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Abstract

It is well known that normality (all factors of a given length appear in an infinite
sequence with the same frequency) can be described as incompressibility via finite
automata. Still the statement and the proof of this result as given by Becher and
Heiber [9] in terms of “lossless finite-state compressors” do not follow the standard
scheme of Kolmogorov complexity definition (an automaton is used for compres-
sion, not decompression). We modify this approach to make it more similar to the
traditional Kolmogorov complexity theory (and simpler) by explicitly defining the
notion of automatic Kolmogorov complexity and using its simple properties. Other
known notions (Shallit–Wang [50], Calude – Salomaa – Roblot [16]) of description
complexity related to finite automata are discussed (see the last section).

Using this characterization, we provide easy proofs for most of the classical results
about normal sequences, including the equivalence between aligned and non-aligned
definitions of normality, the Piatetski-Shapiro sufficient condition for normality (in
a strong form), and Wall’s theorem saying that a normal real number remains nor-
mal when multiplied by a rational number or when a rational number is added.
Using the same characterization, we prove a sufficient condition for normality of a
sequence in terms of Kolmogorov complexity. This condition implies the normality
of Champernowne’s sequence as well as some generalizations of this result (pro-
vided by Champernowne himself, Besicovitch, Copeland and Erdös). It can be also
used to give a simple proof of the result of Calude – Staiger – Stephan [17] saying
that normality cannot be characterized in terms of the automatic complexity notion
introduced by Calude – Salomaa – Roblot [16].

Then we extend this approach to finite state dimension showing that automatic
Kolmogorov complexity can be used to characterize the finite state dimension (de-
fined by Dai, Lathrop, Lutz and Mayordomo in [23]). We start with the block
entropy definition of the finite state dimension given by Bourke, Hitchcock and
Vinogradchandran [14] and show that one may use non-aligned blocks in this def-
inition. Then we show that this definition is equivalent to the definition in terms
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of automatic complexity. Finally, we use a slightly different version of automatic
complexity (a finite state version of a priori complexity) to show the equivalence
between the block entropy definition and original definition from [23] (this equiva-
lence was proven in [14]). We also give a “machine-independent” characterization
of finite state dimension in terms of superadditive functions that are “calibrated”
in some sense (have not too many small values), or superadditive upper bounds for
Kolmogorov complexity.

Finally, we use our tools to give a simple proof of Agafonov’s result saying that
normality is preserved by automatic selection rules [1] as well as the results of Schnorr
and Stimm [48] that relate normality to finite state martingales.

Some results of this paper were presented at the Fundamentals in Computing
Theory conferences in 2017 and 2019 [53, 29]. Preliminary version of this paper
(that does not mention the finite state dimension) was published in arxiv.org

in 2017 [54].
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1 Introduction

What is an individual random object? When could we believe, looking at an infinite
sequence α of zeros and ones, that α was obtained by tossing a fair coin? The minimal
requirement is that zeros and ones appear “equally often” in α: both have limit frequency
1/2. Moreover, it is natural to require that all 2k bit blocks of length k appear equally
often. Sequences that have this property are called normal (see the exact definition in
Section 3.1; a historic account can be found in [9, 15]).

Intuitively, a reasonable definition of an individual random sequence should require
much more than just normality; the corresponding notions are studied in the algorithmic
randomness theory (see [26, 37] for the detailed exposition, [55] for a textbook and [52] for
a short survey). A widely accepted definition of randomness is the given by Martin-Löf;
the corresponding notion is called now Martin-Löf randomness. The classical Schnorr
– Levin theorem says that this notion is equivalent to incompressibility : a sequence α
is Martin-Löf random if an only if prefixes of α are incompressible (do not have short
descriptions). See again [26, 37, 55, 52] for exact definitions and proofs.

It is natural to expect that normality, being a weak randomness property, corresponds
to some weak incompressibility property. The connection between normality and finite-
state computations was noticed long ago, as the title of [1] shows. This connection
led to a characterization of normality as “finite-state incompressibility” (see [9] and
then [8, 18]). However, the notion of incompressibility that was used in [9] does not fit
well the general framework of Kolmogorov complexity (finite automata are considered
there as compressors, while in the usual definition of Kolmogorov complexity we restrict
the class of allowed decompressors).

In this paper we give a definition of automatic Kolmogorov complexity that restricts
the class of allowed decompressors and is suitable for the characterization of normal
sequences as incompressible ones. This definition and its properties are considered in
Section 2. Section 3 presents one of our main results: characterization of normality
in terms of automatic complexity. First (Section 3.1) we recall the notion of a normal
sequence. Then (Section 3.2) we provide a characterization of normal sequences as
sequences whose prefixes have automatic Kolmogorov complexity close to the length.

This characterization is used in Section 4 to provide simple proofs for many clas-
sical results about normal sequences. In Section 4.1 we give a simple proof of an old
result (Borel, Pillai, Niven – Zuckerman, [13, 43, 39]) saying that normality can be
equivalently defined in terms of frequencies of aligned or non-aligned blocks (we get the
same notion in both cases). In Section 4.2 we provide a simple proof of the result by
Piatetski-Shapiro [40, 41] saying that a sequence is normal if for every k-bit block its
frequency is not much bigger than its expected frequency in a random sequence. This
proof can be used to prove a stronger version of this result, replacing a constant fac-
tor in Piatetski-Shapiro version by factor 2o(k). We note also that Piatetski-Shapiro’s
result easily implies Wall’s theorem (saying that normal numbers remain normal when
multiplied by a rational factor).

Then in Section 4.3 we return to the first example of a normal sequence given by
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Champernowne [21] and show that its normality easily follows from a simple sufficient
condition for normality in terms of Kolmogorov complexity (Theorem 5) . The same
sufficient condition easily implies the generalizations of Champernowne’s results obtained
by Copeland–Erdös ([22], see Section 4.4) and Besicovitch ([11], see Section 4.5). Finally,
in Section 4.6 we show how this sufficient condition gives a simple proof of a result proven
by Calude, Staiger and Stephan [17]. It says that the definition of automatic complexity
from [16] does not provide a criterion of normality (this question was asked in [16]).

The notion of normality can be interpreted as “weak randomness” (weak incom-
pressibility). Instead of randomness, one can consider a more general notion of effective
Hausdorff dimension introduced by Lutz in [33] (see [55, Sections 5.8 and 9.10] for de-
tails). The effective Hausdorff dimension is defined for arbitrary binary sequences and
is between 0 and 1; the smaller it is, the more compressible is the sequence. Formally
speaking, the effective Hausdorff dimension of a sequence α = a0a1 . . . can be defined in
terms of Kolmogorov complexity as lim infn[(complexity of a0 . . . an−1)/n]. For random
sequences the effective Hausdorff dimension equals 1 (as well as for some non-random
sequences, e.g., for a sequence that is obtained from a random one by replacing all terms
a2n by zeros). This notion is an effective counterpart of the classical notion of Hausdorff
dimension, see [33, 55].

The notion of effective Hausdorff dimension has a scaled-down version based on fi-
nite automata. This notion is called finite-state dimension and was introduced in [23].
In this paper it was defined in terms of finite-state martingales; in [14] an equivalent
definition in terms of entropy rates was provided. In Section 5.1 we revisit the defini-
tion of finite-state dimension in terms of entropy rates and show that one may use both
aligned and non-aligned blocks in this definition and get the same quantity. However,
this equivalence does not work for blocks of fixed size, as the counterexamples of Sec-
tion 5.2 (Theorem 9) show. In Section 5.3 we give a simplified proof of a theorem of Doty,
Lutz and Nandakumar [24] saying that finite-state dimension does not change when a
real number is multiplied by a rational factor. Then in Section 5.4 we show that finite-
state dimension can be characterized in terms of automatic complexity as the lim inf
of complexity/length ratio for prefixes, thus giving a characterization of finite-state di-
mension that is parallel to the characterization of effective Hausdorff dimension in terms
of Kolmogorov complexity. Again, this connection between finite-state dimension and
automatic compression was noted long ago in [23]. Our goal here is to give a statement
that is parallel to the Kolmogorov complexity characterization of effective Hausdorff di-
mension. The only difference is that we use automatic Kolmogorov complexity instead
of the standard one (and have to take infimum over all automata since there is no uni-
versal automaton that leads to minimal complexity). To prove this characterization, we
use the definition of finite-state dimension in terms of entropy rates. In Section 5.5 we
show that this characterization is quite robust: automatic complexity can be replaced
by other similar notions. For example, we may consider all superadditive upper bounds
for Kolmogorov complexity (Theorem 12), or even give a characterization of finite-state
dimension (Theorem 13) that does not mention entropy, Kolmogorov complexity and
finite-state machines at all, and just considers a class of superadditive functions that are
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“calibrated” in some natural sense (have not too many small values).
In Section 5.6 we give a simple proof that the definition of finite-state dimension

in terms of entropy rates is equivalent to the original definition from [23]. For that we
discuss a finite-state version of the notion of a priori probability (maximal semimea-
sure) used in the algorithmic information theory, and show that it also can be used to
characterize the finite-state dimension. In Section 5.7 we use our tools to give a sim-
ple proof for the result of Agafonov [1] (finite automaton selects a normal sequence if
applied to a normal sequence) and its extension by Schnorr and Stimm [48] saying the
any finite-state martingale is either constant or exponentially decreases on sufficiently
long prefixes of a normal sequence. We also mention a natural notion of finite-state
measure that generalizes the notion of multi-account gales [23] and also can be used to
characterize finite-state dimension (Section 5.8).

The notions of Hausdorff dimension, effective Hausdorff dimension and finite-state
dimension have strong counterparts [4], known as packing dimension, effective strong
dimension and finite-state strong dimension. They can be defined in terms of martin-
gales by requiring that winning martingale is large not only infinitely often (as for the
Hausdorff dimension) but for all sufficiently long prefixes. In terms of complexities, we
consider lim sup of complexity/length ratios instead of lim inf. We note (Section 5.9)
that all the results relating finite-state dimension, automatic complexity and automatic
a priori probability remain valid (with almost the same proofs) for the strong dimensions.
This include one of the oldest results of this type relating automatic compression rate
with the limit entropy of (non-aligned) blocks that goes back to Lempel and Ziv [65],
see also their earlier papers [31, 64, 63].

Finally, in Section 6 we compare our definition of automatic complexity with other
similar notions.

2 Automatic Kolmogorov complexity

2.1 General scheme of defining complexities

The algorithmic (Kolmogorov) complexity is usually defined in the following way: C(x),
the complexity of an object x, is the minimal length of its “description”. We assume
that both objects and descriptions are binary strings; the set of binary strings is denoted
by B

∗, where B = {0, 1}. Of course, this definition makes sense only after we explain
which type of “descriptions” we consider, but most versions of Kolmogorov complexity
can be defined according to this scheme [58].

Definition 1. Let D ⊂ B
∗ × B

∗ be a binary relation; we read (p, x) ∈ D as “p is a
D-description of x”. Then complexity function CD is defined as

CD(x) = min{|p| : (p, x) ∈ D},

i.e., as the minimal length of a D-description of x.
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Here |p| stands for the length of a binary string p and min(∅) = +∞, as usual. We
say that D is a description mode and CD(x) is the complexity of x with respect to the

description mode D.
We get the original version of Kolmogorov complexity (“plain complexity”) if we con-

sider all computable partial functions as description modes, i.e., if we consider relations
Df = {(p, f(p))} for arbitrary computable partial functions f as description modes.
Equivalently, we may say that we consider (computably) enumerable relations D that
are graphs of functions (for every p there exists at most one x such that (p, x) ∈ D; each
description describes at most one object). Then the Kolmogorov – Solomonoff optimal-
ity theorem says that there exists an optimal D in this class that makes CD minimal up
to an O(1) additive term. We assume that the reader is familiar with basic properties
of Kolmogorov complexity, see, e.g., [32, 55]; for a short introduction see also [52].

Note that we could get a trivial CD if we take, e.g., the set of all pairs as a description
mode D. In this case all strings have complexity zero, since the empty string describes
all of them. So we should be careful and do not consider description modes where the
same string describes too many different objects.

2.2 Automatic description modes

To define our class of description modes, let us first recall some basic notions related
to finite automata. Let A and B be two finite alphabets. Consider a directed graph
G whose edges are labeled by pairs (a, b) of letters (from A and B respectively). We
also allow pairs of the form (a, ε), (ε, b), and (ε, ε) where ε is a special symbol (not
in A or B) that informally means “no letter”. For such a graph, consider all directed
paths in it (no restriction on starting or final points), and for each path p concatenate
all the first components and also (separately) all the second components of the pairs
along the path; ε is replaced by an empty word. For each path we get some pair (up, vp)
where up ∈ A∗ and vp ∈ B∗ (i.e., up and vp are words over alphabets A and B).
Consider all pairs that can be read in this way along all paths in G, i.e., consider the
set RG = {(up, vp) | p is a path in G}. For each labeled graph G we obtain a relation
RG that is a subset of A∗ × B∗. For the purposes of this paper, we call the relations
obtained in this way “automatic”. This notion is similar to rational relations defined by
transducers [10, Section III.6]. The difference is that we do not fix initial/finite states
(so every sub-path of a valid path is also valid) and that we do not allow arbitrary
words as labels, only letters and ε. (This will be important, e.g., for the statement (j)
of Theorem 1.)

Definition 2. A relation R ⊂ A∗ × B∗ is automatic if there exists a labeled graph
(automaton) G such that R = RG.

Now we define automatic description modes as automatic relations where each string
describes at most O(1) objects.

Definition 3. A relation D ⊂ B
∗ × B

∗ is an automatic description mode if

• D is automatic in the sense of Definition 2;
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• D is a graph of an O(1)-valued function: there exists some constant c such that
for each p there are at most c values of x such that (p, x) ∈ D.

For every automatic description mode D we consider the corresponding complexity
function CD. There is no optimal mode D that makes CD minimal (see Theorem 1
below). So, stating some properties of complexity, we need to mention D explicitly.
Moreover, for a statement that compares the complexities of different strings, we need
to say something like “for every automatic description mode D there exists another
automatic description mode D′ such that. . . ”, and then make a statement that involves
both CD and CD′ . (A similar approach is needed when we try to adapt inequalities for
Kolmogorov complexity to the case of resource-bounded complexities.)

2.3 Properties of automatic description modes

Let us first mention some basic properties of automatic description modes.

Proposition 1.

(a) The union of two automatic description modes is an automatic description mode.

(b) The composition of two automatic description modes is an automatic description

mode.

(c) If D is a description mode, then {(p, x0): (p, x) ∈ D} is a description mode (here
x0 is the binary string x with 0 appended); the same is true for x1 instead of x0.

Proof. There are two requirements for an automatic description mode: (1) the relation
is automatic and (2) the number of images is bounded. The second one is obvious in all
three cases. The first one can be proven by a standard argument (see, e.g., [10, Theorem
4.4]) that we reproduce for completeness.

(a) The union of two relations RG and R′
G for two automata G and G′ corresponds

to an automaton that is a disjoint union of G and G′.
(b) Let S and T be automatic relations that correspond to automata K and L.

Consider a new graph that has set of vertices K × L. (Here we denote an automaton
and the set of vertices of its underlying graph by the same letter.)

• If an edge k → k′ with a label (a, ε) exists in K, then the new graph has edges
(k, l) → (k′, l) for all l ∈ L; all these edges have the same label (a, ε).

• In the same way an edge l → l′ with a label (ε, c) in L causes edges (k, l) → (k, l′)
in the new graph for all k; all these edges have the same label (ε, c).

• Finally, if K has an edge k → k′ labeled (a, b) and at the same time L has an edge
l → l′ labeled (b, c), where b is the same letter, then we add an edge (k, l) → (k′, l′)
labeled (a, c) in the new graph.
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Any path in the new graph is projected into two paths in K and L. Let (p, q) and
(u, v) be the pairs of words that can be read along these projected paths in K and L
respectively, so (p, q) ∈ S and (u, v) ∈ T . The construction of the graphK×L guarantees
that q = u and that we read (p, v) in the new graph along the path. So every pair (p, v)
of strings that can be read in the new graph belongs to the composition of S and T .

On the other hand, assume that (p, v) belong to the composition, i.e., there exists
q such that (p, q) can be read along some path in K and (q, v) can be read along some
path in L. Then the same word q appears in the second components in the first path
and in the first components in the second path. If we align the two paths in such a way
that the letters of q appear at the same time, we get a valid transition of the third type
for each letter of q. Then we complete the path by adding transitions in between the
synchronized ones (interleaving them in arbitrary way); all these transitions exist in the
new graph by construction.

(c) We add an additional outgoing edge labeled (ε, 0) for each vertex of the graph;
all these edges go to a special vertex that has no outgoing edges.

Remark. Given a graph, one can check in polynomial time whether the corresponding
relation is O(1)-valued [61, Theorem 5.3, p. 777].

2.4 Properties of automatic complexity

Now we are ready to prove the following simple result about the properties of auto-

matic Kolmogorov complexity functions, i.e., of functions CR where R is some automatic
description mode.

Theorem 1 (Basic properties of automatic Kolmogorov complexity).

(a) There exists an automatic description mode R such that CR(x) 6 |x| for all strings

x.

(b) For every automatic description mode R there exists some automatic description

mode R′ such that CR′(x0) 6 CR(x) and CR′(x1) 6 CR(x) for all x.

(c) For every automatic description mode R there exists some automatic description

mode R′ such that CR′(x̄) 6 CR(x), where x̄ stands for the reversed x.

(d) For every automatic description mode R there exists some constant c such that

C(x) 6 CR(x) + c. (Here C stands for the plain Kolmogorov complexity.)

(e) For every automatic description mode R there exists some constant c such that for

every n there exist at most c2n strings x such that CR(x) < n.

(f) For every c > 0 there exists an automatic description mode R such that

CR(1
n) 6 n/c for all n.

(g) For every automatic description mode R there exists some c > 0 such that CR(1
n) >

n/c− 1 for all n.
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(h) For every two automatic description modes R1 and R2 there exists an automatic

description mode R such that CR(x) 6 CR1(x) and CR(x) 6 CR2(x) for all x.

(i) There is no optimal mode in the class of automatic description modes. (A mode R
is called optimal in some class if for every mode R′ in this class there exists some

c such that CR(x) 6 CR′(x) + c for all strings x.)

(j) For every automatic description mode R, if x′ is a substring of x, then CR(x
′) 6

CR(x).

(k) Moreover, CR(xy) > CR(x) + CR(y) for every two strings x and y.

(l) For every automatic description mode R and for every constant ε > 0 there exists

an automatic description mode R′ such that CR′(xy) 6 (1 + ε)CR(x) + CR(y) for
all strings x and y.

(m) Let S be an automatic description mode. Then for every automatic description

mode R there exists an automatic description mode R′ such that CR′(y) 6 CR(x)
for every (x, y) ∈ S.

(n) If we allow a bigger alphabet B instead of B = {0, 1} as an alphabet for descriptions,

then the complexity becomes log |B| times smaller, up to a constant factor that can

be chosen arbitrarily close to 1. More precisely, for every automatic description

mode D with arbitrary alphabet B and every ε > 0 there exist an automatic de-

scription mode D′ with binary alphabet such that

CD′(x) 6 (1 + ε) log |B|CD(x)

for all sufficiently long x.

Proof. (a) Consider an identity relation as a description mode; it corresponds to an
automaton with one state.

(b) This is a direct corollary of Proposition 1, (c).
(c) The definition of an automaton is symmetric (all edges can be reversed), and the

O(1)-condition still holds.
(d) Let R be an automatic description mode. An automaton defines a decidable

(computable) relation, so R is decidable. Since R defines a O(1)-valued function, a
Kolmogorov description of some y that consists of its R-description x and the ordinal
number of y among all strings that are in R-relation to x (in some natural ordering), is
only O(1) bits longer than x.

(e) This is a direct corollary of d, since there are less than 2n strings of Kolmogorov
complexity less than n. Or we may just count all the descriptions of length less than n.
There are less than 2n of them, and each describes only O(1) strings.

(f) Consider an automaton that consists of a cycle where it reads one input symbol
1 and then produces c output symbols 1. Here we consider first components of pairs
as “input symbols” and second components as “output symbols” since the relation is
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considered as an O(1)-multivalued function. Recall that there are no restrictions on
initial and finite states, so this automaton produces all pairs (1k, 1l) where (k − 1)c 6

l 6 (k + 1)c.
(g) Consider an arbitrary description mode, i.e., an automaton that defines some

O(1)-valued relation. Then every cycle in the automaton that produces some output
letter should also produce some input letter, otherwise an empty input string corresponds
to infinitely many output strings. For any sufficiently long path in the graph we can cut
away a minimal cycle, removing at least one input letter and at most c output letters,
where c is the number of states, until we get a path of length less than c.

(h) This follows from Proposition 1, (a).
(i) This statement is a direct consequence of (f) and (g). Note that for finitely many

automatic description modes there is a mode that is better than all of them, as (h) shows,
but we cannot do the same for all description modes (as was the case for Kolmogorov
complexity).

(j) If R is a description mode, (p, x) belongs to R and x′ is a substring of x, then
there exists some substring p′ of p such that (p′, x′) ∈ R. Indeed, we may consider the
input symbols used while producing x′.

(k) Note that in the previous argument we can choose disjoint p′ for disjoint x′.
(l) Informally, we modify the description mode as follows: a fixed fraction of input

symbols is used to indicate when a description of x ends and a description of y begins.
More formally, let R be an automatic description mode; we use the same notation R
for the corresponding automaton. Consider N + 1 copies of R (called 0-, 1-,. . . , N -th
layers). The outgoing edges from the vertices of i-th layer that contain an input symbol
are redirected to (i+1)-th layer (the new state remains the same, only the layer changes,
so the layer number counts the input length). The edges with no input symbol are left
unchanged (and go to i-th layer as before). The edges from the N -th layer are of two
types: for each vertex x there is an edge with label (0, ε) that goes to the same vertex
in 0-th layer, and edges with labels (1, ε) that connect each vertex of N -th layer to all
vertices of an additional copy of R (so we have N + 2 copies in total). If both x and
y can be read (as outputs) along the edges of R, then xy can be read, too (additional
zeros should be added to the input string after groups of N input symbols). We switch
from x to y using the edge that goes from Nth layer to the additional copy of R (using
additional symbol 1 in the input string). The overhead in the description is one symbol
per every N input symbols used to describe x. We get the required bound, since N can
be arbitrarily large.

The only thing to check is that the new automaton is O(1)-valued. Indeed, the
possible switch position (when we move to the states of the additional copy of R) is
determined by the positions of the auxiliary bits modulo N + 1: when this position
modulo N + 1 is fixed, we look for the first 1 among the auxiliary bits. This gives only
a bounded factor (N +1) for the number of possible outputs that correspond to a given
input.

(m) The composition S ◦R is an automatic description mode due to Proposition 1,
(b).
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(n) Take the composition of a given description mode R with a mode that provides
block encoding of inputs. Note that block encoding can be implemented by an automa-
ton. There is some overhead when |B| is not a power of 2, but the corresponding factor
becomes arbitrarily close to 1 if we use block code with large block size.

Not all these results are used in the sequel; we provide them for comparison with
the properties of the standard Kolmogorov complexity function. Still let us introduce a
name for the property (k) since it plays an important role in the sequel.

Definition 4. A function f with non-negative values defined on binary strings is called
superadditive if f(xy) > f(x) + f(y) for any two strings x and y.

Now (k) can be reformulated as follows: for every automatic description mode R the

function CR is superadditive. As we will see (Sections 5.4 and 5.5), the characterization
of normality (and finite-state dimension, see below) in terms of automatic complexity
can be extended to all upper bounds for Kolmogorov complexity that are superadditive,
and also to all superadditive functions satisfying the property (e). Note that usual
Kolmogorov complexity is not superadditive for obvious reasons: say, C(xx) is close to
C(x), not to 2C(x). Note also that a superadditive function equals 0 for the empty
string (let x and y be empty in the definition).

3 Normality and incompressibility

3.1 Normal sequences and numbers

Consider an infinite bit sequence α = a0a1a2 . . . and some integer k > 1. Split the
sequence α into k-bit blocks: α = A0A1 . . .. For every k-bit string r consider the limit
frequency of r among the Ai, i.e. the limit of #{i : i < N and Ai = r}/N as N → ∞.
This limit may exist or not; if it exists for some k and for all r, we get a probability
distribution on k-bit strings.

Definition 5. A sequence α is normal if for every number k and every string r of length
k this limit exists and is equal to 2−k.

Sometimes sequences with these properties are called strongly normal while the name
“normal” is reserved for sequences that have this property for k = 1.

There is a version of the definition of normal sequences that considers all occurrences
of some string r in α (while Definition 5 considers only aligned ones, whose starting
point is a multiple of k). In this “non-aligned” version we require that the limit of
#{i < N : αiαi+1 . . . αi+k−1 = r}/N equals 2−k for all k and for all strings r of length k.
A classical result1 says that this is an equivalent notion, and we give below (Section 4.1)
a simple proof of this equivalence using automatic complexity. Before this proof is given,

1In fact, this result has a rather complicated history. The original definition of normal numbers was
given by Borel [13]. He required that every k-bit strings appears with frequency 2−k among blocks that we
get when we delete some finite prefix of the sequence and cut the rest into k-bit blocks. This implies both
aligned and non-aligned normality (the aligned normality is the special case when the prefix is empty, the
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we will distinguish the two definitions by using the name “non-aligned-normal” for the
second version.

A real number is called normal if its binary expansion is normal (we ignore the
integer part). If a number has two binary expansions, like 0.0111 . . . = 0.1000 . . ., both
expansions are not normal, so this is not a problem.

A classical example of a normal number is the Champernowne number [21]

0.0 1 10 11 100 101 110 111 1000 1001 . . .

(the concatenation of all positive integers in binary). Let us sketch the (standard) proof
of its normality using the non-aligned version of normality definition.2 AllN -bit numbers
in the Champernowne sequence form a block that starts with 10N−1 and ends with 1N .
Note that every string of length k ≪ N appears in this block with probability close
to 2−k, since each of 2N−1 strings (after the leading 1 for the N -bit numbers in the
Champernowne sequence) appears exactly once. The deviation is caused by the leading
1’s and also by the boundaries between the consecutive N -bit numbers where the k-bit
substrings are out of control. Still the deviation is small since k ≪ N .

This is not enough to conclude that the Champernowne sequence is (non-aligned)
normal, since the definition speaks about frequencies in all prefixes; the prefixes that end
on a boundary between two blocks are not enough. The problem appears because the
size of a block is comparable to the length of the prefix before it. To deal with arbitrary
prefixes, let us note that if we ignore two leading digits in each number (first 10 and then
11) instead of one, the rest is periodic in the block (the block consists of two periods).
If we ignore three leading digits, the block consists of four periods, etc. An arbitrary
prefix is then close to the boundary between these sub-blocks, and the distance can be
made small compared to the total length of the prefix. (End of the proof sketch.)

In fact, the full proof that follows this sketch is quite tedious. There are much more
general reasons why this number is normal, as we will see in Section 4.3, where this
result becomes an immediate corollary of the sufficient condition for normality in terms
of Kolmogorov complexity (and this condition in its turn is a easy consequence of the
criterion of normality in terms of automatic complexity).

non-aligned normality can be shown by averaging frequencies for prefixes of length 0, 1, . . . , k−1). Borel
noted that his definition follows from non-aligned normality (“La propriété caractéristique”, p. 261).
However, he gave no proof, and the relation between these three definitions (aligned, non-aligned and
Borel’s definition that implies both) was clarified much later. Pillai [43], correcting his earlier paper [42],
showed that aligned normality implies Borel’s definition. Niven and Zuckerman [39] gave a proof of
Borel’s claim. Cassels [19] provided an alternative proof for the result of Niven and Zuckerman, while
Maxfield [36] provided an alternative proof for the result of Pillai. See also [38]; a more recent exposition
can be found, e.g., in a book of Kuipers and Niederreiter [30, Chapter 1, Section 8]; it uses as a tool the
Piatetski-Shapiro criterion (see Section 4.2 below), Bugeaud’s book [15, Sect. 4.1, Equivalent definitions
of normality], or in the Becher – Carton chapter in a recent collection [6, Theorem 10]. Even the latter
exposition is quite technical and does not use the relation between normality and finite-state machines,
though this relation is presented later in the chapter [6, sect 5].

2Later we will derive the normality of this sequence from Theorem 5. Still we want to give an idea
what kind of arguments can be avoided by using our tools.
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The definition of normality can be given for an arbitrary alphabet (instead of the
binary one), and we get the notion of b-normality of a real number for every base b > 2.
It is shown by Cassels [20] and Schmidt [46] that for different bases we get non-equivalent
notions of normal real numbers; the proof is rather difficult. The numbers in [0, 1] that
are normal for every base are called absolutely normal. Their existence can be proved
by a probabilistic argument. Indeed, for every base b, almost all reals are b-normal (the
non-normal numbers have Lebesgue measure 0 by the Strong Law of Large Numbers).
Therefore the numbers that are not absolutely normal form a null set (a countable union
of the null sets for each b). The constructive version of this argument shows that there
exist computable absolutely normal numbers. This result goes back to an unpublished
note of Turing (1938, see [5]).

In the next section we prove the connection between normality and automatic com-
plexity (Theorem 2): a sequence α is normal if for every automatic description mode D
the complexities CD of its prefixes never become much smaller than their lengths.

3.2 Normality and incompressibility

Theorem 2. A sequence α = a0a1a2 . . . is normal if and only if

lim inf
n→∞

CR(a0a1 . . . an−1)

n
> 1

for every automatic description mode R.

Proof. First, let us show that a sequence that is not normal is compressible. Here is the
sketch: Assume that for some bit sequence α and for some k the requirement for aligned
k-bit blocks is not satisfied. Using compactness arguments, we can find a sequence of
lengths Ni such that for the prefixes of these lengths the frequencies of k-bit blocks do
converge to some probability distribution P on B

k, but this distribution is not uniform.
Then its Shannon entropy H(P ) is less than k, and there is a prefix-free code for P of
small average length. We use this code to get an efficient automatic description for the
prefixes of length Ni. Let us explain the details.

Recall the basic notions of Shannon information theory (see, e.g., [55, Sect. 7.1]).
Consider a random variable π with finite range. It corresponds to a probability distri-
bution P on its range. The entropy of π (or P , they can be used interchangeably) is
defined as follows. Assume that the range consists of m elements having probabilities
p1, . . . , pm. Then, by definition,

H(P ) = H(π) =
m
∑

i=1

pi log
1

pi
.

If some pi are zeros, the corresponding terms are omitted (this is natural since p log(1/p)
converges to 0 as p → 0). The Shannon entropy of a variable with m values is at most
logm, and it is equal to logm if and only if the distribution is uniform (all m elements
have the same probability).
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The Shannon entropy is related to the average length of prefix codes. A prefix-free

code for a variable with m values is a m-tuple of binary strings that is prefix-free (none
of the strings is a prefix of another one, so the code can be uniquely decoded from left
to right). These strings (called codewords) encode m values of the random variable, and
the average length of the code is defined as

∑m
i=1 pi|xi| where pi is the probability of

ith value and xi is its encoding (and |xi| stands for the length). A basic result of the
Shannon information theory guarantees that (a) the average length of every prefix-free
code for π is at least H(P ), and (b) there exists a prefix-free code of average length close
to H(P ), namely, of length at most H(P ) + 1 (Shannon – Fano code)3. The following
lemma uses this code to construct an automatic description mode.

Lemma 2.1. Let k be some integer and let P be a distribution on a set B
k of k-bit

blocks. Then there exists an automatic description mode R such that for every string x
whose length is a multiple of k, we have

CR(x) 6
|x|

k

(

∑

B

Q(B) log
1

P (B)
+ 1

)

where Q is the distribution on k-bit blocks appearing when x is split into blocks of size

k.

Proof of Lemma 2.1. Consider the Shannon – Fano code for k-bit blocks based on the
distribution P . Then the length of the codeword for arbitrary block B is at most
log(1/P (B)) + 1. This code is prefix-free and can be uniquely decoded bit by bit by a
finite automaton that reads the input string until a codeword is found, and then outputs
the coressponding block and starts waiting for the next codeword. Therefore, this code
corresponds to some automatic description mode R. A string x is a concatenation of
|x|/k blocks of length k, and has a description whose length is the sum of the lengths

of the codes for these blocks. Each block B has frequency Q(B), i.e., appears |x|
k Q(B)

times, and this number should be multiplied by the codeword length, which is at most
log(1/P (B))+1. The overhead term addsQ(B) for each block B, so we get 1 in total.

Note that this lemma allows some values P (B) to be zeros; if such a block appears
in x, the right hand side is infinite and the inequality is vacuous.

We apply this lemma to Ni-bit prefixes of α for which the corresponding distributions
Qi on B

k converge to some distribution P that is not uniform, so H(P ) < k. We want
to construct an automatic description mode R such that lim inf CR(xi)/|xi| < 1 where
xi is the Ni-bit prefix of α, thus proving Theorem 2 in one direction.

Assume first that H(P ) < k − 1 and P is everywhere positive (no blocks have zero
probability). Then Lemma 2.1 applied to xi gives the desired result immediately. Indeed,
Qi(B) converge to P (B) and the sum over B in the right hand side converges to H(P ).

3This “+1” overhead is due to rounding if the frequencies are not powers of 2. To prove this result,
for each pi we consider the minimal integer ki such that 2−ki 6 pi, and encode ith letter by a binary
string of length ki.
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It remains to deal with the two problems mentioned. We start with the first one:
what to do if H(P ) is close to k and the gap is less than 1. In this case we switch to
larger blocks to get the gap we need. It is done in the following way.

Selecting a subsequence, we may assume without loss of generality that the limit
frequencies exist also for (aligned) 2k-bit blocks, so we get a random variable P0P1

whose values are 2k-bit blocks (and P0 and P1 are their first and second halves of length
k). The variables P0 and P1 correspond to even and odd blocks respectively. They may
be dependent, and their distributions may differ from the initial distribution P for k-bit
blocks. Still we know that P is the average of P0 and P1 since P is computed for all
blocks, and P0/P1 correspond to odd/even blocks. A convexity argument (the function
p 7→ −p log p used in the definition of entropy has negative second derivative) shows that
H(P ) > [H(P0) +H(P1)]/2.

4 Then

H(P0P1) 6 H(P0) +H(P1) 6 2H(P ),

so P0P1 has twice bigger gap between entropy and length (at least). Repeating this
argument, we can find k such that the difference between length and entropy is greater
than 1.

Now the second problem: what to do if some values of P are zeros (some blocks have
zero probability in the limit distribution). In this case we cannot use the code provided
by Lemma 2.1, since some blocks, while having zero limit frequency, still appear in the
prefixes of α and have no codeword. Their limit frequency is zero, so it is not important
how long would be the corresponding codewords, but some codewords for them are
needed.

There are several ways to overcome this obstacle. For example, one may change
the code provided by the Lemma, adding leading 0 to all codewords, and use codewords
starting from 1 to encode “bad” blocks (having zero limit probabilities). Then all blocks,
including the bad ones, will have codes of finite length, the constant 1 in the Lemma is
replaced by 2 (this does not hurt), and we can proceed as before.

The other possibility is to use some P ′ that is close to P and has all non-zero
probabilities. Then the limit average length of code will be bigger, since we use the code
for P ′ while the actual (limit) distribution is P . The overhead (called the Kullback –
Leibler distance between P and P ′) can be made arbitrarily small due to continuity, and
we still get a contradiction making the overhead smaller than the gap.

This finishes the proof in one direction.
Now we need to prove that an arbitrary normal sequence α is incompressible. Let R

be an arbitrary automatic description mode. Consider some k and split the sequence into
k-bit blocks α = A0A1A2 . . .. (Now Ai are just the blocks in α, not random variables).
We will show that

lim inf CR(A0A1 . . . An−1)/nk

4There is more conceptual way to explain this: consider a random bit b and random variable P ′ that
has the same distribution as P0 when b = 0 and the same distribution as P1 when b = 1. Then P ′ has
the same distribution as P , and H(P ′) = H(P ) is not smaller than H(P ′ |b) = [H(P0) +H(P1)]/2.
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cannot be much smaller than 1. More precisely, we will show that

lim inf
CR(A0A1 . . . An−1)

nk
> 1−

O(1)

k
,

where the constant in O(1) does not depend on k. This is enough, because (i) adding
the last incomplete block can only increase the complexity and the change in length is
negligible, and (ii) the value of k may be arbitrarily large.

Now let us prove this bound for some fixed k. Recall that

CR(A0A1 . . . An−1) > CR(A0) + CR(A1) + . . .+CR(An−1)

and that C(x) 6 CR(x) + O(1) for all x and some O(1)-constant that depends only on
R (Theorem 1). By assumption, all k-bit strings appear with the same limit frequency
among A0, A1,. . . , An−1. It remains to note that the average Kolmogorov complexity
C(x) of all k-bit strings is k − O(1); indeed, the fraction of k-bit strings that can be
compressed by more than d bits (C(x) < k − d) is at most 2−d, and the series

∑

d2−d

(the upper bound for the average number of bits saved by compression) has finite sum.
Alternatively, one may also note that for d = log k we have O(1/k) fraction of strings

that are compressible more than by d (and at most by k) bits, and all other strings are
compressible at most by d = log k bits, so the average compression is O(1) +O(log k) =
O(log k), and O(log k) bound is enough for our purposes (we do not need the stricter
O(1) bound proven earlier).

A basic result of algorithmic information theory (Schnorr–Levin complexity charac-
terization of randomness) says that for a Martin-Löf random sequence a0a1a2 . . . we have
K(a0 . . . an−1) > n−O(1) (where K(x) stand for the prefix complexity of x). Since prefix
and plain complexity of x differ by O(log |x|), we conclude that C(a0 . . . an−1) > n−o(n)
for all Martin-Löf random sequences. Theorem 1, (d) implies that the same is true for
automatic complexities; therefore, according to our criterion (Theorem 2), every Martin-
Löf random sequence is normal (a classical result of algorithmic information theory, an
effective version of the law of large numbers). Recalling that almost all bit sequences
are Martin-Löf random, we conclude that almost all bit sequences are normal (one of
the first Borel’s results about normality, [13, p. 261]).

4 Using the incompressibility criterion for normality

In this section we use the incompressibility characterization of normality to provide
simple proofs for several classical results about normal sequences. First we prove that
one may consider non-aligned frequencies of blocks when defining normality (Section 4.1).
Then we give a simple proof of Piatetski-Shapiro’s theorem from [40, 41] (Section 4.2).
We give a simple sufficient condition for the normality of Champernowne-type sequences
(Theorem 5, Section 4.3). This condition implies the normality of Champernowne’s
sequence; it is then applied to provide simple proofs of the results from Copeland–
Erdös [22] (Section 4.4), Besicovitch [11] (Section 4.5) and Calude – Staiger – Stephan
(Section 4.6).
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4.1 Non-aligned version of normality

Recall the proof of Theorem 2. A small modification of this proof adapts it to the
non-aligned definition of normality, thus providing the proof of the equivalence between
aligned and non-aligned definitions of normality. Let us see how this is done.

Let α be a sequence that is not normal in the non-aligned version. This means
that for some k the (non-aligned) k-bit blocks do not have the correct limit distribution.
These blocks can be split into k groups according to their starting positions modulo k. In
one of the groups blocks do not have a correct limit distribution (otherwise the average
distribution would be correct, too). So we can delete some prefix (less than k symbols)
of our sequence and get a sequence that is not normal in the aligned sense. Theorem 2
says that its prefixes are compressible. The same is true for the original sequence since
adding a fixed finite prefix (or suffix) changes complexity and length at most by O(1),
after a suitable change of the description mode, as Theorem 1, (a,b), implies.

In the other direction the proof goes as follows (see the next paragraph for details).
Let us assume that the sequence is normal in the non-aligned sense. The aligned fre-
quency of some compressible-by-d-bits block (as well as any other block) can be only
k times bigger than its non-aligned frequency, which is exponentially small in d (the
number of saved bits), so we can choose the parameters to get the required bound.

Here are the details. Consider a non-aligned normal sequence, i.e., a sequence that
does not satisfy the non-aligned version of normality definition. Now consider all blocks
(strings) of length k that are d-compressible in the sense that their CR-complexity is
smaller than k − d. There is at most O(2k−d) of them, as Theorem 1(e) says. So their
frequency among aligned blocks in our sequence is at most k2−d+O(1). Indeed, it can be
only k times bigger than their frequency among non-aligned blocks: the numerator (the
number of bad occurences) can only decrease, and the denominator (the total number
of occurences) becomes k times smaller if we consider only aligned occurences.

For all non-d-compressible blocks R-compression saves at most d bits, and for d-
compressible blocks it saves at most k bits, so the average number of saved bits (per
k-bit block) is bounded by

d+ k2−d+O(1) · k = d+O(k22−d).

We need this bound to be o(k), i.e., we need that

d

k
+O(k2−d) = o(1)

as k → ∞. This can be achieved, for example, if d = 2 log k.
In this way we get the following corollary [13, 43, 39]:

Corollary. The aligned and non-aligned definitions of normality are equivalent.

Note also that adding/deleting a finite prefix does not change the compressibility,
and, therefore, normality. (For the non-aligned version of the normality definition it
is obvious anyway, but for the aligned version it is not so easy to see directly, see the
discussion of the original Borel’s definition of normality above for historical details.)
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4.2 Piatetski-Shapiro theorem

Piatetski-Shapiro in [40] proved5 the following result: if for some constant c and for all

k every k-bit block appears in a sequence α with (non-aligned) lim sup-frequency at most

c2−k, then the sequence α is normal.
This result is an immediate byproduct of the proof of the normality criterion (Theo-

rem 2). Indeed, in the argument above we had a constant factor in the O(k2−d) bound
of Section 4.1 for the average compression due to compressible blocks. If the compress-
ible blocks appear at most c times more often (as well as all other blocks, but this
does not matter), we still have the same O-bound, so we get Piatetski-Shapiro’s result
(in aligned and non-aligned version at the same time; Piatetski-Shapiro considered the
aligned version).

We can even allow the constant c to depend on k if its growth as a function of k
is not too fast. Namely, the following stronger result was proven by Piatetski-Shapiro
in [41]):

Theorem 3 (Piatetski-Shapiro theorem, strong version). Let α be an infinite bit se-

quence. Assume that for every k and for every k-bit block B its aligned (or non-aligned)
frequency in all sufficiently long prefixes of α does not exceed ck2

−k, where ck depends

only on k and ck = 2o(k). Then α is a normal sequence.

Proof. Note first that the non-aligned version of this result follows from the aligned ver-
sion. Indeed, aligned frequency of arbitrary block may exceed the non-aligned frequency
of the same block only by a factor of k, and k = 2o(k), so this additional factor still keeps
ck = 2o(k).

To prove the aligned version of the result, recall the proof of Theorem 2. Consider
some threshold dk (to be chosen later). We split all k-bit blocks into two groups: the
blocks that are compressible by more than dk bits, and all the other ones. The fraction
of the blocks of the first type (called “compressible” blocks in the sequel) among all
k-bit strings is at most 2−dk . Therefore, by the assumption, if we split a long prefix of α
into aligned k-bit blocks, the fraction of compressible blocks among them is bounded by
(approximately) ck2

−dk , and each of them is compressible by at most k bits (for obvious
reasons). All other blocks are compressible by at most dk bits, so the number of saved
bits per block is at most kck2

−dk + dk. We need this amount to be o(k) to finish the
proof of normality as before, so we need to choose dk in such a way that

dk = o(k) and kck2
−dk = o(k).

The second condition says that dk exceeds log ck and the difference tends to infinity.
Since ck = 2o(k), one can easily satisfy both conditions (e.g., let dk be log ck+log k).

Remark. In fact, Piatetski-Shapiro’s statement in [41] is a bit stronger: it assumes only
that ck = 2o(k) for infinitely many k, i.e., that lim infk

log ck
k = 0. The proof remains the

5The proof used ergodic theory. Later in [44, 45, 41] alternative proofs that do not refer to ergodic
theory were given.
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same (we use the assumption to get a lower bound for automatic complexity of a prefix
by splitting it into blocks; it is enough to do this not for all k but for infinitely many k).
Also there is a minor technical difference: Piatetski-Shapiro considered real numbers α
and the distribution of fractional parts of αqk, where q is the base (we consider the case
q = 2, but this does not matter). The condition in [41] says that the density of fractional
parts that fall inside some interval ∆ ⊂ [0, 1] is bounded by f(|∆|) for a suitable f , where
|∆| is the length of ∆. It is easy to see that one can consider only intervals ∆ obtained
by dividing [0, 1] into q, q2, . . . parts (since any interval can be covered by these “aligned”
intervals with bounded overhead). In this way we get the statement formulated above.6

Remark. The bound for ck in this theorem is optimal, as the following example (from [41])
shows. Consider a sequence α that is random with respect to Bernoulli measure with
parameter 1

2 + δ. Then the frequency of the most frequent k-bit block (all ones) is
(12 + δ)k = 2−k2εk for some constant ε that can be arbitrarily small if δ is small. On the
other hand, α is not normal.

Let us note that Piatetski-Shapiro’s result easily implies a result of Wall [60]. Recall
that a real number is normal if its binary expansion is normal. We ignore the integer part
(since it has only finitely many digits, adding it as a prefix would not matter anyway).

Theorem 4 (Wall [60]). If p and q are rational numbers and α is normal real number,

then αp + q is normal.

Proof. It is enough to show that a normal number remains normal when multiplied or
divided by an integer (adding integers preserves normality for trivial reasons). Let N be
some integer factor. Fix some positions m,m+1, . . . ,m+k−1 in the binary expansion.
Look at the digits of reals α and Nα that occupy these positions. They form two k-bit
blocks, one for α and one for Nα. Knowing the first one, we have N possibilities for
the second one (a school division algorithm keeps remainder modulo N), and vice versa
(multiplication by N also has this property). So if α is normal and frequencies of blocks
in α are correct, in Nα (or α/N) each block appears at most N times more often. It
remains to apply Piatetski-Shapiro’s theorem.

Remark. Wall’s theorem also can be derived from the characterization of normality
in terms of automatic complexity (Theorem 2), since division and multiplication are
automatic transformations.

See also below Theorem 10 for a more general result of Doty, Lutz and Nandakumar
saying that finite-state dimension does not change when a real number is multiplied by
a rational factor.

6We go into all these details since the paper [41] is published (in Russian) in a quite obscure place:
a volume in a series published by Moscow Pedagogical Institute. It seems that this volume is now
(June 2019) missing even in the library of the very institute that published it (now it is called Moscow
Pedagogical State University). Fortunately, this volume is available in the Russian State Library in
Moscow (though it is included only in the paper cards version of the catalog, not in the electronic
database).
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4.3 A sufficient condition for normality in terms of complexity

As we have mentioned, Champernowne [21] proved that the concatenation of the po-
sitional representations of all integers (in increasing order) is a normal sequence. (He
considered decimal representations, not binary, but this does not make any difference.)

This result is a special case of the following simple observation, a sufficient condition
for normality in terms of Kolmogorov complexity.

Theorem 5. Let x1, x2, x3, . . . be a sequence of non-empty binary strings. Let Ln be a

rational number that is the average length of x1, . . . , xn, i.e., Ln = (|x1|+ . . .+ |xn|)/n.
Let Cn be their average Kolmogorov complexity, i.e., Cn = (C(x1) + . . . + C(xn))/n.
Assume that |xn| = o(|x1|+ . . . + |xn−1|) and Ln → ∞ as n → ∞.

If Cn/Ln → 1 as n → ∞, then the concatenated sequence κ = x1x2x3 . . . is normal.

The first two assumptions are technical (and usually are easy to check); they guar-
antee that |xn| grows not too slow and not too fast. In this case the normality of
concatenation is guaranteed if the average complexity of strings xi is close to their aver-
age length. Note that Cn is defined up to O(1) additive term (the complexity function
is defined with the same precision) and that Cn 6 Ln +O(1).

Proof. Using Theorem 2, we need to prove, for an arbitrary fixed automatic description
mode R, a lower bound N − o(N) for the automatic complexity of the N -bit prefix of
x1x2x3 . . .. This prefix may end inside some xi; we ignore the last incomplete block
and consider maximal prefix of the form x1 . . . xM of length at most N . Due to the
superadditivity property (Theorem 1, (k)) the automatic complexity of the N -bit prefix
is at least CR(x1) + . . . + CR(xM ) and is at least C(x1) + . . . + C(xM ) − O(M), since
Kolmogorov complexity is a lower bound for automatic complexity up to O(1) additive
term.

Due to the assumption |xn| = o(|x1|+ . . .+ |xn−1|), the ignored incomplete part has
length o(N), so we may replace N in the desired lower bound by |x1| + . . . + |xM |. It
remains to note that the ratio

CR(x1) + . . .+CR(xM )

|x1|+ . . .+ |xM |
>

C(x1) + . . . +C(xM )−O(M)

|x1|+ . . . + |xM |
=

CM −O(1)

LM

converges to 1 according to our assumptions (LM → ∞ and CM/LM → 1). Here in the
last step we divided the numerator and the denominator by M .

We formulated Theorem 5 for the binary case, but both the statement and the proof
can be easily adapted to an arbitrary base.

For the Champernowne example xi is the binary representation of i. The average
length of x1, . . . , xn, and even the maximal length, is obviously bounded by log n+O(1).
As for the complexity, it is enough to note that all xi are different, and the number
of different strings of complexity at most u is O(2u). Therefore, the fraction of strings
that have complexity at most log n − d among all strings x1, . . . , xn is O(2−d). The
series

∑

d2−d converges, so the average complexity of x1, . . . , xn is at least log n−O(1),
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and Cn/Ln > (log n − O(1))/(log n + O(1)) → 1. Other conditions of Theorem 5 are
obviously true.

Champernowne’s paper [21] contains some other results: Theorem I says that the
concatenation of all strings in order of increasing lengths, i.e., the sequence

0 1 00 01 10 11 000 001 010 . . .

is normal. Theorem II says that it remains normal if every string is repeated µ times
for some integer constant µ. Theorem III is the Champernowne’s example we started
with. Theorem IV considers a sequence where ith string is repeated i times. In all
these examples the normality obviously follows from our Theorem 5. (For Theorem IV
we need to note that a subset that has measure at most 2−d according to the uniform
distribution on {1, 2, . . . , n} has measure O(2−d) if we change the distribution and let
the probability of i be proportional to i.)

4.4 Copeland – Erdös theorem

In addition to Theorems I–IV (see the previous section) Champernowne [21] gave some
other examples of normal numbers (sequences), saying that they “need for their estab-
lishment tedious lemmas and an involved notation, [and] no attempt at a proof will be
advanced”. These examples are the sequences made of concatenated representations of
(a) all composite numbers, (b) numbers ⌊αn⌋ for some positive real α, and (c) ⌊n log n⌋.
In all these cases the normality easily follows from Theorem 5.

Champernowne also stated as a conjecture that the sequence made of decimal rep-
resentation of prime numbers is normal. This conjecture was proven by Copeland and
Erdös [22] who gave a sufficient condition for the sequence x1x2x3 . . . obtained by con-
catenating the positional representations of integers x1, x2, . . . to be normal. Let us state
the Copeland – Erdös theorem and show that it is a direct consequence of Theorem 5.

Theorem 6 (Copeland – Erdös). Let x1, x2, x3, . . . be a strictly increasing sequence of

integers, and the number of terms xi that are less than 2m is at least 2m(1−o(1)). The

sequence x1x2x3 . . . (the concatenation of the positional representations) is normal.

Proof. The assumption implies that the length of xn is (1 + o(1)) log n, and the con-
ditions for the lengths are true for obvious reasons. The lower bound for complexity
in the Champernowne example (Section 4.3) used only that all xi are different, and
the assumption guarantees that xi form a strictly increasing sequence and therefore are
different. So we may apply Theorem 5.

4.5 Besicovitch’s theorem

Besicovitch [11] has proven that the number obtained by the concatenation of all perfect
squares in the increasing order is normal. This result is also a consequence of Theorem 5,
but more detailed analysis is needed. We give a sketch of the corresponding argument.
Applying Theorem 5, we let xi be the binary representation of i2 (we will say later what
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changes are needed for decimal representation). The length of xi is about 2 log i, while
the (typical) complexity is the complexity of i, so Cn/Ln is close to 1/2, not 1. To deal
with this problem, let us divide the string xi in two halves of equal length xi = yizi and
consider the most significant half and the least significant half separately. Of course, if
xi has odd length, then the lengths of yi and zi differ by 1, and the reasoning should be
adapted. We do not go into these details.

Instead of using C(xi) as a lower bound for CR(xi), we note that CR(xi) > CR(yi)+
CR(zi) and then use C(yi) and C(zi) as the lower bounds for both summands. In other
words, we apply our criterion to a sequence of left and right halves of the binary string
xi. For yi we note that the most significant half of the binary representation of i2

determines i almost uniquely (there are O(1) possible values of i with the same most
significant half). Indeed, assume that i is a k-bit number. How much can we change i
not changing the most significant half of i2? Changing i by 1, we change i2 by 2i+1, and
this change is of order 2k since i is a k-bit numbers. Only O(1) changes of this type can
be made without changing the most significant half of i2 (i.e., the k most significant bits
out of 2k). There is a caveat here: one should also take into consideration the possibility
that two halves have different lengths (by 1), but this gives only O(1) new candidates.

For the least significant half zi more complicated analysis is needed, since zi does not
determine i and sometimes many different values of i share the same zi. For example, if
i is a k-bit number whose k/2 least significant bits are zeros, then i2 is a 2k-bit number
with k trailing zeros, so we have about 2k/2 different values of i that share the same zi
(all zeros). This happens rarely, as the following lemma shows:

Lemma 6.1. For each k, the average Kolmogorov complexity of x2 mod 2k taken over

all x modulo 2k is k −O(1).

Proof sketch. As we mentioned, complexity C(x2) can be much less than C(x) (if x ends
with k/2 zeros, the complexity of x2 is zero while the complexity of x could be k/2).
However, such a difference is possible only if x ends with many zeros. More precisely,
we have C(x2 mod 2k) > C(x)−O(ζ(x)) for k-bit string x, where ζ(x) is the number of
trailing zeros in x (the maximal u 6 k such that 2u divides x). This is enough, since
the expected value of ζ(x) for random x modulo 2k is O(1) (half of all numbers have at
least one trailing zero, half of those have at least one additional trailing zero, etc., and
the series converges).

To prove the bound let us rewrite it as C(x) 6 C(x2) + O(ζ(x)). To specify x, it is
enough to specify x2 and the ordinal number of x in the set of all residues with the same
square. Therefore, it is enough to show that the number of residues y modulo 2k such that
x2 = y2 (mod 2k) is bounded by 2O(z) if x has z trailing zeros. Indeed, assume that x has
z trailing zeros and x2 = y2 for some other y modulo 2k. Then x2 − y2 = (x− y)(x+ y)
is a multiple of 2k, therefore x − y is a multiple of 2u and x + y is a multiple of 2v for
some u, v such that u+ v = k. Then 2x is a multiple of 2min(u,v), so min(u, v) 6 z + 1.
Then max(u, v) > k−z+O(1) (recall that min(u, v)+max(u, v) = u+v), so one of x−y
and x+ y is a multiple of 2k−z+O(1), and each case contributes at most 2z+O(1) = O(2z)
solutions for the equation x2 = y2 (mod 2k).
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Remark. The statement of the lemma involves Kolmogorov complexity, but it would be
enough to get a lower bound for the Shannon entropy of x2 mod 2k where x is a uniformly
distributed random integer modulo 2k. Indeed, assume that we have such a lower bound.
Then we can derive the lower bound for the average Kolmogorov complexity of the
squares of 2k first integers, if we use the prefix version of the complexity (see, e.g., [52]
for the definition and properties of prefix complexity). Indeed, in this case the optimal
prefix-free description of these 2k strings form a prefix-free code, and the average length
of a prefix-free code for a random variable is at least the entropy of this variable. One
can also note that a upper bound for Shannon entropy can be converted for the lower
bound for the Kolmogorov complexity, since the sequence is computable and the optimal
prefix-free code for it is also computable, so the connection works in both directions, and
we may use the entropy language if we want to.

See also Section 5.5 for the dimension version of Theorem 5 (Theorem 14).

Question. Is it possible to generalize these arguments and prove the Davenport – Erdös
result (replace the squaring in Besicovitch’s theorem by a polynomial of higher degree)?
One possible approach would be to estimate the entropies of the random variables ob-
tained as follows: fix some t, take a random integer x ∈ {0, . . . , 2k − 1}, compute P (x),
and let ξt be the bit string that consists of k consecutive bits in the binary representation
of P (x), starting from position t.

4.6 Calude – Salomaa – Roblot question answered by Calude – Staiger

– Stephan

In this section we use our tools to give a simple answer to a question posed by Calude,
Salomaa and Roblot [16, Section 6] and answered in [17] by a more complicated ar-
gument. In [16] the authors define a version of automatic complexity in the following
way. A deterministic transducer (finite automaton that reads an input string and at
each step produces some number of output bits) maps a description string to a string
to be described, and the complexity of y is measured as the minimal sum of the sizes of
the transducer and the input string needed to produce y; the minimum is taken over all
pairs (transducer, input string) producing y. The size of the transducer is measured via
some encoding, so the complexity function depends on the choice of this encoding. “It
will be interesting to check whether finite-state random strings are Borel normal” [16,
p. 5677]. Since normality is defined for infinite sequences, one probably should inter-
pret this question in the following way: is it true that normal infinite sequences can be
characterized as sequences whose prefixes have finite-state complexity close to length?

This question got a negative answer in [17]. Here we show that the our tools can be
used to provide a simple proof of this negative answer. More precisely, in one direction
this approach works, but in the other direction it fails. To avoid confusion between
different versions of automatic complexity, we denote the complexity defined in [16] by
CSR(x). It depends on the choice of the encoding of transducers, but the claim is true
for every encoding, so we assume that some encoding is fixed and omit it in the notation.
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Theorem 7 ([17]).
(a) If a binary sequence α = a0a1 . . . is not normal, then there exist some c < 1 such

that the CSR(a0 . . . an−1) < cn for infinitely many n.
(b) There exists a normal binary sequence β = b0b1 . . . such that

lim inf CSR(b0 . . . bn−1)/n = 0.

Proof. To prove the first statement, we repeat the argument used to prove the first part
of Theorem 2. Indeed, the block code constructed in that argument can be decoded by
a transducer. This transducer had some description of fixed length, and then we add
the length of the encoded string. For long prefixes the transducer part does not matter,
since the transducer is fixed and the length of the prefix goes to infinity.

For the second part we construct an example of a normal sequence using the Cham-
pernowne’s idea and Theorem 5. The sequence will have the form

β = (B1)
n1(B2)

n2 . . .

Here Bi is the concatenation of all strings of length i (say, in lexicographical ordering,
but this does not matter), and ni is a fast growing sequence of integers.

To choose ni, let us note first that for a periodic sequence (of the form XY ∞) the
CSR-complexity of its prefixes of the form XY k is o(length of XY k). Indeed, we may
consider a transducer that first outputs X, then outputs Y for each input bit 1. So
CSR(XY m) = m+O(1), and the compression ratio is about 1/|Y |. To get an o(length)-
bound, we use Y c for some constant c as a period to improve the compression.

Now consider the complexity/length ratio for the prefixes of β if the sequence ni

grows fast enough. Assume that n1, n2, . . . , nk are already chosen and we now choose
the value of nk+1. We may use the bound explained in the previous paragraph and
let X = (B1)

n1 . . . (Bk)
nk and Y = Bk+1. For large enough nk+1 we get arbitrarily

small complexity/length ratio. (Note that good compression is guaranteed only for
some prefixes; when increasing k, we need to switch to another transducer, and we know
nothing about the length of its encoding. This corresponds to lim inf in our statement.)

It remains to apply Theorem 5 to show that for fast growing sequence n1, n2, . . . the
sequence β is normal. We apply the criterion by splitting Bk into pieces of length k
(so all strings of length k appear once in this decomposition of Bk). We already know
that the average Kolmogorov complexity of the pieces in Bk is k−O(1) (and the length
of all pieces is k). This is enough to satisfy the conditions from Theorem 5 if x1 . . . xn
ends on the boundary of the block Bk. But in general we need also to consider the last
incomplete group of blocks that form a prefix of some Bk. The total length of these
blocks is bounded by |Bk|, i.e., by k2k. We need this group to be short compared to the
rest, and this will be guaranteed if nk−1 (the lower bound for the length of the previous
part) is much bigger than k2k. And we assume that nk grow very fast, so this condition
is easy to satisfy. Theorem 7 is proven.
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5 Finite-state dimension and automatic complexity

If a sequence is not normal, we may ask how far it is from being normal. This is measured
by the notion of finite-state dimension introduced in [23]. This is a “finite-state version”
of the notion of effective dimension (as we have discussed in the Introduction). The
finite-state dimension of a binary sequence is a number between 0 and 1; it is an upper
bound for the effective Hausdorff dimension. Finite-state dimension equals 1 for normal
sequences. In this section we extend some results of Sections 3 and 4 proven for normal
sequences to the case of arbitrary finite-state dimension, and discuss the connections
between the finite-state dimension and the effective Hausdorff dimension.

We start (Section 5.1) by defining the finite-state dimension in terms of entropy rates
for aligned blocks, following Bourke, Hitchcock and Vinodchandran [14] who proved that
this definition is equivalent to the original one given in terms of finite-state gales [23].
We prove that one may as well use the non-aligned blocks in this definition. In the next
section (Section 5.2) we show that the equivalence between aligned and non-aligned
blocks in the definition of finite-state dimension requires a change in the block size.
Then (Section 5.3) we give a simplified proof of the result of Doty, Lutz and Nandaku-
mar [24] saying that the finite-state dimension of a real number remains the same when
the number is multiplied by a rational number (a dimension version of Wall’s theorem),
improving the bound for entropies of k-bit blocks, and give a simple example showing
that this bound is tight. Then we prove the characterization of finite-state dimension in
terms of automatic complexity (Section 5.4, Theorem 11). Moreover, as a byproduct we
get (Section 5.5) a “stateless” characterization of finite-state dimension that does not
mention at all finite-state automata or Shannon entropy and uses superadditive upper
bounds for Kolmogorov complexity (Theorem 12). We give also another stateless char-
acterization that uses some “calibration” condition instead of Kolmogorov complexity
(Theorem 13). Then we recall the original definition of the finite-state dimension in
terms of finite-state s-gales (Section 5.6) and use the tools from algorithmic information
theory (a finite-state version of a priori probability) to give a simple proof of equivalence
between this definition and the others. In Section 5.7 we use martingales to provide sim-
ple proofs for the results of Agafonov (Theorem 17) and Schnorr – Stimm (Theorem 18).
Finally, in Section 5.8 we note that some more general notion of a finite-state measure
can also be used to characterize finite-state dimension and normality.

5.1 Entropy rates for aligned and non-aligned blocks

Consider a sequence α = a0a1a2 . . ., and some positive integer k. As in the definition of
normality, we cut the sequence α into k-bit blocks (aligned version), or consider all k-bit
substrings of α (non-aligned version). Then we consider limit frequencies of these blocks.
In this way we get some distribution on the set Bk of all k-bit blocks. We want to define
the finite-state dimension of α as the limit of the Shannon entropy of this distribution
per bit, i.e., divided by k, as k goes to infinity.

The problem is that limit frequencies may not exist, so we should be more careful.
For every N take the first N blocks of length k and choose one of them uniformly at
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random. In this way we obtain a random variable taking values in B
k. Consider the

Shannon entropy of this random variable. This can be done in aligned (a) and non-
aligned (na) settings, so we get two quantities:

Ha
k,N(α) = H(αkI . . . αkI+k−1), Hna

k,N(α) = H(αI . . . αI+k−1),

where I ∈ {0, . . . , N − 1} (the block number) is chosen uniformly at random, and H
denotes the Shannon entropy of the corresponding random variable.

Then we apply lim infN as N → ∞ and define

Ha
k(α) = lim inf

N→∞
Ha

k,N(α), Hna
k (α) = lim inf

N→∞
Hna

k,N(α).

The following result says that both quantities Ha
k(α) and Hna

k (α), divided by the block
length k, converge to the same value as k → ∞, and this value can also be defined as
infk Hk(α)/k (both in aligned and non-aligned versions).

Theorem 8. For every bit sequence α we have

lim
k

Ha
k(α)

k
= inf

k

Ha
k(α)

k
= lim

k

Hna
k (α)

k
= inf

k

Hna
k (α)

k
.

The sequence α is normal if and only if this common value equals 1.

Definition 6. This common value of these four quantities is called the finite-state di-

mension of α and is denoted by dimFS(α).

The original definition of the finite-state dimension [23] was different (see Section 5.6
below), and the equivalence between it and the aligned version of the definition given
above was shown in [14]. See also Theorem 15 (part 2) below. The equivalence between
non-aligned and aligned versions seems to be new.

Proof. There are two ways to prove Theorem 8. Here we give a proof that uses basic
tools from information theory such as Shearer-type inequalities. One can also prove
this result using the characterization of finite-state dimension in terms of automatic
complexity. We sketch this proof later, see the remark at the end of Section 5.4 (p. 37).

The technical part of the proof consists of two lemmas:

Lemma 8.1. For every α, every k, every K > k :

Hna
K (α)

K
6

Ha
k(α)

k
+O

(

k

K

)

.

Lemma 8.2. For every α, every k, every K > k :

Ha
K(α)

K
6

Hna
k (α)

k
+O

(

k

K

)

.
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Let us show how these two lemmas imply Theorem 8. Take the lim sup of the both
sides of these inequalities as K → ∞:

lim sup
K→∞

Hna
K (α)

K
6

Ha
k(α)

k
, lim sup

K→∞

Ha
K(α)

K
6

Hna
k (α)

k
.

Since this holds for all k,

lim sup
K→∞

Hna
K (α)

K
6 inf

k

Ha
k(α)

k
, lim sup

K→∞

Ha
K(α)

K
6 inf

k

Hna
k (α)

k
.

Obviously we also have:

inf
k

Ha
k(α)

k
6 lim sup

K→∞

Ha
K(α)

K
, inf

k

Hna
k (α)

k
6 lim sup

K→∞

Hna
K (α)

K
,

so all four quantities coincide and are equal to both limk
Hna

k (α)

k
and limk

Ha
k(α)

k
.

It remains to prove Lemmas 8.1 and 8.2.

Proof of Lemma 8.1. Fix a sequence α = a0a1a2 . . ., and consider some integer N . Take
I ∈ {0, . . . , N − 1} uniformly at random and consider a random variable

ξ = aI . . . aI+K−1

whose values are K-bit strings. In other words, this random variable is a randomly
selected non-aligned block among the first N ones. By definition, the entropy of ξ
is Hna

K,N(α). Let us look at the aligned k-bit blocks covered by the block ξ (i.e., the
aligned k-bit blocks inside I . . . I +K − 1). The exact number of these blocks may vary
depending on I, but there are at least m = ⌊K/k⌋ − 1 of them (if there were only m− 1
complete blocks, plus maybe two incomplete blocks, then the total length would be at
most k(m − 1) + 2k − 2 = km + k − 2, but we have K/k > m + 1, i.e., K > km + k).
We number m first covered aligned blocks from left to right and get m random variables
ξ1, . . . , ξm (defined at the same space {0, . . . , N − 1}). For example, ξ1 is the leftmost
aligned k-bit block of α in the interval I . . . I + K − 1. To reconstruct the value of ξ
when all ξi are known, we need to specify the prefix and suffix of ξ that are not covered
by ξi (including their lengths). This requires O(k) bits of information, so

Hna
K,N(α) = H(ξ) 6 H(ξ1) + . . .+H(ξm) +O(k).

We will show that for each s ∈ {1, . . . ,m} the distribution of the random variable ξs
is close to the uniform distribution over the first ⌊N/k⌋ aligned k-bit blocks of α. The
standard way to measure how close are two distributions on the same set X is to measure
the statistical distance between them, defined as

δ(P,Q) =
1

2

∑

x∈X

∣

∣P (x)−Q(x)
∣

∣.
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We claim that (for each s ∈ {1, 2, . . . ,m}) the statistical distance between the distribu-
tion of ξs and the uniform distribution on the first ⌊N/k⌋ aligned blocks converges to 0
as N → ∞. First, let us note that for a fixed aligned block its probability to become
s-th aligned block inside a random nonaligned block is exactly k/N (there are k possible
positions for a random non-aligned block when this happens). The only exception to
this rule are aligned blocks that are near the endpoints, and we have at most O(K/k) of
them. When we choose a random aligned block, the probability to choose some position
is exactly 1/⌊N/k⌋, so we get some difference due to rounding. It is easy to see that
the impact of both factors on the statistical distance converges to 0 as N → ∞. Indeed,
the number of the boundary blocks is O(K/k), and the bound does not depend on N ,
while the probability of each block (in both distributions) converges to zero.7 Also, since
m = N/k and m′ = ⌊N/k⌋ differ at most by 1, the difference between 1/m and 1/m′

is of order 1/m2, and converges to 0 even if multiplied by m (the number of blocks is
about m).

Now we use the continuity (more precisely, the uniform continuity) of the entropy
function and note that all m = ⌊N/k⌋ − 1 random variables in the right hand side are
close to the uniform distribution on first ⌊N/k⌋ aligned blocks (the statistical distance
converges to 0), so

lim inf
N→∞

Hna
K,N(α) 6 (⌊K/k⌋ − 1) lim inf

N→∞
Ha

k,⌊N/k⌋(α) +O(k),

and dividing by K we get the statement of Lemma 8.1.

Proof of Lemma 8.2. We need an upper bound forHa
K,N(α), i.e., forH(aKI . . . aKI+K−1)

where I is uniformly distributed in {0, 1 . . . , N−1}. For that we use Shearer’s inequality
(see, e.g., [55, Section 7.2 and Chapter 10]). In general, this inequality can be formulated
as follows. Consider a finite family of arbitrary random variables η0, . . . , ηm−1 indexed
by integers in {0, . . . ,m − 1}. For every U ⊂ {0, . . . ,m − 1} consider the tuple ηU of
all ηu where u ∈ U . If a family of subsets U0, . . . , Us−1 ⊂ {0, . . . ,m − 1} covers each
element of U at least r times, then

H(ηU ) 6
1
r

(

H(ηU0) + . . .+H(ηUs−1)
)

.

In our case we have K variables η0, . . . ηK−1 that are individual bits in a random aligned
K-bit block aKI . . . aKI+K−1 (for random I), i.e. η0 = aKI , η1 = aKI+1, etc. The set U
contains all indices 0, . . . ,K − 1, and the sets Ui contains k indices i, i+ 1, . . . , i+ k− 1
(where operations are performed modulo K, so there are Ui that combine the prefix and
suffix of a randomK-bit block). Each ηi is covered k times due to this cyclic arrangement.
In other words, the variable ηUi

is a substring of the random string ηU = aKI . . . aKI+K−1

that starts from ith position and wraps around if there is not enough bits. There are

7More precisely, we should speak not about the probability of a given block, since the same k-bit
block may appear in several positions, but about the probability of its appearance in a given position.
Formally speaking, we use the following obvious fact: if we apply some function to two random variables,
the statistical difference between them may only decrease. Here the function forgets the position of a
block.
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k − 1 tuples of this “wrap-around” type (block of length k may cross the boundary in
k − 1 ways). These tuples are not convenient for our analysis, so we just bound their
entropy by k. In this way we obtain the following upper bound:

Ha
K,N(α) = H(aKI . . . aKI+K−1) 6

1

k

(

K−k
∑

s=0

H(aKI+s . . . aKI+s+k−1) + (k − 1)k

)

.

Adding k−1 terms (adding some other entropies that replace the “wrap-around terms”),
we increase the right hand side:

Ha
K,N(α) 6

1

k

(

K−1
∑

s=0

H(aKI+s . . . aKI+s+k−1) + (k − 1)k

)

.

Let us look at the variable aKI+s . . . aKI+s+k−1 in the right hand side for some fixed s.
It has the same distribution as the random non-aligned k-bit block aJ . . . aJ+k−1 for
uniformly chosen J in {0, . . . , NK − 1} conditional on the event “J mod K = s”:

H(aKI+s . . . aKI+s+k−1) = H(aJ . . . aJ+k−1 |J mod K = s).

The average of these K entropies (for s = 0, . . . ,K − 1) is the conditional entropy

H(aJ . . . aJ+k−1 |J mod K)

that does not exceed the unconditional entropy. So we get

Ha
K,N(α) 6

1

k

(

K ·Hna
k,KN(α) + (k − 1)k

)

.

By taking lim inf as N → ∞ we obtain:

Ha
K(α)

K
= lim inf

N→∞

Ha
K,N(α)

K
6 lim inf

N→∞

Hna
k,KN(α)

k
+O

(

k

K

)

.

However, lim inf in the right hand side is taken over multiples of K and we want it to
be over all indices. Formally, it remains to show that

lim inf
N→∞

Hna
k,KN(α)

k
= lim inf

N→∞

Hna
k,N(α)

k

as the latter is by definition equal to Hna
k (α)/k. Indeed, the statistical distance between

the uniform distribution on the first KN (non-aligned) blocks and the uniform distri-
bution on the first KN + r blocks (where r the remainder modulo K) tends to zero
since the first distribution is the second one conditioned on the event whose probability
converges to 1 (i.e., the event “the randomly chosen block is not among the r last ones”
whose probability is KN/(KN + r)).

Theorem 8 is proven.
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5.2 Why do we need large blocks: a counterexample

In the previous section we have shown that the aligned finite-state dimension is equal
to the non-aligned one. However, this argument uses different block sizes: we show that
if Ha

k(α)/k is small, then Hna
K (α)/K is small for much larger K, and vice versa. This

change in the block size is unavoidable, as the following example shows (when k = 2, no
fixed K is enough):

Theorem 9.

(a) For all k there exists an infinite sequence α such that Hna
2 (α) < 2 and Ha

m(α) = m
for all m 6 k.

(b) For all k there exists an infinite sequence α such that Ha
2 (α) < 2 and Hna

m (α) = m
for all m 6 k.

Proof. (a) Consider all k-bit strings. It is easy to arrange them in some order B0, . . .
such that the last bit of Bi is the same as the first bit of Bi+1, for all i, and the last
bit of the last block is the same as the first bit of the first block. For example, consider
(for every x ∈ {0, 1}k−2) four k-bit strings 0x0, 0x1, 1x1, 1x0 and concatenate these 2k−2

quadruples in arbitrary order.
Then consider a periodic sequence α with period B0B1 . . . B2k−1. Obviously all

aligned k-bit blocks appear with the same frequency in α, so Ha
k(α) = k. However, for

non-aligned bit blocks of length 2 we have two cases: this pair can be either completely
inside some Bi, or be on the boundary between blocks. The pairs of the first type are
balanced (since we have all possible k-bit blocks), but the boundary pairs could be only
00 or 11 due to our construction. So the non-aligned frequency of these two blocks is
1/4 + Ω(1/k), and for two other blocks we have 1/4 − Ω(1/k), so Hna

2 (α) < 2.
The only problem is that in this construction we do not necessarily have that

Ha
m(α) = m for all m < k, only for m = k. But this is easy to fix. Note that Ha

k(α) = k
implies Ha

m(α) = m if m is a divisor of k. So we can just use the same construction with
blocks of length k! instead of k.

(b) Now let us consider a sequence constructed in the same way, but let blocks
B0, B1, . . . , B2k−1 go in the lexicographical ordering. First let us note that all k-bit
blocks have the same non-aligned frequencies in the periodic sequence with period
B0B1 . . . B2k−1. (For aligned k-blocks it was obvious, but the non-aligned case needs
some proof.) Indeed, consider some k-bit string U ; we need to show that it appears
exactly k times in the (looped) sequence B0B1 . . . B2k−1. In fact, it appears exactly
once for each position modulo k.8 For example, it appears once among the blocks Bi.
Why the same is true for some other position s: the k − s first bits of U appear as a
suffix of Bi−1 and the last s bits of U appear as a prefix of Bi? Note that (k − s)-bit

8So the cyclic sequence B0B1 . . . B2k−1 forms a perfect necklace in the sense of Alvarez, Becher,
Ferrari and Yuhjtman [2] who note that such a sequence can be constructed in the same way as de
Bruijn sequences (as an Eulerian path in some graph). Unfortunately, for our purposes we need also to
guarantee that aligned 2-bit blocks do not have the same frequencies, and for that we use our specific
perfect necklace.
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suffixes of B0, B1, B2, . . . form a cycle modulo 2k−s, so the first k − s bits of U uniquely
determine the last k − s bits of Bi, whereas the first s bits of Bi are just written in the
s-bit suffix of U .

This implies that non-aligned frequencies for all k-bit blocks are the same. Therefore,
they are the same also for m-bit blocks for all m 6 k. This implies also that we may
assume for the rest of the proof that k is odd.

Now let us consider aligned blocks of size 2. We will show that aligned frequency of
the block 10 in the sequence B0B1 . . . B2k−1 is 1/4−Ω(1/k). Since k is odd (see above),
when we cut our sequence into blocks of size 2, there are “border” blocks that cross the
boundaries between Bi and Bi+1, and other non-border blocks. Each second boundary
is crossed (between B0 and B1, then B2 and B3, and so on), so the border blocks all

have the first bit 0. In particular, 10 never appears on such positions. This create a
imbalance of order 1/k for block 10, and we should check that it is not compensated by
non-boundary blocks. In the blocks Bi with even i we delete that last bit and cut the
rest into bit pairs. After deleting the last bit we have all possible (k − 1)-bit strings, so
no imbalance arises here. In the blocks Bi with odd i we delete the first bit, and then
cut the rest into bit pairs. In the last pair the last bit is 1 (since i is odd), so once again
we never have 10 here, as required (the other positions are balanced).

5.3 Finite-state dimension and Wall’s theorem

Using the notion of finite-state dimension, one can generalize Wall’s theorem, as noted
by Doty, Lutz and Nandakumar [24]]

Theorem 10 (Doty, Lutz, Nandakumar). The finite-state dimension of a real number

does not change when the number is multiplied by a rational number or when a rational

number is added.

Proof. To prove this result, Doty, Lutz and Nandakumar show that for every k the
block entropy rates for k-bit blocks in a binary representation of a real number do not
change significantly when a real number is multiplied by an integer. This obviously
implies the same for the division by an integer, and adding integers is trivial, so the
finite-state dimension does not change when we multiply by rational numbers or add
rational numbers. More precisely, they show that

|Ha
k(α)−Ha

k(M · α)| 6 log2(M
2(s + 1))

for every real α and every positive integer M , where s is the number of ones in the binary
expansion of M . This inequality implies that finite-state dimensions of α and Mα are
the same, since the bound does not depend on k and, being divided by k, converges to
0 as k → ∞. In fact, a much simpler argument provides a better bound:

Lemma 10.1. For any real α and any positive integer M :

|Ha
k(α) −Ha

k(M · α)| 6 log2M and |Hna
k (α)−Hna

k (M · α)| 6 log2 M.
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Proof. Both inequalities (aligned and non-aligned versions) are proven in a similar way.
Consider, for instance, the aligned case. Choose i ∈ {0, . . . , N −1} uniformly at random
and let X be the ith aligned k-bit block in α. Define a random variable Y for M · α in
a similar way.

As we have noted while proving Theorem 4, for each group of neighbor positions
(i, i + 1, . . . , i + k − 1), the bits of α in these positions determine almost uniquely the
bits of Mα in the same positions, and vice versa. Here “almost uniquely” means that
there are at most M possibilities. Therefore

H(X |Y ) 6 log2M and H(Y |X) 6 log2 M.

Since H(X) 6 H(X,Y ) = H(Y ) +H(X |Y ) and H(Y ) 6 H(X,Y ) = H(X) +H(Y |X),
we have

|H(X) −H(Y )| 6 log2 M.

As we have said, Lemma 10.1 immediately implies Theorem 10.

The bounds provided by Lemma 10.1 are sharp, as the following example shows.
Note that

1/3 = 0.(01), 1/9 = 0.(000111),

(parentheses show the period of a periodic fraction), Hna
6 (1/3) = log2 2,H

na
6 (1/9) =

log2 6, and Ha
2 (1/3) = log2 1,H

a
2 (1/9) = log2 3.

5.4 Finite-state dimension and automatic complexity

The characterization of normal sequences in terms of automatic Kolmogorov complexity
can be extended to the case of arbitrary finite-state dimension.

Theorem 11. Finite-state dimension of an arbitrary bit sequence α = a0a1a2 . . . is

equal to

inf
R

lim inf
n→∞

CR(a0a1 . . . an−1)

n

Note that replacing CR by the standard Kolmogorov complexity, we get the definition
of the effective Hausdorff dimension, and infR is no more needed, since there exists an
optimal description mode.

Proof. This result is a generalization of Theorem 2 and the proof follows the same
scheme. We need to prove two inequalities. In one direction we assume that the finite-
state dimension of α is small: dimFS(α) is less than some τ . Then we need to construct
an automatic description mode R such that lim infn→∞CR(a0a1 . . . an−1)/n < τ. The
basic idea: if for some k the distribution on aligned k-blocks has small entropy, then
the corresponding Shannon – Fano code has small average coding length and therefore
provides good compression ratio when used as a description mode. However, there are
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two problems with this plan. First, for different prefixes the distributions on k-blocks,
while having small entropy, could be different. Still we need to construct one description
mode that provides good compression for infinitely many prefixes. Second, the Shannon
– Fano code does not reach the exact value of entropy, the average length may exceed
entropy (though not much, at most by 1).

We have already seen in the proof of Theorem 2 how to deal with both problems.
For the first one, we consider the sequence of distributions with small entropies, use
compactness to choose a convergent subsequence, construct the Shannon – Fano code
using the limit distribution, and modify it to cover blocks with zero probabilities. For
the second, we note that the overhead 1 (or 2 due to the modifications of the code) is
divided by the length of the block, so we may make the difference per bit arbitrarily
small by considering large blocks. In the proof of Theorem 2 we doubled the length of
the block for this. Now we may do the same or use a similar argument implicitly by
using Theorem 8 that allows us to start with blocks of arbitrarily large length.

Proving the inequality in the other direction, we assume that

dimFS(α) = lim
k
(Ha

k(α)/k)

is high. This means that Ha
k(α)/k is high for all sufficiently large k. In fact, it is high

for all k, since dimFS can be defined as the infimum of the same sequence, but this is
not important for us now. We fix some automatic description mode R. We have to
prove the lower bound for the automatic complexity CR for all (long enough) prefixes of
α. For that we cut a prefix into aligned blocks of large size k. We use superadditivity
of CR and note that the CR-complexity of the entire prefix is at least the sum of the
CR-complexities of the blocks.

The rest of the proof is easy to explain if we use the prefix version of Kolmogorov
complexity (see [55] for its definition and properties). It is close to the standard (plain)
Kolmogorov complexity C(·) and therefore can be used as a lower bound for CR (with
logarithmic precision). On the other hand, the prefix complexity by definition provides
a prefix-free code for blocks, so the average prefix complexity (per block) has entropy
as a lower bound. It is easy to finish this argument by noting that (a) the constant in
the inequality connecting CR and C depends only on R, but not on the block size, and
(b) the difference between plain and prefix complexities is O(log k) for blocks of size k
and does not matter for large k. However, we prefer to reformulate this argument to
avoid using prefix complexity (see below). This is useful for readers who are not familiar
with algorithmic information theory, and also will allow us to give a complexity-free
characterization of finite-state dimension.

Now we give the details.
First part. Here we use the same Lemma 2.1 that was used in the proof of Theorem 2.

Consider some sequence α whose finite-state dimension (in aligned version) is smaller
than some threshold τ . Since dima

FS(α) = limk H
a
k(α)/k, for all sufficiently large k we

have Ha
k(α) < kτ . Fix one of these values of k.

By definition Ha
k(α) is the lim inf of entropies of random aligned k-blocks in the

growing prefixes of α. For every N that is a multiple of k we consider the distribution
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QN on B
k for the random aligned k-block in the N -bit prefix. The set of all distributions

on B
k is compact. Therefore we may choose an increasing sequence of lengths N0, N1, . . .

(all being multiples of k) such that the corresponding distributions QNi
converge to some

distribution P on B
k, and H(QNi

) < kτ for all i. The entropy is a continuous function
on the set of all distributions, therefore H(P ) 6 kτ .

Assume first that all values of P are positive (no zeros). Then we apply Lemma 2.1
to the distribution P and get some automatic description mode R with an upper bound
for the CR-complexity. We use this upper bound (divided by Ni) for prefixes of length
Ni and get (dividing by Ni) the bound

CR(a0a1 . . . aNi−1)/Ni 6
1

k

(

∑

B

QNi
(B) log

1

P (B)
+ 1

)

.

Since QNi
converge to P , the sum converges to H(P ) 6 kτ , and we get an upper bound

for the lim inf:
lim inf
N→∞

CR(a0a1 . . . aN−1)/N 6 τ + 1/k.

This can be done for all sufficiently large k. For each k we get some automatic description
mode R depending on k. Therefore, the infimum taken over all description modes is at
most τ , and this is what we need.

If some values of P are zeros (some blocks have zero probability in the limit distribu-
tion), we cannot use the code provided by Lemma 2.1 since it does not provide codewords
for blocks that have zero probability in P . As we noted in the proof of Theorem 2, one
may change the code provided by the Lemma, adding leading 0 to all codewords, and
then use codewords starting from 1 to encode “bad” blocks that have zero probability.
Then all blocks have codes of finite length, the constant 1 in the Lemma is replaced by
2, and we can proceed as before. The exact lengths of codewords for bad blocks do not
matter, since the limit frequencies of bad blocks are zeros.9

The first part is proven.
Second part. Assume that dimFS(α) = limk(H

a
k(α)/k) > τ for some τ . ThenHa

k(α) >
kτ for all sufficiently large k. Fix some k with this property. Then the lim inf of
entropies of the k-blocks in growing prefixes exceeds kτ . So, for this k and for all
sufficiently long prefixes the entropy of the corresponding distribution on aligned k-
blocks is greater than kτ . Fix some automatic description mode R. We will prove that
for large enough prefixes a0a1 . . . an−1 the CR-complexity per bit (i.e., divided by n) is
large, namely, exceeds τ −O(k/n)−O(log k/k), where hidden constants do not depend
on n and k. Taking lim inf when n → ∞, we get rid of O(k/n) and concluder that
lim infn(CR(a0 . . . an−1)/n) > τ − O(log k/k). This lower bound works for arbitrarily
large k, therefore lim infn(CR(a0 . . . an−1)/n) > τ . In this argument R is an arbitrary
automatic description mode, so infR lim infnCR(a0 . . . an−1)/n > τ, as required.

9The other way to deal with bad blocks is to use some P ′ that is close enough to P and has no zero
probabilities; the overhead depends on the Kullback – Leibler distance between P and P ′ and can be
made arbitrarily small.
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To get the lower bound for CR(a0a1 . . . an−1), we use that CR is superadditive (see
Definition 4) and satisfies some calibration properties saying that there are not too
many strings with small values of CR. Namely, there are at most O(2m) strings x with
CR(x) 6 m, since all of them have descriptions of length at most m, there is at most
O(2m) descriptions of this kind, and each of them serves O(1) strings by definition of an
automatic description mode. We use a bit weaker calibration condition in the following
lemma since it will be useful later.

Lemma 11.1. Let F (x) be a superadditive non-negative real-valued function on strings.

Assume that F satisfies the following calibration condition:

∑

|x|=s

2−F (x)
6 poly(s)

for every length s. Then for every string x that is a concatenation of k-bit blocks for

some k, if Q is the distribution on B
k that corresponds to the frequencies of these blocks

in x, we have

F (x) >
|x|

k
(H(Q)−O(log k)) .

In the calibration condition poly(s) denotes some polynomial in s, i.e., we assume
the polynomial growth of the sum of 2−F (x) taken over all s-bit strings x, as a function
of s.

Proof. Assume that x consists of m = |x|/k bit blocks of length k, so x = B0B1 . . . Bm−1.
Then, due to the superadditivity of F ,

F (x) = F (B0B1 . . . Bm−1) > F (B0) + . . . + F (Bm−1),

and we need to get a lower bound for the sum in the right hand side. For that, note
that for an integer-valued function F ′(x) = ⌊F (x) + c log |x|⌋ we have

∑

|x|=s

2−F ′(x)
6 1,

for all s, if c is a large enough constant. Indeed, the c log |x| additive term in the exponent
compensates for O(poly(s))-factor and rounding. Using this property for s = k, we
conclude that there exists a prefix code for k-bit strings where the codeword for a string
x has length F ′(x). The average length of this code for k-blocks distributed according
to Q is at least H(Q), so we have

F ′(B0) + . . .+ F ′(Bm−1)

m
> H(Q).

Therefore,

F (x) > F (B0)+. . .+F (Bm−1) > F ′(B0)+. . .+F
′(Bm−1)−mO(log k) > m(H(Q)−O(log k)),

as claimed.
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We will apply this lemma to F = CR, so we need to show that CR satisfies the
calibration condition. As we mentioned, there is at most O(2m) strings x with CR(x) 6
m, and this is enough:

Lemma 11.2. Assume that F is a non-negative function on strings, and for every

integer m > 0 there is at most O(2m) strings x such that F (x) 6 m. Then F satisfies

the calibration condition of Lemma 11.1.

Proof. Consider the sum
∑

|x|=s 2
−F (x) for some s. It contains 2s terms. For some of

these terms F (x) > s, so each of them is less than 2−s and the sum is at most 1. All
other terms we classify into s + 1 groups according to the value of ⌊F (x)⌋. The group
where ⌊F (x)⌋ = i contains O(2i) terms and each is at most 2−i, so in total we get
O(s) 6 poly(s), as required.

Remark. Due to poly(s) factor in the calibration condition, it remains valid if we subtract
O(log |x|)-term from F (x). Therefore, the calibration condition is true for all versions
of Kolmogorov complexity: they differ by O(log n) for strings of length n, and for the
plain complexity the condition of Lemma 11.2 holds.10

Now we may apply Lemma 11.1 to get a lower bound for CR(a0a1 . . . an−1) for an
arbitrary prefix a0 . . . an−1 of α. Take an arbitrary k and let m = ⌊|x|/k⌋. We split the
prefix a0a1 . . . an−1 into m blocks of length k (deleting the last incomplete block that
can only increase CR) and use the bound provided by the lemma. Dividing by n, we see
that

CR(a0a1 . . . an−1)

n
>

m
n (H(Q)−O(log k)) > m

n (kτ −O(log k)) > τ −
O(k)

n
−

O(log k)

k
.

for sufficiently large n. Here Q is the distribution on k-blocks; its entropy is at least τk
for large enough n. The last step is valid since n = k(m+O(1)). So we get the desired
inequality, and this finishes the proof of Theorem 11.

Remark. In fact, our proof of Theorem 11 gives a bit more that we claimed. Namely,
we can prove the inequalities between the quantities used in the two definitions in the
strongest possible form. We can show that

• If the aligned block entropy is small for some k and for infinitely many prefixes,
then infinitely many prefixes have small automatic complexity. To prove this, we
first use the trick used to prove Theorem 2 and not that the block entropy is also
small for 2k-bit blocks, 4k-bit blocks etc. Then we use the limit distribution for
k-bit blocks (or 2k-bit blocks, or 4k-bit blocks) to construct a code that provides
a good compression ratio. Therefore, infR lim infn(CR(a0 . . . an−1)/n) 6 Ha

k(α)/k
for every k (and every sequence α = a0a1 . . .).

10One can note also that the calibration condition is obviously true for prefix complexity, since the
sum of 2−K(x) over all x (of any length) is at most 1; the same argument works for monotone complexity,
since the set of all strings of a given length is prefix-free.
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• If the block entropy is large for some k and for all sufficiently long prefixes, then all
long prefixes have large automatic complexity. For that we split the sequence into
k-bit blocks, use superadditivity and provide a bound for compression ratio (with
error O(log k/k)). So it is enough to have infinitely many k with large Ha

k(α)/k.

These two arguments show that

lim sup
k

(Ha
k(α)/k) 6 inf

R
lim inf

n
(CR(a0 . . . an−1)/n) 6 inf

k
(Ha

k(α)/k),

so we conclude that
lim
k
(Ha

k(α)/k) = inf
k
(Ha

k(α)/k)

(and the limit exists) without using Theorem 8. Moreover, we can adapt the proof
of Theorem 11 for non-aligned blocks to prove a similar equality for the non-aligned
case, thus deriving the full statement of Theorem 8 without using information-theoretic
arguments like Shearer-type inequality. Let us sketch this argument.

In one direction we assume that the non-aligned block entropy for some block size
k is small, and want to show that infinitely many prefixes are compressible enough.
Note that the distribution for non-aligned k-blocks is the average of k distributions
that correspond to aligned blocks in the original sequence α, then in α without the
first bit, then in α without two first two bits, etc. The average of the entropies of
these distributions is smaller than the entropy of the average distribution (convexity of
entropy; we discussed it for the case of two distributions), so one of these k sequences
has compressible prefixes. The deleted bits then can be added back without changing
much the automatic complexity, so the original sequence α is also compressible.

In the other direction things are a bit more complicated. We get a lower bound for the
automatic complexity by splitting the sequence into k-bit blocks, but this lower bound
involves the entropy of the aligned distribution. Of course, we can shift the boundaries
modulo k, and get another lower bound for the same automatic complexity that involves
another aligned distribution (for the sequence without first 0, 1,. . . , k−1 bits). Averaging
this bounds, we get a boundary that involves the average of the entropies of these k
distributions. (We can take maximum instead of the average, but we will not need
this.) The problem, however, is that this average may be smaller than the entropy
of the non-aligned distribution (that is the average of k aligned distributions). More
precisely, this average entropy is the conditional entropy of the non-aligned distribution
when the condition is the position of the block modulo k. It remains to note that the
difference between unconditional and conditional entropy is bounded by the entropy of
the condition, i.e., log k. Since we study the entropy per bit and divide the entropy by
k, this difference does not matter (log k/k → 0).

5.5 Machine-independent characterization of normal sequences and

finite-state dimension

In fact we have proven the following characterization of finite-state dimension that does
not mention explicitly finite automata or entropies.
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Theorem 12. Let α = a0a1 . . . be an infinite bit sequence. Then the finite-state dimen-

sion of α is the infimum

inf
F

lim inf
n

F (a0a1 . . . an−1)

n

taken over all superadditive functions F that are upper bounds of Kolmogorov complexity

with logarithmic precision, i.e., C(x) 6 F (x) +O(log |x|) for all x.

Proof. Recall Theorem 11 and its proof. We need to make two more remarks:
First, we may use CR (or KAR defined in the next section) as F , and this shows that

the infF in question does not exceed the finite-state dimension.
The inequality in the other direction is already proven since in the proof of Theo-

rem 11 we used only the superadditivity and the calibration property, and have noted
that the calibration property is true for every F that is an upper bound for the Kol-
mogorov complexity with logarithmic precision.

One can say that this result explains the intuitive meaning of finite-state dimension:
it measures the compressibility of prefixes of α if only “local” compression/decompression
methods are allowed for which any splitting the uncompressed sequence induces a split-
ting of its compressed version.

Remark. This theorem is quite robust:

• We can replace the term O(log |x|) by O(1), since the function CR used in the
proof does not exceed C(x) +O(1).

• We can also replace the term O(log |x|) by o(|x|), since it is enough for the proof
of the lower bound for lim inf F (a0 . . . an−1)/n.

One can delete all references to Kolmogorov complexity replacing them by the cali-
bration condition.

Theorem 13. Let α = a0a1 . . . be an infinite bit sequence. Then the finite-state dimen-

sion of α is the infimum

inf
F

lim inf
n

F (a0a1 . . . an−1)

n

taken over all superadditive functions F such that

∑

|x|=k

2−F (x) = O(poly(k))

Proof. No new argument is needed, since only this calibration condition was used in the
proof, and the function CR satisfies this calibration condition (as we have shown).

Remark. We can replace the calibration condition by the other one (that is satisfied by
the plain Kolmogorov complexity function): the number of strings x such that F (x) < m,
is O(2m). Indeed, the function CR satisfies this condition. On the other hand, we have
seen that it implies the condition used in Theorem 12 (Lemma 11.2).
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Later (Section 5.6, remark after Theorem 16) we will see another calibration condition
that can be used in the theorem:

∑

x∈P 2−F (x) 6 c for some c and for every prefix-free
set P . It obviously implies the condition used in Theorem 12, so we need only to provide
a proof in the other direction, i.e., show a superadditive function that satisfies this
condition and can be used in the proof instead of CR. This function will be a finite-
state version of a priori probability (maximal continuous semimeasure in the Kolmogorov
complexity theory, see [55]).

The characterization of finite-state dimension in terms of automatic complexity al-
lows us to extend the sufficient condition for normality (Section 4.3, Theorem 5) and get
the following lower bound for the finite-state dimension.

Theorem 14. Let x1, x2, x3, . . . be a sequence of non-empty binary strings. Let Ln be a

rational number that is the average length of x1, . . . , xn, i.e., Ln = (|x1|+ . . .+ |xn|)/n.
Let Cn be their average Kolmogorov complexity, i.e., Cn = (C(x1) + . . . + C(xn))/n.
Assume that |xn| = o(|x1|+ . . .+ |xn−1|) and Ln → ∞ as n → ∞. Then the finite-state

dimension of the bit sequence κ = x1x2x3 . . . is at least lim infn(Cn/Ln).

Proof. Using the characterization of the finite-state dimension in terms of automatic
complexity, we need to show that for every automatic description mode R the liminf of
CR(u)/|u|, where u is a prefix of κ, is at least lim infnCn/Ln. If u ends on the block
boundary, i.e., if u = x1 . . . xn for some n, then

F (u) = F (x1 . . . xn) > F (x1)+ . . .+F (xn) > C(x1)+ . . .+C(xn)−O(n) = nCn−O(n),

since C(x) 6 CR(x) +O(1). At the same time |u| = nLn, since Ln is the average length
of the first n blocks, so

CR(u)/|u| > Cn/Ln −O(1)/Ln.

That gives the desired bound for prefixes that end on the block boundaries.
Now we should consider u that do not end on the block boundary. We can delete the

last incomplete block and get a slightly shorter u′. For this u′ we use the same bound
as before, and due to the superadditivity it works as a bound for u. However, we have
|u| in the denominator, not |u′|. This does not change the lim inf, since we assume that
|xn| = o(|x1|+ . . .+ |xn−1|), so the length of the incomplete block is negligible compared
to the total length of previous complete blocks, and the correction factor converges to 1.
Theorem 14 is proven.

5.6 Finite-state martingales and automatic a priori complexity

The original definition of the finite-state dimension [23] was given in terms of games
(or martingales corresponding to games). In this section we review this definition and
show that it is equivalent to the definitions given above. This equivalence was proven
by Bourke, Hitchcock and Vinodchandran [14]; we provide a simple alternative proof
based on a finite-state version of a priori probability. But let us first say a few general
words about the game approach to randomness that goes back to Ville (see his book [59];
see [12] for more historic details).
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The game approach to randomness is based on the following idea: a bit sequence is
not random if we can become infinitely rich playing against this sequence. The game is
as follows: before seeing the next bit of the sequence, we have some amount of money m
and split it into two parts m = m0 +m1, making two bets (on zero and one). Then the
next bit is shown, the wrong bet is lost and the correct bet is doubled.11 So our capital
after seeing the next bit b is 2mb. The strategy in such a game is a function saying how
we should split our capital after seeing a prefix of the sequence we are playing with.
The usual way to describe the strategy is to provide the corresponding martingale, a
non-negative real-valued function m(x) that says what is our capital after playing with
prefix x. It is easy to see that the rules of the game described above mean that

m(x) =
m(x0) +m(x1)

2
(∗)

for every string x.

Definition 7. A martingale is a function m with non-negative values defined on all
binary strings that satisfies the equality (∗) for all x.

A more general notion of martingale is used in the probability theory, but for our
purposes this special case is enough. After playing with prefix x, we split the capital
m(x) and make bets m(x0)/2 and m(x1)/2; the correct bet is doubled and our capital
becomes m(x0) or m(x1).

Definition 8. A martingale wins on a binary sequence α if it is not bounded on the
prefixes of α.

Martingales are in one-to-one correspondence with measures on the Cantor space.
A measure on the Cantor space is determined by its values on intervals [x]; here [x]
is an interval that contains all sequences that have prefix x. For a measure µ we have
µ([x]) = µ([x0]) + µ([x1]). If the the measure of the entire space is 1, it is called
a probability distribution. The uniform Lebesgue measure λ on the Cantor space is
defined as λ([x]) = 2−|x| and corresponds to independent fair coin tosses. The following
statement follows directly from the definitions:

Proposition 2. If µ is some measure on the Cantor space of bit sequences, then

m(x) =
µ([x])

λ([x])

is a martingale. Every martingale corresponds to some measure in this way. Martingales

that equal 1 on the empty string correspond to probability distributions.

The conditional probabilities µ([x0])/µ([x]) and µ([x1])/µ([x]) are the fractions of
capital that are used to bet on 0 and 1 respectively, after seeing the prefix x.

11One may wish to keep some part of the capital not using it for bets, but the same result can be
achieved by betting half of it on zero and half of it on one.
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There is a characterization of Martin-Löf random sequences in terms of martin-
gales [47]: a sequence is Martin-Löf random if and only if no lower semicomputable
martingale wins against this sequence. Lower semicomputability means that there is an
algorithm that, given a string x, produces an increasing computable sequence of rational
numbers that converges to the martingale value m(x). A “scaled-down” version of this
result [48] says that a sequence is normal if and only if no finite-state martingale wins
against it. Informally speaking, finite-state martingales correspond to strategies with
finite memory, i.e., the strategies that have finite number of states, each state deter-
mines the proportion of bets (a pair of rational numbers whose sum is 1), and the next
state is determined by a previous state and the bit seen). We will reprove this result in
Section 5.7 (Theorem 18).

Martingales can also be used to define effective Hausdorff dimension and (in the
case of finite-state martingales) finite-state dimension [33, 34]. The dimension of a bit
sequence determines how fast a martingale can grow on the prefixes of this sequence:
dimension is the infimum of s such that m(x)/2(1−s)|x| is unbounded for some martingale
m. The exponential growth of martingales was first considered by Schnorr [47, Chap-
ter 17]; much later these ideas were rediscovered and developed by defining effective
Hausdorff dimension [33, 34, 35].

Technically it is convenient to introduce the notion of s-gale for s ∈ [0, 1].

Definition 9. Let s ∈ [0, 1]. An s-gale is a function m(x) on binary strings with
non-negative real values such that

m(x) =
m(x0) +m(x1)

2s

This definition introduces a “tax”: after each game the capital is multiplied by factor
2s−1. For s = 1 we have no tax: 1-gales are just martingales. For s = 0 we have tax
rate 50% (half of the capital is taken away after each game). In the latter case (s = 0)
we cannot win: even if we guess all the bits correctly and make the corresponding bets,
our capital will only remain unchanged.

It is easy to see that we may equivalently define s-gales as functions of type

m(x) =
µ([x])

2−s|x|

where µ is some measure.
The effective Hausdorff dimension of a bit sequence α = a0a1 . . . can be defined as

the infimum of the values of s such that some lower semicomputable s-gale wins on α.
One can also equivalently define it in terms of Kolmogorov complexity as

lim inf C(a0a1 . . . an−1)/n

(see [33, 34, 35, 56] or [26, Section 13.3] and [55, Sections 5.8 and 9.10] for a survey).
This subject has a long history (see the discussion in [26, footnote on p. 598]); we do not
go into details since we are interested only in the parallel theory developed in [23] for
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the finite-state case. It used finite-state gales to define the finite-state dimension. Then
in [14] the equivalence between the definitions of finite-state dimension in terms of gales
and entropy rates was proven. We used the reverse order: the definition of finite-state
dimension was given in terms of the entropy rates, and now we are going to give a simple
proof of its equivalence to martingale definition.

First let us give the exact definitions. Assume that a finite set of nodes (states) is
given; one of them is called an initial state. For each node (state) there are two outgoing
edges labeled (0, p0) and (1, p1), where p0 and p1 are non-negative rational numbers and
p0+p1 = 1. This labeled graph (together with the initial state) determines a probabilistic
process: it starts in the initial state and then changes the state in a natural way: an
outgoing edge is selected with probability written on it, i.e., the probability to choose
an edge is the second component of a pair on that edge. The corresponding bit (the first
component of the pair) is sent to the output. We get a measure on the Cantor space.

Definition 10. Measures of this type are called finite-state measures. If µ is a finite-
state measure on the Cantor space, the ratio µ([x])/2−s|x| is called a finite-state s-gale.
A finite-state 1-gale is called a finite-state martingale.

Schnorr and Stimm [48] introduced finite-state martingales under the name (in Ger-
man) “Vermögenfunktionen erzeugt von endlichen Automaten”. Dai, Lathrop, Lutz and
Mayordomo in their paper [23] use the name “1-account finite-state s-gale” for the notion
we consider. It is easy to see that finite-state martingales correspond to the gambling
strategies described above (the gambler’s decision how to split the capital between two
bets is computed by a finite automaton: nodes are states of this automaton, the rational
numbers on the outgoing edges determine the bets, and the endpoints of the edges are
next states for two possible values of the next bit).

Theorem 15.
1. (Schnorr and Stimm, [48, Satz 4.1]) A sequence is normal if and only if no

finite-state martingale wins against it.

2. (Dai, Lathrop, Lutz, Mayordomo, [23]12) The finite-state dimension of α is the

infimum of s ∈ [0, 1] such that there exists a finite-state s-gale that wins against α; if

there is no such s, the finite-state dimension is 1.

We start by proving the second statement. It gives immediately one implication in
the first statement: if no martingale wins on a sequence, then no s-gale (for s ∈ [0, 1]) can
win on it, the finite-state dimension is 1 and the sequence is normal. We postpone the
proof of the reverse implication in the first part, since it uses some additional technique
that goes back to Agafonov [1]. See below Theorem 18 for this implication.

To prove Theorem 15, we follow the proof of Theorem 11 with some changes. Namely,
we replace the notion of automatic complexity (as defined in Section 2) by a similar no-
tion that resembles a priori complexity (logarithm of the maximal continuous semimea-
sure as defined in the algorithmic information theory, see [55] for details).

12As we have said, in [23] this property was used as a definition of finite-state dimension, so they
formulated the result as the characterization of finite-state dimension in terms of aligned entropy rate.
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Definition 11. Let R be a finite-state probabilistic process (i.e., a labeled graph of the
described type). Consider state i as its initial state, and let ρR,i be the corresponding
measure on the Cantor space. Its logarithm can be considered as a complexity measure,
and we define

KAR,i(x) = − log ρR,i([x])

for a binary string x. For a fixed graph R, we consider all its nodes as initial state, take
the minimum over all nodes i and let

KAR(x) = min
i

KAR,i(x);

In other words, we consider the maximal probability over all initial states, and its
negative logarithm. This is technically important to get a superadditive function; for
similar reasons we did not fix an initial state when defining the automatic complexity.

The following result, analogous to Theorem 11, is essentially a reformulation of the
second part of Theorem 15.

Theorem 16. Finite-state dimension of an arbitrary bit sequence α = a0a1a2 . . . is

equal to

inf
R

lim inf
n→∞

KAR(a0a1 . . . an−1)

n

Before proving this result, let us show that the second part of Theorem 15 follows
from it. For that we need to show two things:

• if s > lim infn→∞(KAR(a0a1 . . . an−1)/n) for some R, then there is an s-gale that
wins against α;

• if there is an s-gale that wins against α, then s > lim infn→∞(KAR(a0a1 . . . an−1)/n)
for some R.

In both case we consider a probabilistic process R that corresponds to the s-gale. Note
first that the inequality s > KAR(a0a1 . . . an−1)/n by definition means that

ρi([a0a1 . . . an−1]) > 2−sn

for some initial state i. So if this happens for some R and infinitely many n (as it should
if s exceeds lim inf), then we can select i that appears infinitely often, and for that i the
corresponding s-gale exceeds 1 infinitely often. It does not mean winning according to
our definition, but we can slightly decrease s first (in such a way that it still exceeds the
lim inf) and apply the argument to the smaller gale. Then we change s back and convert
a sequence that exceeds 1 infinitely often into an unbounded sequence.

On the other hand, if some s-gale wins against α, then the corresponding distribution
infinitely often exceeds 2−sn for n-bit prefixes of α, and KAR(a0a1 . . . an−1) is smaller
than sn for infinitely many prefixes. This finishes the derivation of the second part of
Theorem 15 from Theorem 16. Now let us prove Theorem 16.
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Proof of Theorem 16. We follow the scheme used for the proof of Theorem 11 with
minimal changes. In the first part, we need to prove the version of Lemma 2.1 where
CR is replaced by KAR.

Lemma 16.1. Let k be some integer and let P be a distribution on a set Bk of k-bit
blocks. Then there exists a probabilistic process R such that for every string x whose

length is a multiple of k, we have

KAR(x) 6
|x|

k

(

∑

B

Q(B) log
1

P (B)
+ 1

)

where Q is the distribution on k-bit blocks appearing when x is split into blocks of size

k.

Proof. We may consider the same prefix code from Shannon’s theorem, and consider a
probabilistic process that tosses a fair coin to choose the next bit of a growing string,
and decodes this string with respect to the prefix code chosen (when the codeword’s end
is reached, we output the encoded string; this is done using several states where the next
move is deterministic, i.e., has probability 1). The probability to get some string x as
the output is at least 2−m if m is the length of its description, so we get the same bound
as in Lemma 2.1.

In fact, a simpler argument that gives a better bound is possible. We do not really
need the coding argument and corresponding +1 overhead. Instead, we may consider
a finite-state probabilistic process that generates probability distribution P on the con-
secutive blocks (different blocks are independent) and get directly the inequality

KAR(x) 6
|x|

k

(

∑

B

Q(B) log
1

P (B)

)

without the term “+1”. Still one small problem remains: by definition, we want the
transitional probabilities in the finite-state process to be rational numbers, so we need
to replace P by some its rational approximation, and again an (arbitrariraly small)
additive term appears, instead of “+1”. In this way we also make all probabilities in the
approximate distribution strictly positive, and this is makes KAR finite everywhere.

The rest of the proof remains the same as for Theorem 2.
For the other direction, we apply Lemma 11.1 to the function F (x) = KAR(x). This

gives the desired result immediately, and it remains to show that function KAR(x) has
the required properties:

Lemma 16.2. For every R the function KAR(x) is a superadditive function that satisfies

the calibration condition.

Proof. We need to prove superadditivity: KAR(uv) > KAR(u) + KAR(v). To get the
required lower bound for KAR(uv) we need to prove an upper bound for maxi ρi(uv)
where maximum is taken over all nodes of R, i.e., to prove the same bound for every i.
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But ρi(uv) = ρi(u)ρj(v) where j is the state where the process is after generating u,
and this gives the required bound. Here it is essential that we take maximum of ρi(x)
over all i (minimum of KAR,i(x) over all i), this is a technical trick that makes KAR

superadditive.
The calibration condition (Lemma 11.1) is easy to check:

2−KAR(x) = max
i

2−KAR,i(x) 6 max
i

ρR,i(x) 6
∑

i

ρR,i(x).

Now we compute the sum over all x of given length s, and for each i the sum of ρR,i(x)
over these x is 1, so the sum in the calibration condition does not exceed the number of
states. So we get not only a polynomial in s bound, but a constant bound.

We could also prove this lemma saying that KAR (for every R) is an upper bound for
apriori Kolmogorov complexity (see [55, Section 5.3]) and all the version of complexity
differ only by a logarithmic term and satisfy the calibration condition.

This lemma finishes the proof of Theorem 16, and therefore the second part of Theo-
rem 15 is also proven. We will return to the first part after discussing Agafonov’s result
(see Theorem 18 below).

5.7 Agafonov’s and Schnorr–Stimm’s theorems

In this section we derive another classical result about normal numbers, Agafonov’s
theorem [1], from the martingale characterization.

Agafonov’s result is motivated by the von Mises’ approach to randomness (see,
e.g., [55, Chapter 9] for a historic account). As von Mises had mentioned, a random
sequence (he used German word Kollektiv) should remain random after using a reason-
able selection rule. More precisely, assume that there is some set S of binary strings.
This set determines a “selection rule” that selects a subsequence from every binary se-
quence α. The selection works as follows: we observe a binary sequence α = a0a1a2 . . .
and select terms an such that a0a1 . . . an−1 ∈ S (without reordering the selected terms).
We get a subsequence; if an initial sequence is “random” (is plausible as an outcome
of a fair coin tossing), said von Mises, this subsequence should also be random in the
same sense. The Agafonov’s theorem says that for regular (automatic) selection rules
and normality as randomness this property is indeed true.

Theorem 17 (Agafonov). Let α = a0a1a2 . . . be a normal sequence. Let S be a regular

(=recognizable by a finite automaton) set of binary strings. Consider a subsequence σ
made of terms an such that a0a1 . . . an−1 ∈ S, taken in the same order as in the original

sequence. Then σ is normal or finite.

Proof. We already know that a sequence is not normal if and only if there is a finite-state
s-gale for s < 1 that wins against it. So we need to show that if some s-gale wins against
a selected subsequence, then there is some other s′-gale for (may be, different) s′ < 1
that wins against the entire sequence. In terms of martingales: if some martingale wins
exponentially fast playing against the selected (infinite) subsequence, then some other
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martingale wins exponentially fast against the entire sequence (may be, with different
exponent).

In this language the idea of the proof is obvious. Assume that we have some strategy
σ that plays against the subsequence. Then we can play against the entire sequence
as follows. We make the trivial bets (0.5 + 0.5) when we bet on the non-selected bits
of the entire sequence, and use σ to bet on the selected bits. Since the selection rule
is defined by a finite automaton, it is easy to see that the new strategy also has finite
memory, and the capital will be the same as in the game of σ against the subsequence.
The only problem is the rate: if the selected subsequence is very sparse, then exponential
rate in the subsequence game is no more an exponential rate in the entire game. But
the selected subsequence cannot be too rare, its density is separated from zero, as the
following well known lemma13 says:

Lemma 17.1. If the selected subsequence is infinite, then it has a positive density, i.e.,

the lim inf of the density of the selected terms is positive.

Proof of the lemma. Consider a deterministic finite automaton that recognizes the set
S. We denote this automaton by the same letter S. Let X be the set of states of S that
appear infinitely many times when S is applied to α. Starting from some moment, the
automaton is in X, and X is strongly connected (when speaking about strong connec-
tivity, we ignore the labeling of the transition edges). Let us show that vertices in X
have no outgoing edges that leave X. If these edges exist, let us construct a string u that
forces S to leave X when started from any vertex of X. This will lead to a contradiction:
a normal sequence has infinitely many occurrences of u, and one of them appears when
S already is in X.

How to construct this u? Take some q ∈ X and construct a string u1 that forces S
to leave X when started from q. Such a string u1 exists, since X is strongly connected,
so we can bring S to any vertex and then use the letter that forces S to leave X. Now
consider some other vertex q′ ∈ X. It may happen that u1 already forces S to leave X
when started from q′. If not and S remains in X (being in some vertex v), we can find
some string u2 that forces S out of X when started at v. Then the string u1u2 forces S
to leave X when started in any of the vertices q, q′. Then we consider some other vertex
q′′ and append (if needed) some string u3 that forces S to leave X when started at q, q′

or q′′ (in the same way). Doing this for all vertices of X, we get the desired u (and the
desired contradiction).14

So X has no outgoing edges (and therefore is a strongly connected component of
S’s graph). Now the same argument shows that there exists a string u that forces S to
visit all vertices of X when started from any vertex in X. This string u appears with

13This lemma was implicitly used in the original proof of Agafonov [1]; an explicit statement can be
found, e.g., in [8, Lemma 7.5]; note that in [9] a simple special case is considered when the transition
function is free of cycles of non-selecting states.

14One may use also a probabilistic argument: for every vertex q ∈ X there is some string that forces
S to leave X when started at q, so for a sufficiently long random input string the probability to remain
all the time in X is very small. And if it is smaller that 1/|X|, there is an input string that works for
all q ∈ X.
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positive density in α. So either the selected subsequence is finite (if X has no accepting
vertices) or the selected subsequence has positive density (since every occurrence of u
means that at least one term is selected when S visits the accepting vertex). Lemma 17.1
is proven.

This finishes the proof of Theorem 17.

Remark. In our exposition Agafonov’s theorem is decomposed in three parts: (a) positive
density lemma, (b) the obvious remark saying that applying a finite-state strategy in
the game with a subsequence selected by a finite automata, we implement a finite-state
strategy15 ; (c) characterization of normal sequences in terms of martingales. All these
parts were present already in [48], but we presented the proof for the reader’s convenience
and to make the decomposition clear.

The original proof of Agafonov (published in a hard-to-find volume and in Russian)
was recently made available in [49] (this reference was provided by an anonymous re-
viewer; thanks!). The proof is rather technical (both in the original version and in the
embelisshed account), requiring several pages of estimates and computations after some
preparations.

Now we return to the first claim of Theorem 15. We postponed the proof of the
following result: no finite-state martingale wins against a normal sequence. Now we are
ready to prove it and even a slightly stronger statement [48]:

Theorem 18 (Schnorr and Stimm). Assume that α is a normal sequence and m is a

finite-state martingale. Then either the values of m on the prefixes of α are constant,

starting from some moment, or they decrease exponentially fast.

Proof. First we use the same argument as in the proof of Lemma 17.1. Look at the
states of the finite-state martingale and consider the set X of states that appear in-
finitely often. As we have seen, this set has no outgoing edges and every state has
positive lim inf-density. Consider some state i from X. It has two outgoing edges. The-
orem 17 guarantees that these two edges are used equally often (in the limit), since
every subsequence selected by a finite automaton is normal (imagine that this state is
used as the unique accepting state in the selection rule). Does the martingale makes a
non-trivial bet in the state i? If it does not, for all i, i.e., if the martingale makes equal
bets in all states from X, then the capital remains constant since the game stays in X
starting from some moment. If there is some i ∈ X where the bets are not equal (say, p
and 1− p fractions of capital are used, where p 6= 1/2), then using each of the two edges
once, we multiply the capital by 4p(1 − p), and this number is less than 1. So we get
a factor less than 1 for every i ∈ X with non-equal bets, and get factor 1 for all i ∈ X
that have equal bets, so the capital decreases exponentially fast (recall the every state
in X is visited with positive density).

15This argument can also be adapted to the compression language: we can keep the selected sub-
sequence in the compressed form and keep the rest uncompressed [9, 53]. However, this creates some
technical problems since in this way the compressed version is a pair of strings, and the argument is
more natural with martingales.
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5.8 Multi-account gales and a more general notion of finite-state mea-

sures

As we have said, the finite-state s-gales in our sense are called 1-account s-gales in [23]. In
the same paper a more general notion, called finite-state k-account s-gales, is considered.
They can be defined as non-negative linear combinations of 1-account finite-state s-
gales. The intuitive motivation is clear: the gambler splits her capital into k different
“accounts” and for each account uses the finite-state strategy (but never transfers money
between the accounts).

Obviously, for the dimension of individual sequences (the case we are considering)
this does not change anything: to win against the sequence, a multi-account strategy
should contain a winning sub-strategy for some account.

From the viewpoint of gambling strategy the notion of finite-state martingale looks
quite reasonable. However, if we consider just output distribution of random processes
with finitely many states, there is a natural generalization. Assume that a finite set
of states is given, and one of them is chosen as an initial state. Assume also that for
every state there are several outgoing edges, each has some transition probability, and
for every state the sum of the probabilities for all outgoing edges equals 1. This defines
a random walk, and if we add for each edge a bit label (0 or 1), we get a probability
distribution on the infinite bit sequences. (The difference with the previous definition is
that now the state is not determined by the output string.) The output distribution of
this type can then be used to define martingales and s-gales in the same way, giving a
more general definition.

It is easy to see that k-account gales become a special case of this definition (the
splitting of the money between accounts is replaced by a probabilistic choice on the first
step). Also one can define the version of KAR based on this more general definition
(taking the maximum over all states as initial states), and this version can be also used
to characterize the finite-state dimension, as the following lemma implies.

Lemma 18.1. The function KAR in this general version is also a superadditive upper

bound for a priori complexity.

Proof. Indeed, the distribution obtained for every fixed initial state is a computable
measure on the Cantor space, so for each initial state we get an upper bound for a priori
complexity, and the minimum of these bounds is still an upper bound.

To show the superadditivity, we cannot anymore use the equality ρi(uv) = ρi(u)ρj(v)
since now the process can be in different states after output u. We need to replace ρj(v)
by a weighted sum of ρk(v) for different k that can be the states after output u. But
since we take the maximum of ρk(v) for all k when defining KAR, we still have the
superadditivity property.

5.9 Strong dimensions

The notions of Hausdorff dimension and effective Hausdorff dimension have “strong
counterparts”: the notion of packing dimension (called also modified upper box dimen-
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sion) and constructive strong dimension [4]. Theorem 4.4 in [4] says that the pack-
ing dimension of a set X of binary sequences equals the infimum of all s such that
there exist an s-gale that strongly wins (converges to infinity) on all elements of X.
In the same paper [4] it is shown that the strong dimension of a singleton {a0a1 . . .}
equals lim supnC(a0 . . . an−1)/n (Corollary 6.2). This parallelism extends to the finite-
state case: there is a natural notion of a strong finite-state dimension of a sequence
α = a0a1a2 . . .. Like the notion of finite-state dimension, it can be defined in many
equivalent ways.

Theorem 19. The following definitions of the strong finite-state dimension are equiva-

lent:

• the infimum of all s such that there exists a finite-state s-gale that strongly wins

against α, i.e., the capital converges to infinity when playing against α.

• the same, for k-account s-gales instead of 1-account finite state s-gales.

• for a given automatic relation R consider lim supnCR(a0 . . . an−1)/n; take the in-

fimum over all R.

• for a given finite-state probabilistic process R consider lim supnKAR(a0 . . . an−1)/n;
take the infimum over all R.

• for a given superadditive function F on strings that satisfies the calibration con-

dition of Theorem 13 consider lim supn F (a0 . . . an−1)/n; take infimum over all

F .

• for a given k split α into disjoint k-bit blocks; then, for a given N , consider the

distribution on the first N of these k-bit blocks and its entropy Ha
k,N(α). Let

H̄a
k(α) = lim supN→∞Ha

k,N(α); consider limk H̄
a
k(α)/k or infk H̄

a
k(α)/k.

In this theorem some variations are allowed: (1) one may consider more general
s-gales based on the output distribution of finite-state probabilistic processes (see the
discussion in Section 5.8); (2) one may use the condition from Theorem 12 as a calibration
condition; (3) instead of aligned blocks, we may consider non-aligned ones.

Proof sketch. All these equivalence statement are parallel to corresponding results about
finite-state dimension. The difference is that we now consider strongly winning gales (not
only unbounded but converging to infinity) and lim sup instead of lim inf.

The equivalence proof go in the same way. The only new element is that now,
knowing that lim sup of block entropies is small, we cannot choose one limit distribution
and adapt the coding (compression) to this specific distribution. Instead, we need a
prefix code that works efficiently for all strings of some length (not losing much to a
code that is adapted to a given distribution). Considering k-blocks as letters of some
large alphabet B, we may use the following lemma.
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Lemma 19.1 (Universal coding lemma). Let B be some alphabet. For a given N there

exists a prefix-free code for N -bit strings over B such that every string z of length N
has a code of length NH(z)+O(logN), where H(z) is the entropy of the distribution of

letters in z, and the constant in O(·)-notation depends on B but not on N .

To prove the lemma, we can encode z by first specifying the length of z and number
of occurrences of each letter in z. Then we may use Shannon–Fano code based on
the letters’ frequencies to specify z, because at that point decoder already knows the
frequencies. In the language of Kolmogorov complexity, this lemma is a well-known
bound K(z) 6 NH(z) + O(logN) that was mentions already in Kolmogorov’s papers
from 1960s. This lemma also has an measure version saying that there exists a measure
µ on all strings of length N over B such that µ(z) for every z is at least Pz(x)/poly(N),
where P (z) is the Bernoulli distribution on B-strings based on the frequencies of letters
in z. In the language of Kolmogorov complexity, we may use KA(z) instead of K(z).

Let us comment on the history of the notion of strong finite-state dimension of a bit
sequence. Originally it appeared in the paper of Lempel and Ziv [65] where it was defined
in terms of variable-rate block encoders with finite memory. This is close to the auto-
matic complexity definition; however, definition in [65] did not introduce the notion of
automatic complexity and used instead finite-state compressors such that decompression
is unique if the initial and finite states are given in addition to the compressed output.
Theorem 3 from their paper [65, p. 534] says that this notion, denoted there by ρ(·), can
be equivalently defined in terms of lim sup of entropies of unaligned blocks. Much later,
in 2002 (the year when the arxiv version was published, the journal version appeared in
2007) Athreya, Hitchcock, Lutz and Mayordomo noted [4, Theorem 6.18] that the notion
introduced by Ziv and Lempel (Athreya et al. refer to Ziv’s paper [63], not to [65], but
this is most probably a typo) coincides with the finite-state strong dimension defined in
terms of gales. They also note that one can use both 1-account and k-account gales in
this equivalence proof (though they do not consider more general notion of output distri-
bution of a finite-state probabilistic process). In a later paper (2005) Bourke, Hitchcock
and Vinodchandran [14, Theorem 5.3] cite the result of Ziv and Lempel but strangely
use aligned blocks (without explaining why aligned and non-aligned blocks give the same
notion of strong finite-state dimension). Theorem 19 includes all these results and shows
that they may be obtained almost for free by using the notions of automatic complexity,
finite-state a priori probability and their superadditivity, while the original proofs were
rather technical and were scattered among several papers.

6 Discussion

The connection between normality and finite-state computations was noticed long ago,
as the title of [1] shows; see also [48] where normality was related to martingales arising
from finite automata. This connection led to a characterization of normality as incom-
pressibility (see [9] for a direct proof). On the other hand, it was also clear that the
notion of Kolmogorov complexity is not directly practical since it considers arbitrary
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algorithms as decompressors, and this makes it non-computable. So restricted classes of
decompressors are of interest, and finite-state computations are a natural candidate for
such a class.

Shallit and Wang [50] suggested to consider, for a given string x, the minimal number
of states in an automaton that accepts x but not other strings of the same length.
Later Hyde and Kjos-Hanssen [28] considered a similar notion using nondeterministic
automata. The intrinsic problem of this approach is that it is not naturally “calibrated”
in the following sense: measuring the information in bits, we would like to have about
2n objects of complexity at most n. A “calibrated” approach was suggested by Calude,
Salomaa and Roblot [16], see also [57]; we have already discussed their definition in
Section 4.6.

The incompressibility notion used in [9] provides such a characterization for yet
another approach to automatic complexity. It uses deterministic transducers applied
to a sequence whose complexity is measured: transducers are used as compressors, not
decompressors. Still the decompression should be possible: Becher and Heiber require
additionally that for every output string y and every final state s there is at most one
input string that produces y and brings the automaton into the state s. In [8] (see
also [18]) Becher, Carton and Heiber consider a weaker condition: each output string
has O(1)-preimages. The difference with our approach is that we do not consider the
compression step at all, consider non-deterministic automata without initial/final states
and require that decompressor is an O(1)-valued function. The proofs become simpler
for two reasons: (1) we compare the automatic complexity and Kolmogorov complexity
and use standard results about Kolmogorov complexity; (2) we explicitly state and prove
the superadditivity property CR(xy) > CR(x) + CR(y) that is crucial for the proofs.

The reviewers of the previous version of this paper pointed out that Doty and
Moser [25] were the first who characterized the finite-state dimension of a sequence
in terms of automatic complexity based on decompressors. We overlooked this paper
(from 2006) and apologize to its authors for not mentioning it in [53, 29]. They consider
the finite-state transducers that have finite number of states, an initial state, transition
and output functions. The transition function says what is the next state if the current
state and input letter are known; the output function specifies the output string for
each state and input letter. A transducer of this type determines a mapping from input
strings to output strings. We assume that both input and output are binary strings.

Fix some way to measure the size of the tranducer. For example, we may define
the size as the maximum of the number of states and the length of the strings that are
values of the output function. For a given k, define the automatic complexity Ck(x)
of a string x as the minimal length of an input string that is mapped to x by some
transducer of size at most k. Then the finite-state dimension of an infinite sequence
α = a0a1 . . . is equal to infk lim infnCk(a0 . . . an−1)/n. Note that Ck decreases as k
increases so infk can be replaced by limk. This was proven by Doty and Moser [25]
as well as the similar result for strong dimension and lim sup. They used the previous
results characterizing the finite state dimension in terms of decompressors [4] and a
rather complicated combinatorial construction converting an arbitrary transducer to a

52



compressor with unique decompression. This needed this construction since the function
Ck is not superadditive. However, this construction can be easily avoided if we use our
tools and note that for every transducer its input-output relation is contained in some
automatic description mode and this can be extended to a finite set of transducers by
Proposition 1, (a). For the other direction, we need another obvious remark: a prefix-
free decoding is performed by a transducer. However, this paper relates this notion to
the measure of complexity introduced by Lempe

Another (and earlier) paper pointed out by reviewers is [51] where the complexity
measure using decompressors is considered. It is shown there that the requirement that
the compression is performed by an automaton is redundant in some sense: it is enough
to require that decompression is performed by an automaton. This paper does this by
relating the complexity measure defined in terms of decompressors to the complexity
measure introduced in [31]; this makes the entire argument quite complicated.

An interesting open question is to find out the relations between different automatic
complexity notions. Is there any formal relation between automatic complexity as de-
fined in Section 2 and notions of finite-state a priori complexity as defined in Section 5.6
and 5.8? Does the generalization of the class of probabilistic processes (Section 5.8)
change the class of the corresponding complexity functions? Note that all three notions
(automatic complexity and two finite-state a priori complexities) can be used to charac-
terize normality since they are all superadditive and are upper bounds for Kolmogorov
complexity with logarithmic precision. Still the results showing the different definitions
of Kolmogorov complexity (using a priori probability and description modes) are close
to each other, do not imply that the finite-state versions of the same notions are also
close to each other.
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