
HAL Id: lirmm-03059686
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03059686v2

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inequalities for space-bounded Kolmogorov complexity
Bruno Bauwens, Peter Gács, Andrei Romashchenko, Alexander Shen

To cite this version:
Bruno Bauwens, Peter Gács, Andrei Romashchenko, Alexander Shen. Inequalities for space-bounded
Kolmogorov complexity. Computability, 2022, 11 (3-4), pp.165-185. �10.3233/COM-210374�. �lirmm-
03059686v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03059686v2
https://hal.archives-ouvertes.fr

Inequalities for space-bounded Kolmogorov
complexity*

Bruno Bauwens†, Peter Gács‡, Andrei Romashchenko§, Alexander Shen¶

Abstract

Finding all linear inequalities for entropies remains an important open question in
information theory. For a long time the only known inequalities for entropies of tuples of
random variables were Shannon (submodularity) inequalities. Only in 1998 Zhang and
Yeung [18] found the first inequality that cannot be represented as a convex combination
of Shannon inequalities, and several other non-Shannon inequalities were found soon after
that. It turned out that the class of linear inequalities for entropies is rather fundamental,
since the same class can be equivalently defined in terms of subgroup sizes or projections
of multidimensional sets (Chan, Yeung [2, 3], Romashchenko, Shen, Vereshchagin [12]).
The non-Shannon inequalities have interesting applications (e.g., to proofs of lower bounds
for the information ratio of secret sharing schemes). Still the class of linear inequalities for
entropies is not well understood, though some partial results are known (e.g., Matúš has
shown in [10] that this class cannot be generated by a finite family of inequalities).

This class also appears in algorithmic information theory: the same linear inequalities
are true for Shannon entropies of tuples of random variables and Kolmogorov complexities
of tuples of strings (Hammer et al., [5]). This parallelism started with the Kolmogorov–Levin
formula [7] for the complexity of pairs of strings with logarithmic precision. Longpré proved
in [8] a version of this formula for the space-bounded complexities.

In this paper we prove a stronger version of Longpré’s result with a tighter space bound,
using Sipser’s trick [15]. Then, using this result, we show that every linear inequality that is
true for complexities or entropies, is also true for space-bounded Kolmogorov complexities
with a polynomial space overhead, thus extending the parallelism to the space-bounded
algorithmic information theory.

*Authors want to thank the members of the ESCAPE team (especially Ruslan Ishkuvatov), the participants
of the Kolmogorov seminar (Moscow) and Algorithmic Randomness workshop for discussions. We are grateful
to anonymous reviewers for STACS2021 conference (where the submission was rejected) who suggested many
corrections and improvements.

†National Research University Higher School of Economins, ORCID 0000-0002-6138-0591. Supported by
Russian Science Foundation (grant 20-11-20203)

‡Boston University, gacs@bu.edu, ORCID 0000-0003-2496-0332
§LIRMM, University of Montpellier, CNRS, Montpellier, France and IITP RAS, Moscow (on leave),

https://www.lirmm.fr/~romashchen/, andrei.romashchenko@lirmm.fr, ORCID 0000-0001-7723-7880.
Supported by ANR-15-CE40-0016 RaCAF and RFBR 19-01-00563 grants. Supported by ANR grant FLITTLA

¶LIRMM, University of Montpellier, CNRS, Montpellier, France and IITP RAS, Moscow (on leave), www.
lirmm.fr/~ashen, alexander.shen@lirmm.fr, ORCID 0000-0001-8605-7734. Supported by ANR-15-CE40-
0016 RaCAF and RFBR 19-01-00563 grants. Supported by ANR grant FLITTLA. Part of the work was done while
participating in the American Institute of Mathematics Workshop on Algorithmic Randomness (August 2020)

1

ar
X

iv
:2

01
0.

10
22

1v
4

 [
cs

.I
T

]
 9

 S
ep

 2
02

2

https://www.lirmm.fr/~romashchen/
www.lirmm.fr/~ashen
www.lirmm.fr/~ashen

1 Space-bounded Kolmogorov complexity
Kolmogorov in his seminal paper of 1965 [6] defined the complexity of a finite string as the
minimal length of a program that produces this string:

CI(x) = min{|p| : I(p) = x}.

Here I is a machine (considered as an interpreter of some programming language), p is a binary
string (considered as a program without input), and |p| is its length. In a similar way Kolmogorov
defined CI(y|x), the conditional complexity of y given x, as the minimal length of a program p
that transforms x to y:

CI(y|x) = min{|p| : I(p,x) = y}.

In this case the interpreter I has two arguments (considered as a program and an input for this
program).

There exists an interpreter that is optimal to within an additive constant (Solomonoff, Kol-
mogorov). Different optimal interpreters lead to complexity functions that differ at most by
an O(1) additive term. So the complexity can be considered as an intrinsic property of the
strings involved. Complexity measures the amount of information in individual finite objects,
not random variables (distributions) as Shannon’s information theory does. The relation between
complexities of strings and entropies of probability distributions is well established: in particular
it is shown in [5] that the same linear inequalities hold for both.

It is easy to see that complexity functions are not computable; moreover, they do not have
non-trivial computable lower bounds. This fact is the basis for Chaitin’s famous proof of Gödel’s
incompleteness theorem [1].

To information theorists, the non-computability of the complexity functions may obscure
somewhat their combinatorial significance. A natural approach to the question is to consider
versions of Kolmogorov complexity in which the interpreter has some resource (time, space)
bounds. This makes the complexity functions computable since now for each program we can
run it until it produces some result or exceeds the bound (if the latter does not happen for a
long time, we know that there is a loop and the program will never terminate). However, the
inequalities for these resource bounded versions become more complex, with different resource
bounds on the two sides. In this paper we show a way to overcome these difficulties for the case
of space bounds. We will see that each linear inequality holding for entropies holds also for
many space-bounded versions of Kolmogorov complexity: the space bound can be chosen from
a dense infinite hierarchy of possibilities.

From a more pragmatic point, one could add that unrestricted complexity is not only non-
computable, but also irrelevant: if some string has a short program but the time needed to run
this program is huge, this string for all practical purposes may be indistinguishable from an
incompressible one.

Kolmogorov was aware of these issues: in the last paragraph of [6], he writes that the
description complexities introduced above

“. . . have one important disadvantage: They do not take into account the difficulty of
transforming a program p and an object x into an object y.1 Introducing necessary
definitions, one can prove some mathematical statements that may be interpreted as
the existence of objects that have very short programs, so their complexity is very

1The English translation mentions the “difficulty of preparing a program p for passing from an object x to
an object y”. However, the original Russian text is quite clear: Kolmogorov speaks about the complexity of
decompression, not compression.

2

small, but the reconstruction of an object from the program requires an enormous
amount of time. I plan to study elsewhere2 the dependence of the necessary program
complexity Kt(x) on the allowed difficulty t for its transformation into x. Then the
complexity K(x) as defined earlier will be the minimum of Kt(x) for unbounded
t.”[6, p. 11]3.

Defining Cr(x) and Cr(y|x) as the minimal length of the programs that generate x or transform
x to y with resource bound r, we need to fix some computational model and the exact meaning of
the resource bound. It is natural to consider time-bounded or space-bounded computations. The
study of time-bounded complexity immediately bumps into the P vs. NP problem [8, 9], so in
this paper we consider only the space-bounded version of complexity.

Usually the space used by a computation is measured up to a constant factor, but we need
more precision. So we should fix a computational model carefully. For Turing machines with
arbitrary tape alphabet one should take into account not only the number of cells used but also
the alphabet size. If each cell may contain one of k symbols (where k > 2), then one should
multiply the number of used cells by log2 k. This makes the Turing machine model “calibrated”
in the following sense: the number of configurations with space not exceeding s, is close to 2s. In
fact, it differs from 2s by a polynomial (in s) factor, since we have to take into account the head
position (or heads positions for multitape Turing machines). The simulation between models, in
our case, the emulation of multitape machines on machines with smaller number of tapes, uses
O(logs) overhead for space s computations, so the space bounds do not depend on the choice of
the model up to logarithmic additive terms (this precision is much better than for time bounds).

We need to specify also how the machine gets the input string (strings) and how it produces
the output string. If input/output is written on the tape, then the space used by the computation
cannot be less than the input/output length. To avoid this artificial restriction, one usually assumes
that separate tapes are used for input and output, and make them read- and write-only (so they
cannot be used for computations). If we switch from this model to the worktape-only model, we
get, in addition to O(logs), also O(input/output size) space overhead.

For technical reasons, in this paper we use a specific and a bit unusual computation model
(finite-state automaton plus two stacks, see below). The results obtained for this model remain
valid for multitape Turing machines, but sometimes in a slightly weaker form, namely, with
additional O(logs) terms that appear when we switch from one model to another.4

Our machines have

• one-sided one-directional read-only input tapes with end markers5 (one or two tapes,
depending on the number of inputs);

• one-sided one-directional write-only output tape;

2Unfortunately, Kolmogorov did not publish those “mathematical statements” about resource-bounded complex-
ity (though he gave some talks on this topic), and his ideas about algorithmic statistics, as the subject is known now,
were understood only much later. It turned out that the dependence of Kt(x) on t (if the resource bound t is measured
in “busy beaver units”) gives, for every string x, some curve that can be equivalently defined in terms of Kolmogorov
structure function, (α,β)-stochasticity, or two-part descriptions. See [16, 17] for a survey of algorithmic statistics.

3Kolmogorov used the notation K(x) for complexity function; now it is usually denoted by C(x), while the
notation K(x) is used for the so-called “prefix complexity”. We follow this convention.

4Strangely enough, it seems that this specific model is essential in our proofs and we do not know how to avoid
it even if we agree to have additional O(logs) terms in our results.

5For the program tape, the use of the end markers means that we consider plain complexity, not the prefix one
(that requires that the interpreter finds by itself where the program ends). However, we allow logarithmic terms in
our inequalities for complexities, so the difference between plain and prefix complexity is not important for us.

3

• two binary stacks (with PUSH/POP/EMPTY requests) as memory devices.

All these devices are connected to the finite-state control unit. The tape alphabet is binary, and
the sum of the stack lengths is considered as the space measure.

Note that two stacks are equivalent to a finite tape that can be extended (by inserting an
empty cell) or contracted (by deleting a cell) near the head of the Turing machine; the stacks
correspond to the parts of the tape on the left and on the right of the head. The head of such
a machine knows whether it is at the first/last cell of the tape, and can insert an empty cell or
delete a cell before/after the current one.6

bottom stack 1 bottomstack 2

Definition 1. Let I be a machine of the described type with two one-directional read-only input
tapes, one one-directional write-only output tape and two binary stacks. We say that Is(p,x) = y
if machine I with inputs p and x produces y and the total length of the two stacks never exceeds
s during the computation. We define the conditional space-bounded Kolmogorov complexity as

Cs
I(y|x) = min{|p| : Is(p,x) = y}.

The unconditional version is obtained when the condition x is the empty string.

Then, as usual, we need a version of the Kolmogorov–Solomonoff universality theorem that
says that there exists an optimal machine making the complexity minimal. Now the space bounds
should be taken into account, and for our model O(1) additional space is enough:

Proposition 1. There exists an optimal machine V such that for every machine P there exists a
constant c such that

Cs+c
V (y|x)6 Cs

P(y|x)+ c

for all x,y.

Both machines P and V are of the type we described (we consider only machines of this
type if not stated otherwise). We use the same c both for the space overhead and the complexity
increase, but this obviously does not matter.

Proof. Recall a usual construction of a universal machine that can simulate the behavior of an
arbitrary machine Mr (an arbitrary finite-state program for the control unit) given its description
r, for arbitrary inputs p,x. Here r is a binary string that describes some machine Mr.

We modify this construction to get the required optimal machine V . Let us double each bit in
r and denote the result by r. The machine V is defined in such a way that

V (r01p,x) = Mr(p,x).

This guarantees that if r is the description of machine P (i.e., Mr = P), then

CV (y|x)6 CP(y|x)+2|r|+2,

6To simulate such a tape (with insertions and deletions) on a standard tape, a O(logs) space overhead is needed:
when inserting a cell, we need to move information along the tape to make space for the new cell, and for that
we need O(logs) additional space for counters (or a special marker symbol that makes the alphabet bigger, so the
overhead is even worse).

4

since for every P-program p we have an equivalent V -program r01p. Therefore, the complexity
increase when switching from P to V is O(1). This would be enough if we did not care about the
space bounds. But now we need to describe in more details what the simulating machine V does,
and check that V uses only O(1) additional space compared to Mr, where O(1)-constant may
depend on r but not on p and x.

We start with a general remark about our computational model. Let us add an auxiliary tape
(a finite read-write tape with insertions/deletions, as explained above) to the two-stack machine
we described.7

Lemma 1. Every machine M of this enhanced type can be simulated by a two-stack machine
M′ in such a way that at every moment of the computation the space used by M′ is bounded by
s1 +O(s2), where s1 is the total length of stacks of M, and s2 is the number of cells on the tape
at the same moment.

Proof of Lemma 1. Let us encode the contents of M’s tape in some way (discussed later), and
put this encoding between the contents of two stacks of M (reproduced literally, without any
encoding).

𝑀′

encoded encoded

𝑀

This will be the contents of the (insertable/deletable) tape of M′, and by a special zone of
this tape we mean the part occupied by the encoding.

The head of M′ is always in the O(1)-neighborhood of the special zone. When M performs
an operation on its stack (left or right), M′ moves its head to the corresponding endpoint of the
special zone and simulates the required operation. When M performs an operation on the tape,
M′ finds the place in the special zone that corresponds to the head position, and simulates the
required operation.

We need an encoding that makes all these operations possible. For example, we may encode
each bit on the tape of M by a group of three identical bits (000 or 111) on the tape of M′. Then
we use three other 3-bit blocks (out of 6 remaining) as left and right endmarkers for the special
zone, and as a marker that indicates the position of the M-head. The alignment information
(position of the M′-head modulo 3) is kept in the finite memory of M′. Then M′ can distinguish
the markers from the encoded bits and find the place it needs (the endpoint or the M-head
position).

The space bound for the simulation8 is easy to check: M’s stacks are copied without any
overhead, and each bit on M’s tape uses O(1) bits in the encoding. We also use O(1) bits for
three markers, but this term is absorbed by O(s2).

7This is equivalent to adding two more stacks, so we get a machine with four stacks of the same kind. Still in the
following lemma the two new stacks are treated differently. Namely, their length is taken into account with some
constant factor, so it is more convenient to speak about two stacks and one tape, even if this tape is equivalent to two
other stacks.

8In fact, we may use better encoding and replace O(s2) by s2 +O(logs2), but this is not needed for our purposes.

5

Now we describe machine V that uses an additional tape (and then apply Lemma 1). The
machine V starts by reading r and writing r on its tape, then it skips the separator 01 and leaves
p on the input tape (while x is kept unchanged on the other input tape). Then V executes the
program r written on its tape, reading p and x and manipulating the stacks according to r’s
instructions. For that V needs some additional space on the tape to keep the current state of the
simulated program and other information. This space depends only on r but not on p and x. It
remains to apply Lemma 1 to construct an equivalent machine with two stacks; the term O(s2)
appearing in this Lemma depends only on r as required.

Remark 1. Note that in this argument we used that the input tape is one-directional. Still the
result remains valid if we write the input on a bidirectional read-only tape with two endmarkers.
In this case we need to distinguish during the simulation whether the input head is inside p or
not, but this can be checked by going left by O(|r|) cells and coming back. Note that we have r
on the work tape and there is enough space to keep the numbers of size O(|r|).

The other non-standard feature of our model is that it uses two stacks instead of a normal
tape. But this feature is not important. We can adapt the argument to standard Turing machines:
since the size of the self-delimited block does not change during the simulation, this block can
be moved along the normal tape (no cell insertions) without moving the information outside the
block (this would happen if the block changed its size on a normal tape).
Remark 2. The same construction works for time bounds (instead of space bounds), but we
would get a constant factor instead of an additive constant:

Cc·t
V (y|x)6 Ct

P(y|x)+ c,

where Ct
V stands for the time-bounded complexity (defined in a similar way). Indeed, each step

of a simulated machine now requires several steps of the simulating machine, and the number of
these steps is bounded by a constant that depends only on r, but not on p and x.

Now we fix some optimal machine V , call the corresponding function Cs
V (y|x) the space-

bounded Kolmogorov conditional complexity function and denote it by Cs(y|x). The uncondi-
tional space-bounded complexity Cs(x) can be defined then as Cs(x|ε) for the empty condition ε .
It is easy to see that we get an equivalent definition of unconditional complexity if we consider
machines V that use only one input tape. Proposition 1 guarantees that these notions are invariant
(do not depend on the choice of the optimal machine) up to O(1) changes in the complexity and
the space bound.

2 Space-bounded complexity of pairs
The Kolmogorov–Levin theorem (formula for the complexity of pairs, [7]) says that

C(x,y) = C(x)+C(y|x)+O(logC(x,y)).

Here C(x,y) is the complexity of a pair of strings that is defined as the complexity of some
computable encoding for it. For the unbounded complexity the choice of encoding is not
important, since any computable transformation changes the unbounded complexity only by an
O(1) additive term. For the space-bounded version this is no longer the case, and we define the
complexity Cs(x,y) as Cs(x01y), where x is x with doubled bits. This encoding of a pair (x,y)
treats x and y in different ways, so the natural question is whether the pair complexity as defined
above is reasonably robust, e.g., does not change too much when we exchange x and y. The
following proposition answers this question; note that the space overhead is no more a constant,
but is proportional to the size of x and y.

6

Proposition 2.
Cs+O(|x|+|y|)(y,x)6 Cs(x,y)+O(1)

for all s,x,y.

As usual, this means that there exists some c such that Cs+c(|x|+|y|+1)(y,x) is bounded by
Cs(x,y)+ c for all s, x, and y. We add here 1 to take care for the special case |x|= |y|= 0. In
this case x = y and the statement is vacuous, but in other statements it could be important. We
agree that everywhere the O(. . .) notation allows O(1) terms, too.

Proof. As for the unbounded case, we consider an optimal machine V (p), and then transform it
into a machine V̂ that exchanges the pair elements in V (p): if V (p) = x01y, then V̂ (p) = y01x.
Then we apply Proposition 1 to the machine V̂ . The only thing we need is to be sure that the
V̂ (p) computation can be performed in space s+O(|x|+ |y|), if V (p) produces x01y in space s.

Again we use Lemma 1 and equip the machine V̂ with an additional tape; we need only
to remember that the space used on this tape is counted with some constant factor. Instead of
writing the bits of x on the output tape like V does, the machine V̂ writes them (or just bits of x
without duplication) on the work tape, until the next two-bit block is 01. After that all output bits
of V (i.e., bits of y) are doubled, so y is printed on the output tape. When V terminates, V̂ prints
01 and after that copies the bits of x from the tape.

It remains to note that our transformation does not change the content of the stacks, and the
additional space on the tape is O(|x|+ |y|) — in fact, even O(|x|), since we do not need to store
y.

Remark 3. A similar argument for standard Turing machines (no insertion of cells allowed)
would give additional O(logs) overhead.

Now the complexity of pairs is defined, and we would like to develop a space-bounded
version of Kolmogorov–Levin formula for the complexity of pairs. This formula says that

C(x,y) = C(x)+C(y|x)+O(logn),

if x and y are strings of length at most n, and contains two inequalities, one in each direction.
We want to provide the space-bounded counterparts for them. In one direction this is easy to do.
One can get even a bit stronger bound that has term O(logCs(x)) instead of O(logn); note that
for the reasonable values of s we have Cs(x) = O(|x|).

Proposition 3.
Cs+O(|x|+|y|)(x,y)6 Cs(x)+Cs(y|x)+O(logCs(x)).

Note the general structure of this statement: we consider an arbitrary bound s on the right-
hand side, and on the left side we have to use a slightly bigger bound (for our model s+O(|x|+ |y|)
is enough).

Proof. Let p and q be the minimal programs for x and for x 7→ y. We need to construct
the program for the pair (x,y), i.e., for the string x01y, whose length will be bounded by
|p|+ |q|+O(log |p|). This program will work for some other decompressor V̂ , and then we use
universality to replace V̂ by V .

The program (description) for the pair (x,y) can be constructed as l01pq where l is the length
of p, written in binary. The decoding machine V̂ again uses an auxiliary tape (and then we use
Lemma 1). First the machine V̂ copies l01 to the auxiliary tape. After that the machine V̂ reads
and stores p on the tape. Note that the length of p (i.e., l) is already on the tape, so V̂ knows

7

when to stop reading p. Then V̂ simulates the optimal unconditional decompressor on p, reading
the bits of p from the auxiliary tape and storing the output bits (i.e., bits of x) also on the auxiliary
tape. Now V̂ is ready to simulate the computation of the optimal conditional decompressor on q,
reading the bits of q from the input tape (the rest of the input) and using stored bits of x instead
of input bits from its second tape. It is easy to see that we need O(|p|+ |q|+ |x|) cells on the
tape (in fact, O(|p|+ |x|) cells).

It is not all we need: there is a technical problem. Namely, for small s we cannot guar-
antee that |p|+ |q| 6 O(|x|+ |y|). So, the space overhead O(|p|+ |q|+ |x|)) may not be
O(|x|+ |y|). However, if |p|+ |q| significantly exceeds |x|+ |y|, then we may use the inequality
CO(|x|+|y|)(x,y)6 |x|+ |y|+O(log |x|) instead. The latter inequality is obtained if we use x and y
instead of p and q in the construction above, and use trivial decompressors instead of the optimal
ones.

Remark 4. In the right hand side of Proposition 3 we may replace O(logCs(x)) by O(logCs(x,y)).
This is not immediately obvious, because we cannot bound Cs(x) by Cs(x,y) with exactly the
same s. But for the “paradoxical” case Cs(x,y)< Cs(x) the entire inequality is obviously true.

The other direction of the Kolmogorov–Levin formula is more difficult (both for unbounded
and space-bounded complexity).

Theorem 1. For all strings x,y and for every number s we have

Cs′(x)+Cs′(y|x)6 Cs(x,y)+O(logCs(x,y)),

where s′ = s+O(|x|+ |y|).

Here we use the notation s′ for the space bound on the left-hand side to avoid repetitions.
The exact meaning of this statement: there exists a constant c such that for all x,y and for every s
we have Cs′(x)+Cs′(y|x)6 Cs(x,y)+ c logCs(x,y), where s′ = s+ c|x|+ c|y|+ c.

This bound assumes that we use the computational model with two stacks; for ordinary
Turing machines an additional O(logs) term is needed in the expression for s′.

Longpré [8, Theorem 3.13, p. 35] proved essentially9 the same result with 2s+O(logs)
instead of s; in his paper he uses 3s, but his argument gives 2s+O(logs) without changes. We
improve this bound using Sipser’s technique from [15] with some additional refinements.

Proof. The proof is obtained by a modification of Longpré’s argument which in its turn is a
modification of the standard proof of the Kolmogorov–Levin formula. So we first recall the
standard argument, then explain the modifications used by Longpré, and then prove the final
result.

Recalling the standard argument without resource bounds The standard argument (for the
complexities without resource bounds) goes as follows. Let x and y be two strings of length
at most n and let m be the complexity of the pair: C(x,y) = m. We may always assume that
m = O(n): for the unbounded case it is always true, since we have two strings of length at most
n and their pair has complexity at most 2n+O(logn). For the bounded case and very small s the
complexity Cs(x,y) may be larger than 2n+O(logn) (since even the trivial program for the pair
still requires some space to run), but then the inequality is obviously true for s′ = O(n), since
both terms on the left-hand side are bounded by n+O(1) for this value of s′.

9His setting is slightly different: for him s is not a numerical parameter, but a function of the input size, so the
exact comparison is difficult.

8

Consider the set Sm of all pairs 〈x′,y′〉 such that C(x′,y′)6 m. This set can be enumerated by
an algorithm (given m), and there are O(2m) of them. Our pair 〈x,y〉 is an element of this set.
Count the pairs 〈x,y′〉 in this set that have the same first coordinate (i.e., the first coordinate x).
Assume that we have about 2k of them for some k. We may choose k in such a way that the
number of those pairs is between 2k and 2k+1. Now we make two observations:

• Knowing x, we can filter the pairs in the enumeration of Sm and keep only the pairs with
the first coordinate x, looking at their second coordinate. This process enumerates at most
2k+1 strings, and y is one of them. The string y can be reconstructed if we know x, m and
the ordinal number of y in this enumeration (this requires k+O(1) bits of information).
In total we get O(logm)+ k bits (we need to separate m and the ordinal number, and this
involves some separation overhead, but this overhead can be absorbed by O(logm): we
may repeat each bit of m twice and add 01 at the end). Therefore, C(y|x)6 k+O(logm).

• On the other hand, we can enumerate all x′ such that there are at least 2k different y′ such
that C(x′,y′)6 m; there are at most O(2m−k) of them, since each of them produces at least
2k pairs and the total number of pairs is O(2m). The string x appears in this enumeration.
So we can specify x by the ordinal number in the enumeration (m− k+O(1) bits), in
addition to the values of m and k needed for the enumeration. The total number of bits
is O(logm)+m− k, therefore C(x)6 m− k+O(logm). (Note that k 6 m, so k also has a
self-delimited encoding of size O(logm).)

Combining the bounds for C(x) and C(y|x) and recalling that m = O(n), we get the desired
result.

How to obtain a weak space bound (following Longpré) The argument for the unbounded
case (as presented above) does not work as is for the space-bounded complexity. The problem is
that the enumeration used in this argument needs a lot of space, since the lists of enumerated
objects are exponential in m. However, another approach is possible. Recall that x and y are
strings of length at most n. There are at most O(22n) pairs 〈x,y〉 of strings of length at most
n. We may consider them in some fixed order (e.g., in the lexicographical one), and compute
Cs(x,y) for each pair. As we have discussed, the function Cs is computable, and the following
lemma shows that we do not need too much space to compute it.

Lemma 2. The complexity Cs(x) can be computed (given s and x such that s > Ω(|x|)) in space
2s+O(logs)+O(|x|).

This is a weak version of this lemma (that gives Longpré’s result). We will see later that one
can replace 2s+O(logs) by s, and this will allow us to finish the proof of Theorem 1, but we
start with a simpler bound.

Proof of Lemma 2. We know that CO(|x|)(x)6 |x|+O(1), and our assumption s = Ω(|x|) guar-
antees that Cs(x)6 |x|+O(1). So it is enough to try all the programs of length at most |x|+O(1)
to see which of them produce x with space bound s (in the order of increasing length, so the
first one found will be the shortest one). To keep track of the current program, we need O(|x|)
space. To simulate the program and to keep track of the space used by it, we need additional
s+O(log |s|) space. The only problem is that the program that we try may never terminate. To
detect these cases, we may use a counter for the number of steps. Since a machine with space
bound s has at most 2s+O(logs) configurations, if the number of steps exceeds this 2s+O(logs)

bound, some configuration appears twice and the program is in the infinite loop. To detect this

9

loop, we use a counter of size s+O(logs). In total we need 2s+O(logs)+O(|x|) space to find
the complexity, as claimed.

Now the proof goes as before. We consider the set Ss
m,n of all pairs 〈x′,y′〉 such that |x′|6 n,

|y′|6 n and Cs(x′,y′)6 m. The pair 〈x,y〉 is one of its elements. Choose k in such a way that the
number of pairs 〈x,y′〉 in this set (with the first coordinate x) is between 2k and 2k+1. Then

• C2s+O(logs)+O(n)(y|x)6 k+O(logs)+O(logn);

• C2s+O(logs)+O(n)(x)6 m− k+O(logs)+O(logn).

Indeed, y can be reconstructed if we know the ordinal number of y in the enumeration of all y′

such that 〈x,y′〉 ∈ Ss
m,n, and this set can be enumerated (in the lexicographical order) when x, m,

n and s are known. Lemma 2 guarantees that this can be done in space 2s+O(logs)+O(n);
recall also that m = O(n) according to our assumption. On the other hand, x can be enumerated
together with the other O(2m−k) strings x′ of length at most n such that there are at least 2k

strings y′ of length at most n with Cs(x′,y′) 6 m. We can check whether x′ has the required
property trying all y′ sequentially and counting them in O(n) space. The ordinal number of x in
the enumeration requires m− k bits, all other parameters require O(logn)+O(logs) bits, and
the space used in the process is still 2s+O(logs)+O(n).

Combining these two inequalities, we get

Cs′(y|x)+Cs′(x)6 Cs(x,y)+O(logs)+O(logn),

where s′ = 2s+O(logs)+O(n).
This result is weaker than the claim we need to prove in three aspects. First, we need to

replace 2s+O(logs) by s in the expression for s′. Second, we proved the inequality with O(logs)
in the right hand side that should not be there. Note that this term makes the statement vacuous if
s is exponential in n, and does not allow us to get the unbounded Kolmogorov–Levin theorem as
a corollary of the bounded version when s→ ∞. Finally, we would like to replace n (the length
of the strings) in the last term O(logn) by the complexity of the pair, so the last term would be
O(logCs(x,y)).

How to eliminate factor 2 (following Sipser) First let us explain how the factor 2 can be
avoided using the following result that goes back to [15]:

Proposition 4 (Sipser). Let M be a machine. Then there is a machine M that decides, given a
string x and number s, whether M terminates on input x in space s or not. Machine M uses at
most s+O(|x|) space working on pair x, s.

In this statement we assume that the two-stack computation model is used; as a corollary, we
get the same result with the additional term O(logs) for other standard models, e.g., multitape
Turing machines.

Proof. We start by proving a weaker statement with a looser space bound s+O(logs)+O(|x|).
For this bound, there is no problem with keeping x, the number of input bits already read by M,
and the binary representation of s in the memory.

We may assume without loss of generality that machine M clears its stacks when terminates,
and reads its input completely. For that the old final state is transformed into a cleaning state that
pops elements until both stacks are empty, and reads the input until its end.

Let us consider all configurations of M that use space at most s. We include in the configura-
tion the contents of the stacks, the state of the machine, and the position of the input head on x

10

(the input string for which we want to check the termination). We may ignore the output tape: it
is write-only, so operations with the output tape do not affect termination. These configurations
are considered as vertices of a directed graph. Namely, for every vertex (configuration) v of
that kind, draw an edge that goes from v to the next configuration (after one computation step is
performed), or no outgoing edges if v is final or if the next computation step violates the space
bound. According to our assumption, the final configuration is unique. Let us denote it by f . We
need to check whether a (unique) path starting from the initial configuration gets into f .

The graph may have cycles (the machine may go into a loop). However, the connected
component of the final configuration, i.e., the set of vertices v such that there is a path from v to
f , is a tree where edges go from a vertex to its parent. Indeed, the outgoing path is unique (the
machine is deterministic), so the vertices of any loop cannot have a path to v. The root of this tree
is f . The termination question can now be reformulated as follows: is the initial configuration in
the tree?

To answer this question, one can traverse the tree using depth-first search. Note that the
standard (non-recursive) algorithm for this (see, e.g., the textbook [13, Chapter 3]) does not
use any additional memory, and the basic operations can be performed with O(1) space. More
precisely, let us order siblings (sons of the same parent) arbitrarily (but consistently). This
induces a natural ordering on the leaves. We can traverse the tree, visiting all the leaves in this
order. In this process we make three types of moves: from a vertex to (a) its first child, (b) its
parent and (c) its next sibling (in the chosen order). All non-leaf vertices are visited twice: first on
the path from the root to leaves, the second time on the way back to the root. The tree-traversing
algorithm at every step keeps the current vertex and one bit that says whether we are on the way
to the leaves or back. The basic operation of the tree-traversing algorithm are the following:

• Checking whether the given vertex v has children, and if yes, finding the first child of v.
In our case this means that the current configuration can be obtained from some other
configuration; if yes, we should find the first among those predecessor configurations
(children).

• Checking whether the given vertex v is the last sibling in the ordering we have on v’s
siblings; finding the next sibling of v if it exists. In our case we should consider all the
configurations that have the same successor, and find the next one in the chosen ordering
(if our configuration is not the last one).

• Checking whether the given vertex v is the root, and finding the parent of v if v is not the
root. In our terms it means that we have to check whether the configuration is final, and
find the successor configuration if it is not.

We also need to keep track of the configuration size (since we do not consider configurations
that require more than s space), but this can be done in O(logs) memory. All other checks are
local (require O(1) additional memory), since only the immediate neighborhood of the head
(O(1) top elements of the stacks) needs to be taken into account.

We need also to keep track of the position of the input head in x (and keep x in the memory),
but this is easy to do with O(|x|) overhead. This finishes the argument for s+O(logs)+O(|x|)
bound.

To get rid of O(logs) in this bound (as promised), we need additional (and rather strange)
tricks. The machine M has two stacks, as well as the machine M that we need to construct.
However, it is convenient to use Lemma 1 and add an auxiliary tape to M; the space used on this
tape is taken into account with some constant factor.

11

We keep x (and the input head position in x) on the auxiliary tape; this requires O(|x|) space
and is not a problem. We use the stacks of M to keep (literally) the contents of M’s stacks in the
current position (i.e., the current vertex considered by the tree traversal algorithm). The basic
operations listed above are local and do not require memory (except for x and the input position,
already taken into account). However, we need to check whether the modified position of M still
uses space at most s, i.e., that the total size of two stacks still does not exceeds s after possible
increase in the stack sizes. Before, having O(logs) additional space, we could keep the value of
s and the current lengths of stacks, and make these checks. What can we do now? The following
idea helps: let us remember s all the time, but in an indirect way: we keep on the auxiliary tape
the difference between s and the total length of two stacks (of M or M′, they are the same). This
difference is enough to check whether the possible neighbor in the tree is valid (has total stack
length at most s). When the total length approaches s, the difference counter is small and requires
only O(1) bits. When stacks are short, the counter is big and may require O(logs) bits — but
since we measure the total length of the stacks and the tape, these O(logs) additional bits are
not a problem (it is easy to see that k+O(log(s− k))6 s+O(1) for all k < s). This finishes the
proof of the Proposition 4 (in its strong form, without O(logs) term).

Sipser’s trick allows us to prove the following stronger version of Lemma 2:

Lemma 3. The complexity Cs(x) can be computed (given s and x such that s > Ω(|x|)) in space
s+O(|x|).

Proof. In the proof of Lemma 2 we need to keep s and test all the possible programs to check
whether they produce x within space bound s. For that, we first check that a program terminates
in space s using Proposition 4, and if yes, apply the interpreter to the program (now being sure
that we do not violate the space bound) and compare the output with x. Again, we can keep s
indirectly during both phases, by keeping the difference between s and the total length of the
stacks. Then, if this length comes close to s, the counter is small, and when the stacks are short,
we may use a lot of space for the counter.

This immediately gives us a better bound: the inequality

Cs′(y|x)+Cs′(x)6 Cs(x,y)+O(logs)+O(logn)

is now proven for s′ = s+O(n), (now we have s instead of 2s+O(logs)). The O(logs) additive
term in the right hand side is still there. It was used to remember the space bound s, so the
configurations of size greater than s could be discarded. Still we can avoid this O(logs) term if
we change the enumeration order.

Eliminating O(logs) term in the right hand side Instead of enumerating for some fixed s
all pairs 〈x′,y′〉 with |x′|, |y′| 6 n such that Cs(x′,y′) 6 m, we enumerate the pairs such that
Cu(x′,y′)6 m (and |x′|, |y′|6 n) sequentially for u = 1,2,3, . . . So every pair with |x′|, |y′|6 n
and (unbounded) complexity C(x′,y′) 6 m will be enumerated at some stage, but the space
bound (and also the amount of space used for the enumeration) increases with time. Using some
additional precautions, we may guarantee that this enumeration will be without repetitions (no
pair is enumerated twice). Indeed, after we find some x′,y′ with Cu(x′,y′)6 m for the current u,
we check whether the same is true for bound u−1, and if yes, skip the pair. Note that it can be
done without increasing the space usage, since we may reuse the same space for both bounds u
and u−1.

In other words, we enumerate all the pairs 〈x′,y′〉 with |x′|, |y′|6 n and C(x′,y′)6 m in the
following order: we compare the minimal space u needed to establish the inequality Cu(x′,y′)6

12

m, and for the same u we use some standard ordering on pairs. In this way every pair is
enumerated only once without the need to keep the list of the pairs already enumerated.

Now we choose the value of k, like we did in the in the proof of the Kolmogorov–Levin
formula for unbounded complexity. For that we consider the pairs such that Cs(x,y′)6 m for
given x and arbitrary y′ (such that |y′|6 n) for the given value of s. There exists some k such that
the number of these pairs is between 2k and 2k+1.

Let us check that Cs′(y|x) 6 k +O(logn) for s′ = s+O(n). Knowing n and m, we can
perform the enumeration described above; knowing x, we can restrict the enumeration to pairs
〈x,y′〉 with the first component x. The pair 〈x,y〉 is among them; moreover, we know that its
ordinal number in this restricted enumeration is at most 2k+1, so we need k+O(1) bits to specify
this number (in addition to n, m and x). Performing the enumeration until that many pairs with
first component x appear, we use only s+O(n) bits, since we stop the enumeration after the
required number of pairs are found. This gives the inequality we wanted (recall that m = O(n),
so we can specify m and n by O(logn) bits).

Now we need to show that Cs′(x)6 m− k+O(logn) for the same value of s′. For that we
enumerate elements x′ that have large “vertical sections” (have many y′ such that Cs(x′,y′)6 m).
Again we do it sequentially for u = 1,2,3, . . . For each u we run a loop over all x′ with |x′|6 n.
For each of them we count all y′ such that |y′|6 n and Cu(x′,y′)6 m. This is done sequentially
(and we reuse the space at every step). If there are more than 2k different strings y′ found,
we include x′ in the enumeration of the elements that have large vertical sections. To avoid
repetitions, we use the same trick: we check whether the size of the vertical section was not large
enough for the previous value of u, repeating all the computations with this value. In this way
we enumerate all x′ that have large sections for unbounded complexity, using more and more
space in the process. Note that we keep the current value of u all the time, but indirectly, as a
combination of current stacks’ length and the counter (and the counter is short when the space is
tight).

This enumeration will include our x at some stage u 6 s. The ordinal number of x in the
enumeration is at most 2m−k+O(1) for the same reason as before (for complexities without space
bounds). At this stage the space used by the computation is s+O(n), and we stop the enumeration
after a required number of strings are enumerated. To start the enumeration we need to know
n, m and k, all three can be specified by O(logn) bits, in total we get m− k+O(logn) bits. We
see that Cs′(x)6 m− k+O(logn) and may combine this inequality with the bound for Cs′(y|x)
obtained earlier, thus eliminating the term O(logs) in the right hand side as promised.

Replacing O(logn) by O(logCs(x,y)) We have proven the inequality

Cs′(x)+Cs′(y|x)6 Cs(x,y)+O(log(|x|+ |y|)) (∗)

for s′ = s+O(|x|+ |y|), (in our notation n was the maximal of the lengths of |x| and |y|). The
last step is to replace |x|+ |y| in the right hand side by Cs(x,y). This means that in our argument
we do not have n as a parameter of the enumeration process and may use only m.

The idea is to replace the strings by their shortest programs. For Kolmogorov complexity
with unbounded resources, a string x is “interchangeable” with one of its shortest programs p in
the following sense:

C(x|p) = O(logm) and C(p|x) = O(logm),

where m = C(x). The first part is obvious for every program p (even with O(1) instead of
O(logm)): we apply the optimal interpreter to p and obtain x. The second part is also pretty

13

simple: given x and m, we run the optimal interpreter on all programs of length m in parallel and
take the first one that produces x.

A similar property is true for the space bounded Kolmogorov complexity. If Cs(x) = m, then
there is a program p of length m such that

Cs+O(1)(x|p) = O(logm) and Cs+O(|x|)(p|x) = O(logm).

This p is one of the programs of length m that produce x in space s. For such a program p the
first part is trivial: we simulate the universal interpreter on p and obtain x, with O(1) space
overhead for the simulation. For the second part, we show how to find a program p of length
m for x (that works in space s) given x and m. Following the argument we already used, we
try all the programs of length m giving them more and more space (s′ = 1,2,3, . . .) until one of
them produces x. For keeping the space overhead in this process small, we keep the value of the
current space bound s′ indirectly, as a difference between s′ and current length of the stacks. We
need also to keep x, thus the O(|x|) overhead in the space bound.

Using this property, we replace x and y by some px and py whose lengths are O(Cs(x,y)). A
small technicality is that Cs(x) may not be bounded by Cs(x,y), since extracting x from the pair
requires some overhead. In fact, O(1) overhead is enough: Cs+O(1)(x)6Cs(x,y) (but O(|x|+ |y|)
overhead would work too). Applying the previous remark to this bound, we find px of length at
most Cs(x,y) such that

Cs+O(1)(x|px) = O(logCs(x,y)) and Cs+O(|x|)(px |x) = O(logCs(x,y)).

The same can be done for y to get a replacement string py with similar properties. Then we apply
the previous form of the inequality (with O(logn)) to px and py, and note that replacing x by px
in expressions with conditional or unconditional complexity changes the complexity bound by
O(logCs(x,y)) and the overhead by O(|x|+ |y|).

This finishes the proof of Theorem 1.

3 Basic inequalities: space-bounded version
We have defined space-bounded complexity for pairs. In the same way (and with the same
precision) one can define the complexity of triples, and, in general, m-tuples for every fixed m. In
the section we prove space-bounded versions of the so-called basic inequalities for Kolmogorov
complexity.

The basic inequality involves complexities of triples and says (in the unbounded version) that

C(x)+C(x,y,z)6 C(x,y)+C(x,z)+O(logn)

if x,y,z are strings of length at most n. Usually it is proved by considering conditional complexi-
ties:

C(x,y) = C(x)+C(y|x)+O(logn),
C(x,z) = C(x)+C(z|x)+O(logn),

C(x,y,z) = C(x)+C(y,z|x)+O(logn).

Using these equalities, we rewrite the inequality as

C(y,z|x)6 C(y|x)+C(z|x)+O(logn),

14

and this is a relativized version of the inequality for the complexity of pairs:

C(y,z) = C(y)+C(z|y)+O(logn)6 C(y)+C(z)+O(logn);

adding y as a condition may only decrease the complexity of z. In computability theory rela-
tivization is usually understood as adding an oracle access to some set to all the computations;
almost all results of general computability theory remain valid after relativization. In algorithmic
information theory a slightly different notion of relativization is also used: instead of adding a
set as an oracle, we add some string as a condition in all the complexity expressions. Almost all
results (and their proofs) remain valid after that.10

Let us do this in more detail to see how the space-bounded version can be proven. We have

Cs′(x)+Cs′(y|x)6 Cs(x,y)+O(logn),

Cs′(x)+Cs′(z|x)6 Cs(x,z)+O(logn),

for some s′ slightly larger than s (by that we mean that s′ = s+O(n)). Therefore,

2Cs′(x)+Cs′(y|x)+Cs′(z|x)6 Cs(x,y)+Cs(x,z)+O(logn).

From this we conclude that

2Cs′(x)+Cs′′(y,z|x)6 2Cs′(x)+Cs′(y|x)+Cs′(z|x)+O(logn)6Cs(x,y)+Cs(x,z)+O(logn),

for some s′′ slightly exceeding s′, using the relativized inequality for the complexity of a pair:

Cs′′(y,z|x)6 Cs′(y|x)+Cs′(z|x)+O(logn).

Here s′′ = s′+O(n) = s+O(n) absorbs the increase O(n) caused by the length of the condition
x that is needed for the relativization. Now we recall that

Cs′′′(x,y,z)6 Cs′(x)+Cs′′(y,z|x)+O(logn)

(the easy direction of the Kolmogorov–Levin formula) for some s′′′ slightly greater than s′ and
s′′, and get

Cs′(x)+Cs′′′(x,y,z)6 Cs(x,y)+Cs(x,z)+O(logn).

For uniformity we can replace s′ by s′′′ on the left-hand side. Here s′′′ is the third iteration of
adding overhead, so still s′′′ = s+O(n), and we get the following space-bounded version of
basic inequality:

Theorem 2 (Space-bounded basic inequality).

Cs′(x)+Cs′(x,y,z)6 Cs(x,y)+Cs(x,z)+O(logn)

for all n, for all strings x,y,z of length at most n, for all numbers s, and for s′ = s+O(n).

More general inequalities (called also basic inequalities) are obtained if we replace x,y,z by
tuples of strings; they are easy corollaries of Theorem 2 (converting the tuples into their string
encoding and vice versa can be done in O(n) space for strings of size at most n).

10For the space-bounded complexity additional precautions are needed: if we add x as a condition, it may be
necessary to add O(|x|) to the space bound.

15

4 Shannon inequalities: iterations
Fix some integer k > 1; let x1, . . . ,xk be some strings. For each I ⊂ {1, . . . ,k} we consider the
tuple xI made of strings xi with i ∈ I. In this notation, the basic inequalities mentioned above can
be written as

Cs′(xI∩J)+Cs′(xI∪J)6 Cs(xI)+Cs(xJ)+O(logn),

if all x1, . . . ,xk are strings of length at most n and s′ = s+O(n). (The constants in the O-notation
may depend on k, I,J, but not on n, x1, . . . ,xk, s.)

Taking the sum of several basic inequalities (for the same k, but for different I and J), we
may get other linear inequalities for the complexities of tuples, i.e., inequalities of the type

∑
I⊂{1,...,k}

λI C(xI)> 0,

where λI are some real coefficients. This is a well known procedure for unbounded Kolmogorov
complexity [14, Chapter 10]; the resulting linear inequalities are called Shannon inequalities.
Not all linear inequalities that are true with logarithmic precision are Shannon inequalities (an
important discovery made in [18]).

In this section we show that every Shannon inequality has a space-bounded version. This
space-bounded version is constructed as follows. We start by separating the positive and negative
coefficients in the linear inequality. The corresponding groups are denoted by L and R; their
elements are subsets of the set {1, . . . ,k}, and we assume that L∩R =∅. Now the general form
of a linear inequality for complexities of tuples is

∑
I∈L

λI C(xI)6 ∑
J∈R

µJ C(xJ) (1)

where all λI and µJ are non-negative. The following theorem says that each Shannon inequality
has a space-bounded counterpart of the same form as for the basic inequalities (but with slightly
weaker space bound).

Theorem 3. Consider a linear inequality of the form (1) that is a linear combination of basic in-
equalities (is a Shannon inequality). Then the following space-bounded version of this inequality
is true:

∑
I∈L

λI Cs′(xI)6 ∑
J∈R

µJ Cs(xJ)+O(logn), (2)

if x1, . . . ,xk are strings of length at most n, and s′ = s+O(n2).

Here the constants in the O-notation depend on the inequality (more precisely, on k and the
coefficients λI and µ j)11, but neither on n nor on x1, . . . ,xk. Note that the overhead is worse than
for the basic inequalities: we have O(n2) instead of O(n).

Proof. Consider the basic inequalities whose sum is the inequality (1). For each of them consider
the space-bounded version (from Theorem 2). The sum of these space-bounded inequalities does
not give (2) directly: the resulting inequality may have terms C(xI) with the same I in the left
and right hand sides. In other words, we get an inequality of type (1), but the sets L and R are
not necessarily disjoint. For the unbounded complexities, these terms just cancel each other
(partially or completely), and we get the desired Shannon inequality. Now, when adding the
space-bounded versions of the same basic inequality, we get an inequality where the complexity

11The constant in the last line depends only on k, as the proof shows.

16

of the same tuple may appear with the same coefficient on both sides, but with different space
bounds. We can rewrite is as

∑
I∈L

λI Cs′(xI)+ ∑
K∈C

σK Cs′(xK)6 ∑
J∈R

µJ Cs(xJ)+ ∑
K∈C

σK Cs(xK)+O(logn).

Here xK are tuples that appear on both sides in the terms that are canceled in the unbounded
version (partially or completely). Some K ∈C may also appear in L or R (the part that is not
canceled), but not in both: the sets L and R are disjoint. We would like to cancel the complexities
of xK for K ∈C, but now the complexities are different. They have bound s′ on the left-hand side
and s on the right-hand side, and cannot be canceled anymore.

The following trick helps. Let f (s)= s+O(n) be the function from Theorem 2 that transforms
the right-hand side bound s to the left-hand side bound s′ (here s is a variable, while n and the
constants in the O(·)-notation are fixed). Consider the sequence of space bounds

u0 = s,u1 = f (u0), . . . ,uN = f (uN−1)

for some large N. All tuple complexities can only decrease if we increase the space bound from
ut to ut+1. Therefore, for a large enough N, namely, N = O(n) with a large enough constant, we
guarantee the existence of t such that all complexities of tuples are the same with bounds ut and
ut+1. Then we can add the space-bounded inequalities and cancel the common terms as we did
for the unbounded version. More precisely, we know that

∑
I∈L

λI Cut+1(xI)+ ∑
K∈C

σK Cut+1(xK)6 ∑
J∈R

µJ Cut (xJ)+ ∑
K∈C

σK Cut (xK)+O(logn),

and on both sides ut can be replaced by ut+1 due to our assumption. So we can cancel the
common terms. We cannot compute t for which there is no change in the complexities, but its
existence is guaranteed. Then we can replace the bound on the left-hand side by uN , and on the
right-hand side by s = u0.

It remains to note that for N = O(n) we add the O(n) term N = O(n) times, so the final value
after N iterations is s+O(n2).

In fact, we can improve the bound in Theorem 3. For that we may note that it is not needed
to have exactly the same complexities with space bounds ut+1 and ut . It is enough that the
difference between them is O(logn), since we have O(logn) term in the right hand side anyway.
Therefore, N = n/ logn iterations are enough, and in this way we replace O(n2) by O(n2/ logn),
getting a bit stronger version of Theorem 3.

Remark 5. This argument relies on the good space bounds in the left hand side of Theorem 1.
If we used (instead of Theorem 1) the bound with factor 2, the n-th iteration would give an
exponential factor 2n, so we wouldn’t get a polynomial (in n) space bound.12

Remark 6. It may happen that for some Shannon inequality the cancellation problem does not
arise. This indeed happens for some natural Shannon inequalities, e.g., for

2Cs′(A,B,C)6 Cs(A,B)+Cs(A,C)+Cs(B,C)+O(logn),

that is therefore true for s′ = s+O(n). However, it is not clear whether this can be done for
arbitrary Shannon inequalities.

12In the previous version of this paper (still available in arxiv, [4]) we had f (s) = s+O(logs)+O(n), and then
we estimated the iterations of f by a simple but boring argument. With a better bound f (s) = s+O(n) this is no
more needed.

17

5 General result
In this section we use a similar technique to prove a more general result that covers not only
Shannon inequalities but all true linear inequalities for Kolmogorov complexity. Recall that a
theorem from Hammer et al. ([5], see [14, Chapter 10] for the detailed exposition) says that the
same linear inequalities are true for complexities (with logarithmic precision) and for Shannon
entropies. In this section we want to show that all inequalities in this class have space-bounded
counterparts. For that, we need to modify the original proof from [5, 14] using the tools we
developed. Let us first formulate this result in a form similar to Theorem 3.

Let us fix some integer k > 1.

Theorem 4 (Inequality with two space bounds). Assume that a linear inequality for unbounded
complexities with non-negative coefficients λI and µJ ,

∑
I∈L

λI C(xI)6 ∑
J∈R

µJ C(xJ)+O(logn), (3)

is true for all n and for all strings x1, . . . ,xk of length at most n. Then its space-bounded version

∑
I∈L

λI Cs′(xI)6 ∑
J∈R

µJ Cs(xJ)+O(logn) (4)

holds for all n,s, for all strings x1, . . . ,xk of length at most n and for s′ = s+O(n2).

We will derive this result from a different statement that does not require separating positive
and negative coefficients:

Theorem 5 (Existence of a common space bound). Assume that a linear inequality for unbounded
complexities

∑
I

λI C(xI)6 O(logn), (5)

with coefficients λI that can be positive or negative, is true for all n and for all strings x1, . . . ,xk of
length at most n. Then for every n,s and for every x1, . . . ,xk of length at most n its space-bounded
version

∑
I∈L

λI Cs′(xI)6 O(logn) (6)

holds for some s′ ∈ [s,s+O(n2)].

This statement is purely existential (and a bit weird): it says that there exists some s′ between
s and s+O(n2) (depending on x1, . . . ,xk) for which the inequality is true. Still it is easy to see
that Theorem 4 immediately follows from Theorem 5: if the inequality (6) is true for some value
of s′, we may separate positive and negative coefficients as in (4) and then replace s′ by s in the
right hand side, and by s+O(n2) in the left hand side, due to the monotonicity. So it remains to
prove Theorem 5.

Proof. We adapt the arguments used in [5, 14] to prove the connection between (unbounded)
complexity and entropy inequalities.

Step 1. First of all, we convert our assumption into the language of Shannon’s information
theory and note that

∑
I

λIH(ξI)6 0

18

for arbitrary random variables ξ1, . . . ,ξk. Indeed, it is well known (see, e.g., [14, chapter 7])
that if ρ is an arbitrary random variable that has finite range, and ρ1, . . . ,ρN are independent
identically distributed copies of ρ , then the expected Kolmogorov complexity of the finite object
(ρ1, . . . ,ρN) is NH(ρ)+O(logN). Then, for a large N, we take N independent copies of the
tuple ξ1, . . . ,ξk. For every I ⊂ {1, . . . ,k} we have

H(ξI) =
E[C(ξ 1

I , . . . ,ξ
N
I)]

N
+

O(logN)

N
.

The matrix ξ
j

i can be considered as a k-tuple of its columns (for each column i is fixed and j
ranges from 1 to N), and the inequality for complexities can be applied to these columns. It
guarantees that

∑
I

λIH(ξI)6
O(logN)

N
,

and we get the required inequality since the left hand side does not depend on N.
Step 2. For a given tuple x1, . . . ,xk whose elements are strings of length at most n, and for

some s′ > s consider the set X of all the tuples y1, . . . ,yk of strings of length at most n such that

Cs′(yI |yJ)6 Cs′(xI |xJ)

for all sets I,J ⊂ {1, . . . ,k}. The log-size of X does not exceed Cs′(x1, . . . ,xk), since one of the
inequalities requires that Cs′(y1, . . . ,yk) 6 Cs′(x1, . . . ,xk) (for empty J and for I = {1, . . . ,k}).
The following lemma provides a lower bound for its size:

Lemma 4. The log-size of X is at least Cs′′(x1, . . . ,xk)−O(logn), where s′′ = s′+O(n).

Proof of Lemma 4. The set of all y1, . . . ,yk of length at most n that satisfy all the inequalities

C(yI |yJ)6 Cs′(xI |xJ)

(with unbounded complexity in the left side) can be enumerated if n and all the complexities in
the right side on the inequalities are given. So the information needed to start the enumeration is
of size O(logn). The tuple x1, . . . ,xk belongs to X , and can be reconstructed if its ordinal number
in the enumeration is given. Therefore,

C(x1, . . . ,xk)6 log |X |+O(logn).

Let us strengthen this inequality by using bounded complexity in the left-hand side:

Cs′+O(n)(x1, . . . ,xk)6 log |X |+O(logn).

Indeed, the enumeration can be performed sequentially with increasing space bounds 1,2,3, . . .,
using Lemma 3 to compute space-bounded complexities. As before, we ensure the enumeration
without repetitions by checking for every tuple y1, . . . ,yk whether it already appeared for the
previous value of the space bound. In this enumeration the tuple x1, . . . ,xk appears when the
space bound is s′ (or less). Stopping the enumeration at this time (knowing the number of tuples
that should be enumerated), we use space s′′ = s′+O(n). As in the proof of Theorem 1, we keep
the current value of the space bound all the time, but in such a way (as the difference between
this value and stacks’ size) that the used space never exceeds s′+O(n).

Lemma 4 is proven.

19

Step 3. As in the proof of Theorem 3, consider the sequence of bounds s, f (s), f (f (s)), . . .
where f (s) = s+O(n) is the bound from Lemma 4. When the bound s′ increases, all the
complexities Cs′(xI |xJ) may only decrease. Recall that the parameter k is fixed; we have only
O(1)-many decreasing complexities (for all pairs I,J⊂{1,2, . . . ,k}), and the initial value of these
complexities is O(n). Therefore, there are at most O(n) steps when some complexity decreases,
and it is enough to make O(n) iterations to come to an iteration step when all complexities do
not change. The total increase of the space bound during O(n) iterations is O(n2). So we come
to the following statement:

Lemma 5. There exists some s′ ∈ [s,s+O(n2)] such that

C f (s′)(xI |xJ) = Cs′(xI |xJ)

for all I,J ⊂ {1,2, . . . ,k}.

Combining Lemma 5 with Lemma 4, we conclude that there exists s′ ∈ [s,s+O(n2)] such
that the set X of all y1, . . . ,yk of length at most n such that

Cs′(yI |yJ)6 Cs′(xI |xJ)

(for all I, J) has log-size Cs′(x1, . . . ,xk)+O(logn): the upper bound for log |X | is obvious, and
the lower bound is provided by Lemma 4, where we can replace s′′ by s′ due to the choice of s′.

Now consider a tuple of random variables ξ1, . . . ,ξk uniformly distributed in the set X .
Its entropy is log |X | = Cs′(x1, . . . ,xk)+O(logn). The following lemma shows that the same
connection between entropies and complexities is true for an arbitrary subset of indices. By ξI
we denote the tuple of random variables ξi for i ∈ I.

Lemma 6.
H(ξI) = logCs′(xI)+O(logn).

for every I ⊂ {1, . . . ,k}.

This lemma finishes the proof of Theorem 5. Indeed, if some inequality is true for (un-
bounded) complexities with logarithmic precision, it is true for entropies. In particular, it is
true for entropies of subsets of ξ1, . . . ,ξk, and these entropies coincide with bounded-space
complexities of corresponding subsets of x1, . . . ,xk with logarithmic precision. Therefore the
inequality is also true for bounded-space complexities (for some s′ in the interval [s,s+O(n2)],
provided by Lemma 5). It remains to prove Lemma 6.

Proof of Lemma 6. Let I be some subset of {1, . . . ,k}, and J be its complement: J = {1, . . . ,k}\I.
We know that

H(ξ1, . . . ,ξk) = H(ξI)+H(ξJ |ξI).

All values of ξI are among tuples yI for y ∈ X , and therefore Cs′(yI)6 Cs′(xI). So the range of
ξI has log-size at most Cs′(xI)+O(1), and the entropy of a random variable does not exceed the
log-size of its range:

H(ξI)6 Cs′(xI)+O(1).

For similar reasons we have

H(ξJ |ξI)6 Cs′(xJ |xI)+O(1).

Indeed, for every y1, . . . ,yk in X we have Cs′(yJ |yI)6 Cs′(xJ |xI), so for every value of ξI the set
of possible values of ξJ has log-size at most Cs′(xJ |xI)+O(1). The choice of s′ guarantees that

20

the complexities of xJ given xI with bound s′ coincide with the same complexities with bound
s′′ = s′+O(n). So we can write a chain of inequalities with precision O(logn):

H(ξ1, . . . ,ξk)=H(ξI)+H(ξJ |ξI)6Cs′(xI)+Cs′(xJ |xI)=Cs′′(xI)+Cs′′(xJ |xI)6Cs′(x1, . . . ,xk).

(the last inequality is due to Theorem 1). We know that the leftmost and rightmost terms of
this inequality coincide (with O(logn) precision, as for the other parts), so all the inequalities
that appear in this chain are equalities with O(logn) precision. In particular, H(ξI) = Cs′(xI)+
O(logn). Lemma 6 is proven.

This finishes the proof of Theorem 5 (and its corollary, Theorem 4).

Remark 7. Again, we do not need the complexities in Lemma 5 with bounds s and s′ to be exactly
the same; all the arguments remain valid if we make them differ by O(logn). In this way we
may use O(n/ logn) steps instead of O(n), and get a slightly better bound O(s)+O(n2/ logn) in
Theorems 4 and 5.
Remark 8. We may consider a more general class of linear inequalities in Theorem 5 that include
all conditional complexities:

∑λI,J C(xI |xJ)6 0.

Theorem 5 remains valid, and the proof is essentially the same; we need to show in Lemma 6 that

H(ξI |ξJ) = logCs′(xI |xJ)+O(logn)

for all I,J ⊂ {1, . . . ,k}. This is done by a similar argument. First let us assume that I and J are
disjoint. Let R be the set of indices that are not in I and not in J. Then we write the following
chain of inequalities with O(logn) precision:

H(ξ1, . . . ,ξk) = H(ξJ)+H(ξI |ξJ)+H(ξR |ξI∪J)6 Cs′(xJ)+Cs′(xI |xJ)+Cs′(xR |xI∪J) =

= Cs′′(xJ)+Cs′′(xI |xJ)+Cs′′(xR |xI∪J)6 Cs′(x1, . . . ,xk),

and use the same argument as before. The difference is that here we need to use the bounded-
space Kolmogorov–Levin formula for triples:

Cs′′(x)+Cs′′(y|x)+Cs′′(z|x,y)6 Cs′(x,y,z)

which can be obtained by using the formula for pairs twice; recall that O(n) overhead, appearing
twice, is still O(n).

As before, Theorem 5 implies Theorem 4.
For unbounded complexities it makes no sense to include conditional complexities in the

inequalities, since Kolmogorov–Levin formula reduces them to unconditional ones. However,
for space-bounded complexities this reduction will change the bounds, so we may wish to allow
them to appear explicitly.
Remark 9.

In Theorems 4 and 5 we may also replace the O(logn) additive term by O(logCs(x1, . . . ,xk)).
For Theorem 4 we repeat the argument used to finish the proof of theorem 1. We noted

there that for all s and x, there exists a program p of length m = Cs(x) such that Cs+O(|x|)(p|x)6
O(logm) and Cs+O(1)(x|p)6 O(1). Hence, the better precision follows by replacing x1, . . . ,xk
by the programs p1, . . . , pk of length |pi|6 Cs+c(xi) where the constant c should be large enough
to guarantee that Cs+c(xi)6 Cs(x1, . . . ,xk)+O(1).

For Theorem 5 we use the same idea, but first we have to look at the proof of this theorem
and notice that in fact we proved the following statement:

21

if for some strings x1, . . . ,xk of length at most n the complexities Cs(xI |xJ) change at
most by d when s is increased up to s+ cn (here c is a large enough constant), then
the inequality (6) is valid for s′ = s with additional term O(d) in the right hand size.

Now the argument goes as follows. We have strings x1, . . . ,xk of length at most n and look at
the complexities Cs′(xI |xJ) as a function of s′. As before, we can find a interval of length c′n
inside [s,s+O(n2)] where all these complexities do not change. This can be done for arbitrary
large constant c′ (and the constant in O(n2) depends on c′). Let [u,v] be this interval. Then we
have Cu(xi)6 Cu(x1, . . . ,xk)+O(1), since Cs′(xi) is the same for all s′ ∈ [u,v].

Now we apply our replacement argument and find pi such that conditional complexities
Cu+O(n)(xi |pi) and Cu+O(n)(pi |xi) are at most O(logm), and the lengths of all pi are O(m),
where m = O(Cu(x1, . . . ,xk)). Therefore, if we increase the left endpoint u of the interval for the
space bounds by O(n), in this smaller interval [u+O(n),v] all the values Cs′(pI |pJ) differ from
corresponding Cs′(xI |xJ) by at most O(logm) and therefore change (when s′ is in [u+O(n),v])
at most by O(logm), since Cs′(xI |xJ) do not change at all. It remains to apply the result quoted
earlier to p1, . . . , pk. Note that the lengths of p1, . . . , pk are O(m), that Cs′(xI |xJ) are O(logm)

close to Cs′(pI |pJ), and that the remaining interval [u+O(n),v] has length at least cn for any
constant c if c′ is large enough.

6 Discussion
Increasing the density. Theorem 5 says that the space-bounded version of the inequality

(that is true in the unbounded version) is valid for the sequence of space bounds s j that is not
very sparse: s j+1 6 s j +O(n2). Is it possible to improve this result and show that the inequality
in question is true for “more dense” sequence of space bounds?

Space-bounded versions of other results. Our results are part of the space-bounded
version of algorithmic information theory. In general, one could take some notion or theorem
of algorithmic information theory and look for its space-bounded counterpart. For Muchnik’s
conditional codes theorem this was done by Musatov (see [11] and references therein).

However, there are many problems in this approach. For example, if we define mutual
information with space bound s in a natural way as

Is(a : b) = Cs(a)−Cs(a|b),

this notion is not monotone; a priori the mutual information can oscillate when s increases. It
would be interesting to understand what kinds of oscillations are possible. Is it possible that
two strings are mutually independent for some space bound, then dependent for some larger
bound, then again independent, and so on? Also the relations between Is(a : b), Is(b : a) and the
symmetric expression Cs(a)+Cs(b)−Cs(a,b) are unclear.

Time-bounded versions. We can try a similar approach for time bounds (instead of space
bounds). It also works, but the natural bound in the formula for complexity of pairs multiplies the
time complexity by 2O(n); also the simulation would increase time significantly (for a one-tape
machine the simulation of t steps needs more than t2 time). When we iterate these bounds O(n)
times, we get ridiculously high time bounds. It is just good luck that Sipser’s trick for space
bounds allows us to get some reasonable space bounds, and for time bounds things are much
worse. Still one can have some versions of our results with computable (though ridiculously
large) time bounds.

22

References
[1] G. Chaitin, Computational Complexity and Gödel’s incompleteness theorem, SIGACT

News, 9 (April 1971), 11–12.

[2] T.H. Chan, A combinatorial approach to information inequalities, Communications in
Informations and Systems, 1(3), 241–254 (September 2001, preliminary version in 1999)

[3] T.H. Chan and R.W. Yeung, On a relation between information inequalities and group theory,
IEEE Transactions on Information Theory, IT-48(7), 1992–1995 (July 2002, preliminary
version in 1999)

[4] P. Gacs, A. Romashchenko, A. Shen, Inequalities for space-bounded Kolmogorov complex-
ity, https://arxiv.org/abs/2010.10221

[5] D. Hammer, A. Romashchenko, A. Shen and N. Vereshchagin, Inequalities for Shannon
Entropies and Kolmogorov Complexities, in: Proceedings 12th IEEE conference on Com-
putational Complexity, Ulm, 1997, 13–23. Final version: Journal of Computer and System
Sciences, 60, 442–464.

[6] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems
of Information Transmission, 1, 1–7 (1965)

[7] A.N. Kolmogorov, Logical basis for information theory and probability theory, IEEE
Transaction on Information Theory, 14, 662–664 (1968)

[8] L. Longpré, Resource bounded Kolmogorov complexity, a link between computational
complexity and information theory, Ph. D. thesis, TR 86-776 (1986), 115 pp. Dept. of
Computer Science, Cornell University, Ithaca, NY 14583, https://ecommons.cornell.
edu/handle/1813/6616

[9] L. Longpré and S. Mocas, Symmetry of information and one-way functions, Information
processing letters, 46(2), 95–100 (1993)

[10] F. Matúš, Infinitely many information inequalities. In Proc. IEEE International Symposium
on Information Theory, 41–44 (2007)

[11] D. Musatov, Improving the space-bounded version of Muchnik’s conditional complexity
theory via naive derandomization, Theory of Computing Systems, 55, 299–312 (2014), see
also https://arxiv.org/abs/1009.5108

[12] A. Romashchenko, A. Shen and N. Vereshchagin, Combinatorial interpretation of Kol-
mogorov complexity, in: Proceedings 15th Annual IEEE Conference on Computational
Complexity, Florence, Italy, 2000, 131–137, https://doi.org/10.1109/CCC.2000.

856743. Final version: Theoretical Computer Science, 271(1–2), 111-123 (2002).

[13] A. Shen, Algorithms and programming: problems and solutions, 2nd ed., Springer, 2010.

[14] A. Shen, V.A. Uspensky, N. Vereshchagin, Kolmogorov complexity and algorithmic ran-
domness, AMS, 2018.

[15] M. Sipser, Halting space-bounded computations, Theoretical Computer Science, 10 (1980),
335–338.

23

https://arxiv.org/abs/2010.10221
https://ecommons.cornell.edu/handle/1813/6616
https://ecommons.cornell.edu/handle/1813/6616
https://arxiv.org/abs/1009.5108
https://doi.org/10.1109/CCC.2000.856743
https://doi.org/10.1109/CCC.2000.856743

[16] N. Vereshchagin and A. Shen, Algorithmic statistics revisited, in: Measures of Complexity.
Festschrift for Alexey Chervonenkis. Springer, 2015, 235–252.

[17] N. Vereshchagin and A. Shen, Algorithmic statistics: forty year later, in: Computability and
Complexity. Essays Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday.
Springer, 2017, 669–737.

[18] Z. Zhang and R.W. Yeung, On characterization of entropy function via information inequal-
ities, IEEE Transactions in Information Theory, IT-44(4), 1440–1452 (1998)

24

	1 Space-bounded Kolmogorov complexity
	2 Space-bounded complexity of pairs
	3 Basic inequalities: space-bounded version
	4 Shannon inequalities: iterations
	5 General result
	6 Discussion

