

whether their number exceeds the threshold 2k. We made a lot of checks, but we never keep

the results of these tests, performing them again when needed, and reuse the space. In this way

we prove the inequality (1) for s′ = 2s+O(logs)+O(|x|+ |y|), and with an additional term

O(logs) on the right-hand side (as now s is needed to start the enumeration process).

Now we improve the argument, getting rid of the factor 2 and the O(logs) additional bits in

the description. First let us explain how the factor 2 can be avoided using the following result

that goes back to [12]:

Proposition 4 (Sipser). Let M be a machine. Then there is a machine M that decides, given a

string x and number s, whether M terminates on input x in space s. Machine M uses at most

6His setting is a bit different: s is not a numerical parameter, but a function of the input size, so the exact

comparison is difficult.

6

s+O(logs)+O(|x|) space working on pair x, s.

Note that since the allowed space overhead is O(logs) + O(|x|), there is no problem of

keeping x and the binary representation of s in the memory. Note also that after we checked the

termination, we can restart the computation of M and get the output of M on x within the same

space bound.

Proof sketch. It is convenient to use the model with two stacks (though the result is valid for

ordinary multitape machines since it allows O(logs) overhead). We may assume without loss

of generality that machine M clears its stacks when terminates (the old final state is now a

cleaning state that pops elements from the stacks until both are empty). Let us consider all

configurations of M that use space at most s. We need to check whether a (unique) path starting

from the initial configuration gets into the final one. We can do it backwards. Consider the tree

whose root is the (unique) final configuration and the children of vertex S are configurations

that are transformed to S in one step. Since M is deterministic, each vertex has only one parent.

We get a tree of all configurations leading to termination (configurations belonging to loops are

not in the tree). The termination question can be now reformulated as follows: is the initial

configuration in the tree? To answer this question, one can traverse the tree in a one of the usual

ways: depth-first search. Note that the standard (non-recursive) algorithm for this (see, e.g., the

textbook [10, Chapter 3]) does not use any additional memory, and the basic operation (going to

the parent, going to the oldest child, going to the next sibling, etc.) can be performed with O(1)
space. In our case we also need to keep track of the configuration size (since we do not consider

configurations that require more than s space), but this can be done in O(logs) memory, and the

comparison with the initial configuration requires O(|x|) memory.

Sipser’s trick allows us to check whether a given pair 〈x′,y′〉 has s-bounded complexity at

most m in space s+O(logs)+O(|x′|+ |y′|)+O(m) (by trying all programs up to size m and

checking whether they produce this pair in space s). Then, using the argument described above,

we get (1) for s′ = s+O(logs)+O(|x|+ |y|) and with an additional term O(logs) in the right

hand side. Note that we may assume that m = C(x,y) = O(|x|+ |y|), otherwise (1) is true for

trivial reasons.

To get rid of the O(logs) term we need to change the enumeration order. Instead of enu-

merating for some fixed s all pairs 〈x,y′〉 such that Cs(x,y′) 6 m, we do it sequentially for

s = 1,2,3, So all pairs with C(x,y′) 6 m will be enumerated at some stage (but to choose

the value of k we still count the pairs such that Cs(x,y′)6 m for the given value of s). For each

s we skip the pairs 〈x,y′〉 that were enumerated with space s− 1, so every pair is enumerated

only once. To do this, during the enumeration process we perform the space-bound complexity

check twice: for s and s− 1. Note that the space used for the checks can be reused, so we

do not need more space for this. Now the enumeration process potentially requires unbounded

space, but since we wait for the pair 〈x,y〉 (knowing its ordinal number and waiting until the

element with this ordinal number appears), the actual space used in the process will be still

s+O(logs)+ (|x|+ |y|). Indeed, this pair will appear at the stage while current space bound

reaches s (or earlier).

The same reasoning works for C(x): we enumerate elements x′ that have large sections (have

many y′ such that Ks(x′,y′) 6 m), and do it sequentially for s = 0,1,2, . . ., omitting elements

that appeared already for space bound s−1. Again we enumerate all x′ that have large sections

for unbounded complexity, using more and more space, and again x appears at the stage when

the current space bound is s (or less), and at this stage the space used by the computation is

s+O(logs)+O(|x|+ |y|).
Theorem 1 is proven.

7

3 Basic inequalities: space-bounded version

We have defined space-bounded complexity for pairs. In the same way (and with the same pre-

cision) one can define the complexity of triples, and, in general, m-tuples for every fixed m. In

the section we prove space-bounded versions of the so-called basic inequalities for Kolmogorov

complexity.

The basic inequality involves complexities of triples and says (in the unbounded version)

that

C(x)+C(x,y,z)6 C(x,y)+C(x,z)+O(logn)

if x,y,z are strings of length at most n. Usually it is proved by considering conditional complex-

ities:

C(x,y) = C(x)+C(y|x)+O(logn),

C(x,z) = C(x)+C(y|x)+O(logn),

C(x,y,z) = C(x)+C(y,z|x)+O(logn).

Then the inequality can be rewritten as

C(y,z|x)6 C(y|x)+C(z|x)+O(logn),

and this is a relativized version of the inequality for the complexity of pairs. Let us do this is

more detail to see how the space-bounded version can be proven. We have

Cs′(x)+Cs′(y|x)6 Cs(x,y),

Cs′(x)+Cs′(z|x)6 Cs(x,z),

for some s′ slightly larger than s (we omit the logarithmic terms O(logn) in the inequalities), so

2Cs′(x)+Cs′(y|x)+Cs′(z|x)6 Cs(x,y)+Cs(x,z).

From this we conclude that

2Cs′(x)+Cs′′(y,z|x)6 Cs(x,y)+Cs(x,z),

for some s′′ slightly exceeding s′, and then

Cs′(x)+Cs′′′(x,y,z)6 Cs(x,y)+Cs(x,z).

For uniformity we can replace s′ by s′′′ on the left-hand side. Here s′′′ is the third iteration of

adding overhead, so still

s′′′ = s+O(logs)+O(n),

and we get the following space-bounded version of basic inequality:

Theorem 2 (Space-bounded basic inequality).

Cs′(x)+Cs′(x,y,z)6 Cs(x,y)+Cs(x,z)+O(log |x|+ log |y|+ log |z|)

for all strings x,y, for all numbers s, and for

s′ = s+O(logs)+O(|x|+ |y|+ |z|).

(The constants in the O-notation do not depend on x,y,s.)

More general inequalities (called also basic) are obtained if we replace x,y,z by tuples of

strings; they are easy corollaries of Theorem 2 (converting the tuples into their string encoding

and vice versa can be done in O(n) space for strings of size at most n).

8

4 Shannon inequalities: iterations

Fix some integer k > 1; let x1, . . . ,xk be some strings. For each I ⊂ {1, . . . ,k} we consider the

tuple xI made of strings xi with i ∈ I. In this notation, the basic inequalities mentioned above

can be written as

Cs′(xI∩J)+Cs′(xI∪J)6 Cs(xI)+Cs(xJ)+O(logn),

if all x1, . . . ,xk are strings of length at most n and s′ = s+O(logs)+O(n). (The constants in the

O-notation may depend on k, I,J but not on n, x1, . . . ,xk, s.)

Taking the sum of several basic inequalities (for the same k, but for different I and J), we

may get other linear inequalities for the complexities of tuples, i.e., inequalities of the type

∑
I⊂{1,...,k}

λI C(xI)> 0

where λI are some real coefficients. This is a well known procedure for unbounded Kolmogorov

complexity [11, Chapter 10]; the resulting linear inequalities are called Shannon inequailites.

Not all linear inequalities that are true with logarithmic precision are Shannon inequalities (an

important discovery made in [15]).

In this section we show that every Shannon inequality has a space-bounded version. To for-

mulate this version, let us separate the positive and negative coefficients in the linear inequality

(the corresponding groups are L,R ⊂ {1, . . . ,k}; we assume that L∩R = ∅). Now the general

form of a linear inequality for complexities of tuples is

∑
I∈L

λI C(xI)6 ∑
J∈R

µJ C(xJ) (2)

where all λI and µJ are non-negative. The following theorem says that each Shannon inequality

has a space-bounded counterpart of the same form as for the basic inequalities (but with slightly

weaker space bound).

Theorem 3. Consider a linear inequality of the form (2) that is a linear combination of ba-

sic inequalities (is a Shannon inequality). Then the following space-bounded version of this

inequality is true:

∑
I∈L

λI Cs′(xI)6 ∑
J∈R

µJ Cs(xJ)+O(logn), (3)

if x1, . . . ,xk are strings of length at most n, and s′ = s+O(n2 logn)+O(n logs).

Here the constants in the O-notation depend on the inequality (and k), but neither on n nor

on x1, . . . ,xk.

Proof sketch. One could just add up the space-bounded versions of the basic inequalities to get

the desired inequality, but the problem is that in the resulting inequality of type (3), L and R are

not disjoint: the same complexity may appear on both sides. For the unbounded complexities,

these terms just cancel each other, and we get the desired Shannon inequality. However, by

adding the space-bounded versions of the same basic inequality, we get an inequality where

the complexity of the same tuple may appear with the same coefficient on both sides, but with

different space bounds:

∑
I∈L

λI Cs′(xI)+ ∑
K∈C

σK Cs′(xK)6 ∑
J∈R

µJ Cs(xJ)+ ∑
K∈C

σK Cs(xK)+O(logn),

9

Here xK are tuples that appear on both sides with the same coefficients σK (the terms that

are canceled in the unbounded version), but now they have bound s′ on the left-hand side and s

on the right-hand side, and cannot be canceled anymore.

The following trick helps. Let f (s) = s+O(logs)+O(logn) be the function that transforms

the right-hand side bound s to the left-hand side bound s′ (here s is a variable, while n and the

constants in the O(·)-notation are fixed). Consider the sequence of space bounds

u0 = s,u1 = f (u0), . . . ,uN = f (uN−1)

for some large N. All tuple complexities can only decrease if we increase the space bound from

uk to uk+1. Therefore, for a large enough N, namely, N = O(n) with a large enough constant,

we guarantee the existence of k such that all complexities of tuples are the same with bounds uk

and uk+1. Then we can add the space-bounded inequalities and cancel the common terms as we

did for the unbounded version. More precisely, we get

∑
I∈L

λI Cuk+1(xI)+ ∑
K∈C

σK Cuk+1(xK)6 ∑
J∈R

µJ Cuk(xJ)+ ∑
K∈C

σK Cuk(xK)+O(logn),

and on both sides uk can be replaced by uk+1 due to our assumption. So we can cancel the

common terms. We do not know k for which there is no change in the complexities, but we can

replace the bound on the left-hand side by uN , and on the right-hand side by s = u0.

It remains to show that for N = O(n) the nth iteration of function f started with s gives us

at most s+O(n2 logn)+O(n2 logs).
The required bound is an easy corollary of the following lemma:

Lemma 1. Let f (s) = s+ logs+ k, and f (n)(s) be the nth iteration of f , i.e., f (2)(s) = f (f (s)),
etc. Then

f (n)(s)6 s+n logs+O(kn logn)+O(n logn)+O(1)

for all integers n > 1, for all s > 1 and k > 0.

Proof sketch. This is a simple calculus exercise; we will prove the inequality

f (n)(s)6 s+n logs+ c1(k+1)(n+ c2) ln(n+ c2)

for some c1,c2 > 0 and for all n,s > 1,k > 0. Denote the right hand side by F(n); to perform

the induction over n, it is enough to show that F(n+1) > F(n)+ logF(n)+ k; note that both

f and F are monotone. And for that it is enough to choose c1 and c2 in such a way that

F ′(n) > logF(n)+ k for all n (now n is not necessarily an integer, and we take derivative over

n).

Let us see what is needed for that. We need (recall that (x lnx)′ = 1+ lnx):

F ′(n) = logs+ c1(k+1)+ c1(k+1) ln(n+ c2)>

> k+ log
(

s+n logs+ c1(k+1)(n+ c2) ln(n+ c2)
)

.

Moving the term logs on the right-hand side and putting it inside the logarithm, we need to

prove that

c1(k+1)+ c1(k+1) ln(n+ c2)> k+ log

(

1+
n

s
logs+

c1(k+1)(n+ c2)

s
ln(n+ c2)

)

.

Note that log(a+b+c)6 log(3max(a,b,c))= log3+max(loga, logb, logc). So we may show

separately that logarithms of all three terms in the square brackets are small compared to the

10

left hand side for large c1,c2; it is enough since k is also small compared to c1(k+1) for large

c1. For log1 and for log
(

n
s

logs
)

this is obvious, since we have the term c1 log(n+ c2) in the

left-hand side, and c1 is large. It remains to show that

c1(k+1)+ c1(k+1) ln(n+ c2)≫ log
(

c1(k+1)(n+ c2) ln(n+ c2)/s
)

=

= logc1 + log(k+1)+ log(n+ c2)+ logln(n+ c2)− logs

for sufficiently large c1 and c2. And this is also simple: each positive term in the right-hand side

is much smaller than the left-hand side (and minus logs can be omitted).

It remains to note that if f (s) = s+ c logs+ k then each iteration of f can be replaced by

c iterations of the function s 7→ s+ logs+ k/c, so for n iterations we have bound f (n)(s) 6
s+ cn logs+O

(

(k/c+ 1)cn logcn
)

. This gives the required bound (we have constant c and

k = O(n) in our argument). The Lemma (and Theorem 3) are proven.

5 General result

In this section we use a similar technique to prove a more general result that covers not only

Shannon inequalities but all true linear inequalities for Kolmogorov complexity. Recall that a

theorem from Hammer et al. ([3], see [11, Chapter 10] for the detailed exposition) says that the

same linear inequalities are true for complexities (with logarithmic precision) and for Shannon

entropies. In this section we want to show that all inequalities in this class have space-bounded

counterparts. For that, we need to modify the original proof using the tools we developed.

Theorem 4 (General linear inequalities with space bounds). Assume that a linear inequality for

unbounded complexities

∑
I∈L

λI C(xI)6 ∑
J∈R

µJ C(xJ)+O(logn) (4)

is true for all strings x1, . . . ,xk of length at most n. Then its space-bounded version

∑
I∈L

λI Cs′(xI)6 ∑
J∈R

µJ Cs(xJ)+O(logn) (5)

holds for all strings x1, . . . ,xk of length at most n and for s′ = s+O(n2 logn)+O(n logs).

Proof sketch. Recall the original argument used in [3]. Given a tuple x = 〈x1, . . . ,xk〉 of strings,

we consider the set X of all tuples 〈x′1, . . . ,x
′
k〉 such that C(x′1, . . . ,x

′
k)6 C(x1, . . . ,xk), and, more-

over,

C(x′I |x
′
J)6 C(xI |xJ)

for all disjoint subsets I,J ⊂ {1, . . . ,k}. The logsize of X is bounded by C(x1, . . . ,xk)+O(1); on

the other hand, X cannot be smaller than C(x1, . . . ,xk)−O(logn), since X can be enumerated if

we know the numerical values of the complexities, and x (that is in X by construction) can be

described by the ordinal number in this enumeration. Then we show that X is almost uniform

(i.e., the average size of its sections is close to the maximal size of the sections of the same

type, and the same for projections and their sections). The argument is based on the following

observation: the size of the set X is bounded by the size of its x1-projection, times the size of

the maximal x1-section of the (x1,x2)-projection, times the size of the maximal x3-section of

the (x1,x2,x3)-projection, etc. The logarithms of these sizes are bounded by

C(x1),C(x2 |x1),C(x3 |x1,x2), . . .

11

(respectively), and the sum of these complexities is O(logn)-close to C(x1, . . . ,xk). Since we

know that the logsize of X also equals C(x1, . . . ,xk) with O(logn)-precision, we conclude that

all inequalities for sizes in this chain are close to equalities with logarithmic precision. Then we

may conclude that for a random k-tuple of variables uniformly distributed in X , the entropy of

each of its projections is close to the logsize of the same projection of X and to the complexity of

the corresponding tuple xT , and we can use the inequality for entropies to derive the inequality

for complexities. This is a (very rough) sketch of the proof from [3]; see [11] for details.

Now we have to adapt this proof for the space-bounded complexity. We define the set Xu in

the same way as X , but with space bound u, i.e. it consists of all tuples 〈x′1, . . . ,x
′
k〉 such that

C(x′I |x
′
J)6 Cu(xI |xJ)

for all disjoint subsets I,J ⊂ {1, . . . ,k}. There are two points in the above argument that need to

be adapted to this change. First, to show that Xu is large, we need to specify how Xu is enumer-

ated and how much space is needed when we describe x by its number in this enumeration. For

the enumeration, we take s = 1,2, . . . and for each s enumerate the elements of Xu that satisfy

(stronger) conditions

Cs(x′I |x
′
J)6 Cu(xI |xJ)

but did not appear at the previous stage (for s− 1), using the same tools as before. The orig-

inal tuple x appears for s 6 u, and the space used by enumeration at this moment is u′ =
u+O(logu)+O(n), so we get the upper bound for the complexity Cu′(x). To make the ar-

gument working we need to have complexities with space bounds u and u′ equal.7

Also, we used the formulas for the complexities of pairs that now also involve different

space bounds u and u′ = u+O(logu)+O(n). To deal with both problems, we use the same

iteration trick and note that at some step when u increases, the complexities do not change.

For that we need O(n) iterations, since the complexity of all strings and tuples involved can

only decrease by O(n) in total. Finally, we get the same bound as in the previous theorem for

Shannon inequalities.

6 Remarks

Space-bounded versions of other results. Our results are part of the space-bounded ver-

sion of algorithmic information theory. In general, one could take some notion or theorem

of algorithmic information theory and look for its space-bounded counterpart. For Muchnik’s

conditional codes theorem this was done by Musatov (see [8] and references therein).

However, there are many problems in this approach. For example, if we define mutual

information with space bound s in a natural way as

Is(a : b) = Cs(a)−Cs(a|b),

this notion is not monotone; a priori the mutual information can oscillate when s increases. It

would be interesting to understand what kinds of oscillations are possible. Is it possible that

two strings are mutually independent for some space bound, then dependent for some larger

bound, then again independent, and so on? Also the relations between Is(a : b), Is(b : a) and

the symmetric expression Cs(a)+Cs(b)−Cs(a,b) are unclear.

7It is enough to have them close, but this does not improve the resulting bound. Another observation: in this

argument we could use instead of Xu its part that consists of tuples that satisfy a stronger conditions Cu(x′I |x
′
J) 6

Cu(xI |xJ) for all I,J.

12

Inequalities for a common space bound. Our proof of Theorem 4 gives a bit more: it

guarantees for every s there is a bigger (but not much bigger) s′ for which the inequality in

question is true when all complexities use space bound s′.

More formally, assume that a linear inequality for unbounded complexities

∑
I∈L

λI C(xI)6 O(logn)

is true for all n and for all strings x1, . . . ,xk of length at most n. Let s > n be some space bound.

Then the space-bounded version

∑
I∈L

λI Cs′(xI)6 O(logn)

holds for all strings x1, . . . ,xk of length at most n and for some s′ = s+O(n2 logn)+O(n logs),
depending on n and x1, . . . ,xk.

Time-bounded versions. We can try a similar approach for time bounds (instead of space

bounds). It also works, but the natural bound in the formula for complexity of pairs multiplies

the time complexity by 2O(n); also the simulation would increase time significantly (for a one-

tape machine the simulation of t steps needs more than t2 time). When we iterate these bounds

O(n) times, we get ridiculously high time bounds — so it is a good luck that Sipser’s trick for

space bounds allows us to get some reasonable space bounds.

13

References

[1] Terence H. Chan, A combinatorial approach to information inequalities, Communications

in Informations and Systems, 1(3), 241–254 (September 2001, preliminary version in 1999)

[2] Terence H. Chan, Raymond W. Yeung, On a relation between information inequalities and

group theory, IEEE Transactions on Information Theory, IT-48(7), 1992–1995 (July 2002,

preliminary version in 1999)

[3] Daniel Hammer, Andrei Romashchenko, Alexander Shen, Nikolai Vereshchagin, Inequali-

ties for Shannon Entropies and Kolmogorov Complexities. Proceedings 12th IEEE confer-

ence on Computational Complexity, Ulm, 1997, 13–23. Final version: Journal of Computer

and System Sciences, 60, 442–464.

[4] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems

of Information Transmission, 1, 1–7 (1965)

[5] A.N. Kolmogorov, Logical basis for information theory and probability theory, IEEE Trans-

action on Information Theory, 14, 662–664 (1968).

[6] Luc Longpré, Resource bounded Kolmogorov complexity, a link between compu-

tational complexity and information theory, Ph. D. thesis, TR 86-776 (1986),

115 pp. Dept. of Computer Science, Cornell University, Ithaca, NY 14583,

https://ecommons.cornell.edu/handle/1813/6616

[7] Luc Longpré, Sarah Mocas, Symmetry of information and one-way functions, Information

processing letters, 46(2), 95–100 (1993)

[8] Daniil Musatov, Improving the space-bounded version of Muchnik’s conditional complexity

theory via naive derandomization, Theory of Computing Systems, 55, 299–312 (2014), see

also https://arxiv.org/abs/1009.5108

[9] Andrei Romashchenko, Alexander Shen, Nikolai Vereshchagin, Combina-

torial interpretation of Kolmogorov complexity, Proceedings 15th Annual

IEEE Conference on Computational Complexity, Florence, Italy, 2000, 131–

137https://doi.org/10.1109/CCC.2000.856743. Final version: Theoretical Com-

puter Science, 271(1–2), 111-123 (2002).

[10] Alexander Shen, Algorithms and programming: problems and solutions, 2nd ed., Springer,

2010.

[11] Alexander Shen, Vladimir A. Uspensky, Nikolai Vereshchagin, Kolmogorov complexity

and algorithmic randomness, AMS, 2018.

[12] Michael Sipser, Halting space-bounded computations, Theoretical Computer Science, 10

(1980), 335–338.

[13] Nikolai Vereshchagin, Alexander Shen, Algoritmic statistics revisited, in Measures of

Complexity. Festschrift for Alexey Chervonenkis. Springer, 2015, 235–252.

[14] Nikolai Vereshchagin, Alexander Shen, Algoritmic statistics: forty year later. Computabil-

ity and Complexity. Essays Dedicated to Rodney G. Downey on the Occasion of His 60th

Birthday. Springer, 2017, 669–737.

14

https://ecommons.cornell.edu/handle/1813/6616
https://arxiv.org/abs/1009.5108
https://doi.org/10.1109/CCC.2000.856743

[15] Zhen Zhang, Raymond W. Yeung, On characterization of entropy function via information

inequalities, IEEE Transactions in Information Theory, IT-44(4), 1440–1452 (1998)

15

	1 Space-bounded Kolmogorov complexity
	2 Space-bounded complexity of pairs
	3 Basic inequalities: space-bounded version
	4 Shannon inequalities: iterations
	5 General result
	6 Remarks

