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I present here an in-depth, although non-exhaustive, review of two topics in molecular

dating. Clock models, which describe the evolution of the rate of evolution, are

considered first. Some of the shortcomings of popular approaches—uncorrelated

clock models in particular—are presented and discussed. Autocorrelated models are

shown to be more reasonable from a biological perspective. Some of the most recent

autocorrelated models also rely on a coherent treatment of instantaneous and average

substitution rates while previous models are based on implicit approximations. Second, I

provide a brief overview of the processes involved in collecting and preparing fossil data.

I then review the main techniques that use this data for calibrating the molecular clock.

I argue that, in its current form, the fossilized birth-death process relies on assumptions

about the mechanisms underlying fossilization and the data collection process that may

negatively impact the date estimates. Node-dating approaches make better use of the

data available, even though they rest on paleontologists’ intervention to prepare raw fossil

data. Altogether, this study provides indications that may help practitioners in selecting

appropriate methods for molecular dating. It will also hopefully participate in defining the

contour of future methodological developments in the field.

Keywords: fossils, calibration, Bayesian inference, relaxed clock models, fossilized-birth-death process,

total-evidence, tip-dating

1. INTRODUCTION

Telling apart the rate of molecular substitution from the time, measured in calendar units, that
define periods of evolution, is the main endeavor of molecular dating techniques. The basic
idea underlying these techniques is straightforward. The comparison of a set of homologous
genetic sequences provides information about the number of (nucleotide, amino acid, or codon)
substitutions that took place along the edges of the phylogeny connecting these sequences. If
information is available about either the rate at which these substitutions take place or the actual
timing of particular events in the phylogeny, then one may express the length of an edge as
the product of the rate of molecular evolution by a calendar time elapsed along this edge. The
application of this approach, in its simplest form (Zuckerkandl and Pauling, 1965), has led to
spectacular findings—the reappraisal of the timing of divergence between African apes and humans
(Sarich and Wilson, 1967) being perhaps the most emblematic. Since their first use more than five
decades ago, molecular dating methods have considerably increased in sophistication. Heightened
complexity indeed arose at many different levels of the analysis, going from the collection of genetic
and fossil data to the reconstruction of phylogenetic trees.
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This review article leaves aside many important aspects of
modern techniques in molecular dating. In particular, it does not
touch on the preparation of data, may it be the various algorithms
for aligning homologous genetic sequences or the techniques
used in the exploration of geological strata for extracting fossil
data. Despite being central in Bayesian methods for the inference
of node ages (see e.g., Condamine et al., 2015 for an illustration),
the details of the tree-generating processes will also be largely
omitted. Furthermore, computational considerations will not be
discussed and I will not provide a list of available software
implementing the most up-to-date techniques for molecular
dating. Simulation techniques used to assess the accuracy and
precision with which node ages are inferred, including the
generation of phylogenies (Stadler, 2019) and genetic sequences
(Fletcher and Yang, 2009; Currat et al., 2019), will also be ignored.
I refer the keen reader to dos Reis et al. (2016) and Bromham et al.
(2018) that give a broader overview of the variousmethodological
and practical aspects pertaining to molecular dating.

The present work focuses instead on two specific aspects of
molecular dating. It first provides an in-depth presentation of
the models describing the variation of the rate of molecular
evolution along a phylogenetic tree. This presentation serves as a
basis to assess clock models, revealing some of the weaknesses of
the most popular approaches. Note that the probabilistic models
presented here focus exclusively on the evolution of the rate of
substitution between nucleotides, amino-acids or codons. Yet,
variations in the rate of evolution manifest themselves at other
levels in molecules. For instance, the secondary structure of some
proteins has been shown to evolve in a non-clock-like manner
(Pascual-García et al., 2019). The mode and tempo of evolution
of secondary and tertiary protein structures is beyond the scope
of this study, however, and I will only deal with the evolution of
primary sequences. The second part of this review deals with the
techniques used for calibrating molecular dating analyses based
on fossil data. Here again, statistical and biological arguments are
presented that help evaluate the relevance of themain techniques,
including the most recent developments such as the fossilized-
birth-death model and the “total-evidence” approach.

2. RATES OF MOLECULAR EVOLUTION
ALONG PHYLOGENIES

A substitution between two nucleotides at a particular position
in a genome is the outcome of two distinct events. For this
reason, it is useful to distinguish between a mutation, which
is the outcome of a biochemical process, and a substitution,
which involves a series of population-level events leading to
the fixation of a mutation, as detailed below. The mutation
that substitutes a nucleotide i ∈ A : = {A,T,G,C} by another
nucleotide j 6= i may be modeled as a “uniformly at random”
event, i.e., given i, all j 6= i have the same probability of
replacing i. It is clear however that the biological reality is more
subtle than that simple model. For instance, mutations generally
favor transitions over transversions. Although part of this bias
is the consequence of natural selection acting on proteins, it has
been shown that transitions are over-represented in pseudogenes
(Gojobori et al., 1982), suggesting that the biochemical processes

involved in mutations are also responsible for the observed bias.
Other biochemical events, such as biased gene conversion (Duret
and Galtier, 2009) for instance, invalidate to a certain extant
the “uniformly at random” assumption, at least in some parts
of the genomes (i.e., the regions prone to recombination) in
mammals and yeast. Furthermore, mutation rates are most likely
influenced by species-specific characteristics such as generation
time, metabolic rate and DNA repair efficiency (Gillespie, 1994;
Baer et al., 2007), such that these rates are also likely to vary
extensively across lineages in the tree of life.

The second event involved in the making of a substitution is
fixation. Although a mutation arises in a single genome at a given
point in time, its frequency in the population, and in the species
this population belongs to, may increase until it completely
replaces the original allele. Note that we assume here that
mutations are rare such that a mutant allele reaches fixation or
vanishes from the population before a new mutation arises. The
process of fixation of a mutation is complex as it is governed by
various evolutionary forces such as natural selection (beneficial
mutations will, on average, reach fixation more frequently and
quickly than mutations leading to a decrease in fitness), genetic
drift (the fixation of an allele occurs more quickly in small vs.
large populations), and migrations. These three forces constitute
the main focus of studies in classical population genetics and
will not be discussed in more detail here. Most phylogenetic
analysis techniques rely on a phenomenological approach for
modeling substitutions whereby mutation and fixation are not
distinguished explicitly. Note however that a substantial body of
work has focused on deriving models of substitution from the
basic principles of population genetics (Halpern and Bruno, 1998;
Nielsen and Yang, 2003; Thorne et al., 2007; Cartwright et al.,
2011).

The accumulation of substitutions between nucleotides during
the course of evolution is thus generally assumed to be governed
by a continuous-time Markov process. Individual sites are here
considered as independent and identically distributed (iid),
i.e., a simulation of the same Markov process runs along the
phylogeny, at each position along the genome, to give rise to the
observed data at the tips of the tree. The iid assumption is of
course problematic when dealing with coding sequences. Indeed,
through the action of natural selection, a non-synonymous
change in a given region of the sequence may cause another
non-synonymous substitution in a remote region in order to
compensate for the first one. Yet, substitutions taking place at
third coding positions may be considered as approximately iid
and the same approximation can bemade for non-coding regions
of the genome or for pseudo-genes.

2.1. The Strict Clock Model and an
Extension
At a given point in time t during the course of evolution, in a
particular ancestral lineage labeled with index l and at a particular
site s, one considers that substitutions accumulate randomly,
following a Poisson point process of intensity µ(l, t, s). The
substitution rate is generally decomposed as follows: µ(l, t, s) =

r(s)µ(l, t), where r(s) describes the variability of rates across
sites. This random variable generally follows a discrete gamma
distribution (Yang, 1994) although the use of non-parametric
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distributions is now commonplace (Soubrier et al., 2012). In the
following, I will ignore this extra layer in the model describing
the rate at which substitutions accumulate. I will thus focus on
the term µ(l, t) here on.

A first approach for modeling the fluctuation of the rate of
substitution when considering the evolution of multiple species
is to assume that µ(l, t) is constant throughout, i.e., µ(l, t) =

µ. This simplification corresponds to the well-known “strict
molecular clock” model pioneered by Zuckerkandl and Pauling
(1965). Note that the actual (or realized) number of substitutions
in a given time interval, along a particular lineage, may vary from
one site to another because of the inherent stochasticity of the
underlying process. Yet, these numbers of substitutions are all
considered as random draws from the same Poisson distribution.

Molecular sequences can be considered as snapshots of
molecular evolution at a single or a few point(s) in time. Hence,
detailed information about evolutionary events at all points in
time is forever lost and only average trends can be recovered from
the observation. In the following, I will focus on the relationship
between clock models, such as the strict clock model cited above,
and average substitution rates in the context of date inference.
More specifically, the (pathwise) average substitution rate, λt , is
defined as follows:

λt : =
1

t

∫ t

0
µ(l, x)dx. (1)

Hence, λt is proportional to the integral over the rate trajectory
{µ(l, x), 0 ≤ x ≤ t} that gives the value of the substitution rate
at all points in time in the time interval [0, t]. As we will see
below, some clock models (uncorrelated ones in particular) focus
solely on the distribution of the average rate λt . Other approaches
model instead the instantaneous rate µ(l, x), even though only
the average can be inferred from the analysis of molecular data.

Bayesian inference of divergence times rests on the joint
posterior density of model parameters given the observed
data. I consider for now that data simply consists in two
contemporaneous sequences, corresponding to random variables
U and V , displaying sequences u and v, respectively. Beside
molecular data, one also observes fossil data, noted as I and
defining time constraints, i, on the age of the most recent
common ancestor of the species with sequences U and V . When
using a time-reversible, homogeneous and stationary Markov
process describing substitutions between genetic character states,
with stationary probabilities noted as π., the joint posterior
density of interest is then expressed as follows:

p3t ,Mt ,M0 ,T(λt ,µt ,µ0, t|U = u,V = v, I = i)

∝ Pr(U = u|V = v,3t = λt ,Mt = µt ,M0 = µ0,T = t)

× p3t (λt|Mt = µt ,M0 = µ0,T = t)

× pMt (µt|M0 = µ0,T = t)

× pM0 (µ0)

× pT(t|I = i)

× πv (2)

The first term to the right of the “proportional to” (∝) sign is the
probability of transitioning from state v (random variable: V) to
state u (R.V.:U) along an evolutionary path that lasted t calendar

units of times (R.V.: T), with instantaneous rates at the start and
at the end of that path being equal toµ0 andµt respectively (R.V.:
M0 resp.Mt), and average rate (as defined in Equation 1) equal to
λt (R.V.:3t).

In the expression above, the transition probability between
observed characters (nucleotide or amino-acids generally) is a
function of the instantaneous substitution rates at times 0 and
t, plus the average rate in the corresponding time interval. Yet,
knowing the instantaneous rates is not required. Indeed, one has:

Pr(U = u|V = v,3t = λt ,Mt = µt ,M0 = µ0,T = t)

=

∞
∑

k=0

Pr(U = u,Nt = k|V = v,3t = λt ,Mt = µt ,M0 = µ0,T = t)

=

∞
∑

k=0

Pr(U = u|V = v,Nt = k,T = t)× Pr(Nt = k|3t = λt),

where Nt is the random variable giving the number of
substitutions that took place in [0, t]. The key observation here is
that the distribution of Nt is determined by a non-homogeneous
Poisson process (the parameter of this Poisson process is defined
by the rate trajectory). This distribution is unaffected by the
specifics of the rate trajectory. It is a function of the average
rate along the trajectory only (i.e., λt), thereby explaining
why µt and µ0 vanish in the equation above. The transition
probability thus simplifies to give the following expression (in a
simplified notation):

Pr(u|v, λt ,µt ,µ0, t) = Pr(u|v, λt , t) (3)

= [e−λt tQ]v,u, (4)

where Q is the generator of the Markov chain governing
substitutions ([Q]v,u 6=v gives the rate of change from state u to v).

One may then envisage various instances of the clock model.
The strict clock model corresponds to the case where the rate
trajectories are deterministic such that p3t (λt|µt ,µ0)dλt =

pMt (µt|µ0)dµt = pM0 (µ0)dµ0 = 1 when λt = µt = µ0 and
0 otherwise, i.e., instantaneous rates are all equal at all points in
time along the considered edge (and thus equal to the average rate
too). The joint probability density of the model parameters then
becomes as follows:

p3t ,Mt ,M0 ,T(z, z, z, t|U = u,V = v, I = i) ∝[e−ztQ]v,u

×pT(t|I = i)

×πv. (5)

When breaking the evolutionary path between times 0 and t into
two time intervals, [0, s] and [s, t], the product, denoted as A, of
the two terms in Equation (2) describing the evolution of the rate
of evolution, i.e., A : = p3t (λt|µt ,µ0, t) × pMt (µt|µ0, t) is then
defined as follows:

A : =p3s ,3t−s (λt , λt−s|Mt = µt ,Ms = µs,M0 = µ0, S = s,T = t)

×pMs (µs|M0 = µ0, S = s)

×pMt (µt|Ms = µs, S = s,T = t), (6)
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and takes on the following value under the “standard” strict
molecular clock model:

A =

{

gM(µ) if λt = λt−s = µt = µs = µ0 = µ,

0 otherwise,
(7)

where M denotes the random variable giving the instantaneous
rate of evolution everywhere in the tree under the standard strict
clock model. In other words, the strict clock model assumes that
average and instantaneous rates are the same everywhere in the
tree, not just along individual edges as seen above.

2.1.1. The “Not-so-Strict” Clock Model
Thanks to the distinction between instantaneous and average
substitution rates that is made explicit here, one may design a
new clock model where instantaneous substitution rates fluctuate
randomly during the course of evolution but the average rate
stays the same along every edge in the tree. Under the so-called
“not-so-strict” clock model, the first term in Equation (6) giving
the joint density of average rates along the two successive time
segments, may be defined as follows:

p3s ,3t−s|3s=3t−s (λs, λt−s|µt ,µs,µ0, s, t) : =






0 if λs 6= λt−s,
p3s ,3t−s (λs ,λt−s|µt ,µs ,µ0 ,s,t)
∫

p3s ,3t−s (λ,λ|µt ,µs ,µ0 ,s,t)dλ
otherwise.

(8)

Genetic sequences combined with fossil data convey information
about average, not instantaneous, rates. It is thus hopeless to try
and fit the “not-so-strict” clock model to standard data sets used
in molecular dating without any extra information. This model
could nonetheless be relevant in particular circumstances. When
considering intra-species data for instance, prior information
about past variation of population sizes is sometimes available.
These variations may serve as a basis to inform the part of
the “not-so-strict” clock model describing the evolution of the
instantaneous rates along the tree, even though the molecular
clock hypothesis generally holds at that scale. More importantly,
the “not-so-strict” model can be envisaged as an intermediate
between relaxed and strict clock models. In case one has an
informative prior about the frequency and the amplitude of
the fluctuation of instantaneous rates of substitution, various
molecular clock hypotheses could then be tested by comparing
the strict to the “not-so-strict” models in the first place, and,
depending on the outcome of that test, comparing the fit of
the “not-so-strict” model to that of relaxed clock models (see
next sections).

2.2. Uncorrelated Relaxed Clock Models
The strict and not-so-strict clock models can be expanded
in two distinct ways. A first approach is to design a model
whereby µ(l, t) = µ(l) for all t along edge l, i.e., each
lineage has its own rate of substitution, which may differ from
that of other lineages, but the rate along a given lineage l is
constant. The rate trajectory along a branch of the phylogeny is
deterministic under this model, i.e., instantaneous rates do not
fluctuate randomly along each lineage. These rates can change at

internal nodes in the tree though, thereby authorizing deviations
from the strict molecular clock hypothesis. This model has
serious conceptual issues, however, since it is not sampling-
consistent. Sampling-consistency is a concept different from the
more standard concept of statistical consistency. It was used
in Barton et al. (2010) to refer to the situation where the
probabilistic distribution of the age of a particular node under
a given tree-generating process depends on the total number
of tips in the tree. In the present context, clock models lack
sampling-consistency when the number of sampled individuals
(or the number of internal nodes in the tree) influences the
number of potential shifts in the substitution rate. Sampling-
consistency is desirable since there is no sensible reason, based
on biological evidence, to believe that the rate trajectory along
a particular lineage should be influenced by the number of
sampled cladogenesis events taking place along it (although it
may be influenced by the total, i.e., sampled and unsampled,
lineage splits).

A second approach to define a relaxed clock model is to
enforce the following constraint:

∫ t
0 µ(l, x)dx = µ(l)t for all

rate trajectories {µ(l, x), 0 ≤ x ≤ t}. In this second model,
rates can fluctuate randomly along edge l although all the rate
trajectories have to average to µ(l). This model is thus the “not-
so-strict” equivalent to the models introduced in the previous
section, in a context where rates may change across lineages. That
second interpretation of the relaxed clockmodel is certainlymore
satisfactory than the previous one from a biological point of view
as changes of the rate of substitution can take place at any point
in time during the course of evolution. Yet, random fluctuations
of the instantaneous rates naturally imply random fluctuations of
the average rates too. Hence, except in the special case where the
periods of time considered are very long compared to the time
scale at which the instantaneous rate varies noticeably (in which
case the average rates taken over multiple trajectories should all
converge to a fixed value) there is no strong reason to believe
that the average rate along a given edge is not a randomly varying
quantity. As will be seen below, alternative models exist that are
more realistic than the relaxed clock ones, without compromising
on the computational burden involved.

A first relaxed clock model assumes that the average rate
of substitution along a branch is exponentially distributed
(Drummond et al., 2006). This model is a popular choice as
it is implemented in the BEAST 1 (Drummond and Rambaut,
2007) and BEAST 2 (Bouckaert et al., 2014) packages. According
to it, µ(l) is the realization of a random variable exponentially
distributed with parameter 1/µ. The exponential model is
therefore a clock model as all lineages are governed by the
same parametric distribution. It is relaxed since the average
rate along each branch is taken as a new random draw from
this distribution.

The exponential relaxed clock model considers that the
average rate of substitution along a given branch has a mean
equal to µ and a variance equal to µ2. One thus relies here on
a model in which the larger the average substitution rate, the
larger its variance, which is consistent with the idea that large
quantities vary more than smaller ones. Perhaps surprisingly,
a more detailed analysis of this model reveals that the extent
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of deviation from the strict clock constraint does not depend
on how fast (or slow) substitutions accumulate. For instance,
in the case where µ = 1 substitution per unit of time, the
probability for a lineage to evolve twice as fast as µ (or faster)
is 0.14. When µ = 0.1, this probability is also equal to 0.14. This
property of the exponential distribution is reflected in the excess
kurtosis, which measures how likely it is to observe extreme
values in a probabilistic distribution. For the exponential family,
the kurtosis is not a function of the mean or the variance (it is
in fact simply equal to six). Hence, it is counter-intuitive that
large deviations from the strict clock have the same probability
to occur when molecules evolve slow or fast, even though the
variance of the average rate is larger when sequences evolve
quickly. More importantly, molecules that evolve slowly may be
doing so as a consequence of stabilizing selection. In this case,
natural selection may prohibit large deviations from the strict
clock, and doubling the rate at which substitutions accumulate
may be very unlikely indeed. In a symmetric manner, neutrally
evolving sequences may have more latitude to double (or halve)
their rates of evolution in the real world. In summary, the
exponential distribution model may provide a reasonably good
approximation of the true underlying distribution only for fast-
or slow-evolving sequences, but not for both of them.

Beside the exponential family, the fluctuations of average rates
of evolution across edges in the tree are often described by a
lognormal or a gamma distribution (Lepage et al., 2007). Both
models are available in BEAST 1 and 2 as well as in MrBayes
3.2 (Ronquist et al., 2012b). While the exponential distribution
is fully specified with just one parameter, the lognormal and
gamma distributions rely on two parameters instead. These two
parameters set the mean and the variance of the corresponding
distributions in a separate manner, i.e., without any “hard-
coded” constraints as for the exponential family that impose
a quadratic relationship between the mean and the variance.
Moreover, the statistical properties of the lognormal and the
gamma distributions are such that slow-evolving sequences are
less likely than fast-evolving ones to deviate strongly from the
strict clock constraint. The lognormal and gamma families thus
appear superior to the exponential distribution from a biological
point of view, although the increased realism comes at the cost of
estimating an extra parameter.

Beside considerations regarding the properties of various
relaxed clock models when focusing on a single edge of the
tree, important observations are to be made when expanding
our focus to whole evolutionary paths between the root and
the tips of the phylogeny. Under the uncorrelated clock models,
the average substitution rate along edges in the phylogeny are
all iid random variables. The sum of edge lengths on a path
between the root and a tip of the tree is thus a weighted sum
of iid random variables, the weights corresponding to the times
elapsed along every edge on that path. Assuming that these
weights are all equal to one, the sum of k average rates along a

path is given by Zk : =
∑k

i=1 µ(i, 1). Invoking the central limit
theorem, the random variable Zk is thus asymptotically normally
distributed (i.e., when k → ∞) with mean µk and variance
σ 2k, where µ and σ 2 are the expectation and the variance of
µ(i, 1) respectively. Hence, in layman’s terms, tip to root distances

fluctuate more in large trees (large in terms of the number of tips,
k) compared to small ones. This behavior is difficult to justify
from a biological perspective as one would expect the patterns
of rate variation along a single lineage to be unaffected by the
total number of lineages included in the sample. All uncorrelated
clock models have the same behavior in that regard. Moreover,
this unwelcome relationship between variance and number of
tips is likely to impact phylogenies in a differential manner
depending on their shape, with comb-like phylogenies showing
highly variable numbers of edges between the root and tip nodes,
while more balanced tree shapes show less extreme variation in
the length of these paths. In that regard, selecting subsets of
taxa so as to make the phylogeny more balanced probably helps
circumventing this issue. Yet, this practice may lead to increasing
sampling errors due to the decreasing amounts of data available
for the dating analysis.

I have assumed that the time elapsed along each branch was
equal to one in the previous paragraph. I also focused on the
distribution of a single tip-to-root distance. In practice, however,
amounts of time elapsed along branches of actual phylogenies
vary between edges. Moreover, one is usually interested in the
variance of tip-to-root distances within a tree, not across trees.
This “within-tree” variance is harder to characterize analytically
due to the correlation between tip-to-root paths as defined by
the tree. I thus performed simulations where trees were first
generated according to a birth-death process with sampling.
The TreeSim package (Stadler, 2019) available in the R
programming language was used here in order to simulate trees
conditioned on a given number of sampled tips. The birth and
death rates were set to 1.0 and 0.5, respectively and 20,000 trees
were generated. Each tree was obtained by simulation of a birth-
death process with 100 species. The fraction of sampled taxa was
chosen uniformly at random in [0.1, 1]. The length of each edge
in these birth-death trees was then multiplied by a random draw
taken from an exponential distribution with the rate set to 1.0.
Tip-to-root distances were extracted from each tree using the
phytools package (Revell, 2018) and their variance calculated.

Figure 1 gives the plot of the number of tips (on the
x-axis) against the variance of the tip-to-root distances in
each tree (y-axis). This plot confirms the positive correlation
between the number of tips in the tree and the variance of
the tip-to-root distances. Similar results were obtained with
the gamma model (see Figure S1) while the Kishino et al.
(2001) autocorrelated clock model does not display obvious
signs of positive correlation (Figure S2). In the context of
the Bayesian inference of divergence dates, uncorrelated clock
models therefore define prior distributions on rates of evolution
that entail stronger deviations from the strict clock in larger
trees. This behavior may impact the inference of node ages.
Indeed, an increased variability in rates along lineages in data
sets with large numbers of tips may be responsible for an
inflation of the variance in the age estimates themselves. Note
also that this inflation may preferentially impact the ages of
nodes along lineages that are composed of a large number of
branches compared to those consisting of only a few branches.
Although simulation studies generally focus on the accuracy with
which ages are estimated, considering the impact of the various
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FIGURE 1 | Uncorrelated clock models produce stronger deviations from the

strict clock constraint in larger trees. y-axis: variance of the tip-to-root

distances. x-axis: number of tips. Deviation from the strict molecular clock

hypothesis was generated using the uncorrelated exponential model. The

scatterplot derives from the analysis of 20,000 observations, each observation

being a value for the tip-to-root variance and the corresponding number of tips.

models of rate variation on the precision of these estimates should
therefore be examined too.

Furthermore, Lepage et al. (2007) mention that defining a
model where rate trajectories along each edge define gamma-
or exponentially distributed average rates is not trivial (the
same argument applies to the uncorrelated log-normal model).
They state that these “trajectory models” would display rate
autocorrelation within each edge, even though the trajectories
across distinct edges would be truly independent. Hence, here
again, the uncorrelated clock models appear to be sampling-
inconsistent: the amount of (instantaneous) rate autocorrelation
depends on the number of internal nodes (and thus the number
of tips) in the tree. Heath et al. (2012) describe a more
sophisticated uncorrelated clock model whereby the average
substitution rate along each branch derives from a Dirichlet
process prior (DPP). This model assumes a finite number of
rate values. Each of these rates is considered as a random
draw from a gamma distribution whose parameters are fixed a
priori. The number of rate classes is estimated from the data
through a so-called “concentration” parameter. The DPP model
is thus conceptually very close to a slightly modified version
of the standard uncorrelated clock model where rates follow
a discretized gamma distribution. Further investigations would
be required though in order to assess whether the DPP model
suffers from the same shortcomings as that discussed above. It
seems likely however that all uncorrelated models proposed so
far, including DPP, lack sampling-consistency and implicitly rely

on the questionable assumption that large trees (in terms of their
number of tips) deviate more from the strict clock hypothesis
than smaller ones.

2.3. Autocorrelated Clock Models
Equation (6) gives a generic expression characterizing the
distribution of the instantaneous rates at three successive
points in time along with that of the corresponding average
rates. It is relatively straightforward to introduce correlation
between substitution rates along the tree in this framework.
The first model explicitly accommodating for autocorrelation
was proposed by Thorne et al. (1998). Instead of modeling
instantaneous rates at times s and t, corresponding to the end
nodes of the first and second edge respectively, they focused on
the rates at times s′ : = s/2 and t′ : = (t + s)/2, i.e., the “middle”
of the corresponding two branches. Equation 6 therefore needs a
slight re-writing to yield:

A : =p3s ,3t−s (λs, λt−s|Mt′ = µt′ ,Ms′ = µs′ , S = s,T = t)

×pMt′
(µt′ |Ms′ = µs′ , S = s,T = t)

×pMs′
(µs′ |S = s). (9)

The instantaneous rate transition probability density (i.e.,
pMt′

(µt′ |Ms′ = µs′ , S = s,T = t)) is given by a lognormal

distribution with E[Mn
t′ ] = en log(µs′ )+n2σ 2(t′−s′)/2. The first two

moments fully specify the whole distribution. One thus assumes
here that the logarithm of the instantaneous rate at time t′ is
a normally distributed random variable with a mean equal to
the logarithm of the instantaneous rate at time s′ and variance
proportional to t′ − s′. The mean of the lognormal distribution is

thus equal to µs′ × eσ
2(t′−s′)/2, which is larger than the ancestral

rate µs′ in general, thereby leading to an unwarranted increase
of the substitution rate over time. Kishino et al. (2001) fixed
this issue by replacing the original normal distribution with one
with a mean of log(µs′ ) − σ 2(t′ − s′)/2 so that the mean of the
lognormal distribution is now equal to µs′ , the ancestral rate.

The autocorrelated lognormal model assumes that the
logarithm of the instantaneous rate follows a Brownian process.
The rate itself thus evolves according to a geometric Brownian
process. This model captures the idea that instantaneous rates
of evolution vary little over short periods of time while longer
time intervals may bear stronger fluctuations. The amplitude of
these fluctuations is governed by the parameter σ which may be
estimated from the data. This model also introduces correlation
of rates between sister lineages. Indeed, when considering sister
edges ending with nodes Xt and Xu in Figure 2, the random
variables Mt′ and Mu′ are not conditionally independent given
Ms′ since both of them share the evolutionary path between s′
and s. In practice, the non-independence between sister edges
seems to have been disregarded so that only an approximation
of the joint density of instantaneous rates was used instead.
Kishino et al. (2001) acknowledged this problem, later proposing
a different model that corresponds to that defined by Equation
(6), i.e., Ms and Mt , the rates at the end of the corresponding
edges, replace the mid-point ratesM′

s andM′
t .
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FIGURE 2 | Notation for nodes and times. Xi denotes a node with time ti .

Times of nodes (in purple) and that corresponding to the middle of each edge

(in pink) are presented to the left.

Although the autocorrelated log-normal model provides what
can be considered a reasonable description of the evolution of
the instantaneous rates along a phylogeny, Lepage et al. (2006)
point out that it does not agree with some of the tenets of
evolutionary biology. Indeed, the theory of episodic evolution,
where periods of adaptation are followed by evolutionary stasis,
implies that high evolutionary rates are more likely to decrease
than the contrary. The geometric Brownian assumes instead that,
at a particular point in time, the substitution rate is as likely to
double as it is to halve. Lepage et al. (2006) also convincingly
argue that the distribution of the rate at time t = +∞ should
be unique, i.e., it should not depend on what the rate is at time
s < t, which is not the case for the geometric Brownian process.

The Ornstein-Uhlenbeck (OU) model is a diffusion process
that, unlike the geometric Brownian, satisfies this last property.
However, it can take on negative values, which is not relevant
when modeling rates of evolution. Aris-Brosou and Yang (2002)
used the OU process in a Bayesian molecular dating approach
nonetheless. It is not clear how the constraint of non-negativity
of rates was implemented in this study, however. Lepage et al.
(2006) proposed to use the Cox-Ingersoll-Ross process (Cox
et al., 2005) instead. This process is a generalization of the
squared OU model. It thus describes the random fluctuations of
non-negative quantities. As for the OU model, the CIR process
also has a unique limiting distribution. Two parameters specify
the variance and the autocorrelation in rate trajectories in an
independent manner. A third parameter defines the mean of the
limiting distribution.

Beside the theoretical properties of the various clock models,
practical aspects should also be considered carefully—the most
important one being perhaps the relevance of the various
models in the context of data analysis. Using simulations, Ho
et al. (2015a) showed that detecting autocorrelation between
rates is difficult so that uncorrelated and autocorrelated
models often provide equally good fits to the data. Analyzing
a large primate data set, dos Reis et al. (2018) observed
however that the choice of rate model (autocorrelated vs.
uncorrelated) has a substantial impact on the date estimates.
An autocorrelated rate model provides here a significantly
better fit than the uncorrelated model tested in their study.
Even though autocorrelated rates do not always outperform
uncorrelated ones, using autocorrelated rate models in cases
rates are in fact not correlated should not, at least in
principle, lead to poor date estimates. Hence, as long as the
uncertainty around rate autocorrelation is taken into account
in the inference, using autocorrelated clock models in practice
seems preferable.

It is also essential to take into account what is known about
the biology of substitution rate evolution when comparing the
merits of various modeling approaches. Effective population size
is one of the factors regulating the rate at which substitutions
accumulate through its impact on the strength of genetic drift and
selection. It is not clear however whether variations in population
size during the course of evolution follow uncorrelated or
correlated patterns (Lanfear et al., 2014). Life history traits
such as body mass, body size and temperature, metabolic rate
and generation time are also associated with the substitution
rate (Levy Karin et al., 2017). Body size has been modeled
as a diffusion process (see e.g., Clauset and Erwin, 2008),
resulting in certain degree of autocorrelation. Yet, just because
body size evolves in an autocorrelated fashion does not imply
that substitution rates should follow the same patterns. It is
thus safe to assume that population size and life history traits
probably evolve in a seemingly uncorrelated manner when
considering only distant species, so that uncorrelated models
of substitution rate are appropriate at that scale. When the
analysis focuses instead on closely related species and shorter
evolutionary time scales, autocorrelated models are probably
more relevant.

Furthermore, all models discussed here are clock models.
They all assume that instantaneous substitution rates
fluctuate around some average in an autocorrelated or
uncorrelated manner. The fact that this average is shared
by all lineages makes these models clock-like. It may be
relevant to deviate from the clock assumption in particular
circumstances though. Specifying multiple independent
clock models may indeed be pertinent in cases where the
biology of a subset of organisms is markedly distinct from
that of the other taxa analyzed. For instance, comparative
analyses including prokaryotes and organelles (Esser et al.,
2004) may require two distinct clocks. In that respect,
the “random local clock” model proposed by Drummond
and Suchard (2010) addresses this particular need even
though, strictly speaking, lineages still evolve under a clock
model here.
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FIGURE 3 | Rate trajectories and average rates. The colored lines describe

rate trajectories, i.e., values of the instantaneous rate of substitution at all

points in time. The four trajectories have the same instantaneous rate at the

beginning and at the end of the time period considered here. Traditional

autocorrelated clock models would thus assign the same length to the

corresponding edge in all four cases here. The dots to the right give the

average rate for each trajectory taken over that same time period. These

averages are iid random quantities whose distribution is given in gray.

2.3.1. Rate Trajectories vs. Averages
Going back to Equation (6), the question of defining the
probability density of the mean rate along a given branch given
the instantaneous rates at its extremities remains. Kishino et al.
(2001) rely on a strong assumption about the corresponding
distribution. Indeed, the corresponding probability density is
defined as follows:

p3s (λs|Ms = µs,M0 = µ0, S = s)dλs : =
{

0 if λs 6= (µ0 + µs)/2

1 otherwise,
(10)

i.e., the distribution of the average rate has a point mass
probability set at the average of the instantaneous rates at the
two extremities of the edge considered. Two observations can
be made regarding this definition. First, assuming that the rate
trajectories are governed by a geometric Brownian process with a
small variance parameter (σ ) and/or considering a short period
of time, then the trajectories are approximately linear and the
average rate is indeed equal to the arithmetic mean of the
instantaneous rates at the beginning and at the end of each
trajectory. Kishino et al. (2001) also assume that the variance
of the average rate is null. Here again, this assumption is only
reasonable in the particular case where σ is small and/or a
short time interval is considered. In general, however, given the
instantaneous rates at both extremities of an edge and assuming
geometric Brownian trajectories between these two values, the
average rate along the branch should be treated as a random
variable with potentially non-zero variance (Figure 3).

Lepage et al. (2006) were the first to clearly point out
that assuming random trajectories for instantaneous rates
implies that the average rate along each edge should also be
considered random. Acknowledging the randomness of the

average substitution rate poses the question of the derivation
of transition probabilities between character states along edges
of the phylogeny. Replacing the expression for the transition
probability in Equation (2) by that given in Equation (4) yields:

p3t ,Mt ,M0 ,T(λt ,µt ,µ0, t|U = u,V = v, I = i) ∝ [e−λt tQ]v,u

× p3t (λt|Mt = µt ,M0 = µ0,T = t)

× pMt (µt|M0 = µ0,T = t)

× pM0 (µ0)

× pT|I(t|i)

× πv. (11)

This last expression suggests that Bayesian inference of
divergence dates should incorporate instantaneous rates at all
nodes in the tree plus the corresponding average rate along each
edge as latent variables, which could be effectively “integrated
over” using standard Metropolis-Hasting operators for instance.
Lepage et al. (2006), Guindon (2012), and Privault and Guindon
(2015) went one step further by showing that it is in fact possible
to drop the average rates from the (rather long) list of latent
variables. The posterior distribution of interest then becomes:

pMt ,M0 ,T(µt ,µ0, t|U = u,V = v, I = i) ∝

∫

[e−ztQ]v,u

× p3t (λt|Mt = µt ,M0 = µ0,T = t)dz

× pMt (µt|M0 = µ0,T = t)

× pM0 (µ0)

× pT|I(t|i)

× πv. (12)

The transition probability is thus derived here by integrating
over all possible values that the average rate can take conditioned
on the instantaneous rates at the branch extremities. The
corresponding integral (i.e., the first term to the right of the
equation above) can be solved analytically, or approximated, in
some circumstances. I refer to this calculation as the “integrated
average-rate approach,” or IARA, in the following. Lepage et al.
(2006) provide a closed-form formula for a IARA assuming
that the instantaneous rates evolve under the CIR process.
They used a simplified version of it in order to evaluate the
likelihood on a three-taxon star-like tree. In a subsequent study,
Lepage et al. (2007) used the mean of the distribution of the
average rate under the CIR but assumed a null variance. In
Guindon (2012), I focused instead on the geometric Brownian
process, providing an approximation for the distribution of
the average rate. The calculation of the transition probabilities
under this IARA entails the same computational cost as that
spent when considering that the average rate is not random.
Privault and Guindon (2015) later examined this approximation
further, confirming its validity for realistic ranges of parameters.
They also provide a closed-form formula for the transition
probabilities, although numerical precision issues may hamper
the calculation in particular circumstances.

Another model describing the evolution of the rate of
evolution is the compound Poisson process proposed by
Huelsenbeck et al. (2000). This model properly accommodates
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the randomness of the average rate along edges in the phylogeny.
However, it relies on augmenting the data by assuming that the
instantaneous rate is known at every point in time, along all
lineages in the phylogeny, making this approach computationally
expensive. The CIR and geometric Brownian IARAs thereby
appear as the best options available so far to fully accommodate
for the random fluctuations of the average rate of substitutions
along edges due to the underlying stochastic process governing
the instantaneous rate of evolution. Beyond their ability to
describe rate trajectories in a sound mathematical framework,
considering the variation of the average rate along each edge
offers flexibility in accommodating for site-specific processes.
Indeed, these approaches take into account the site-specific
variation of the substitution rate along lineages in the very same
way the covarion model (Fitch and Markowitz, 1970; Tuffley
and Steel, 1998) does, i.e., by authorizing each site and each
edge to evolve under its own rate of evolution. Despite these
obvious advantages compared to alternative models, IARAs have
not been used widely so far, most likely because of a lack of
implementation in popular phylogenetics software (although
the geometric Brownian model is implemented in PhyTime, a
software program that is part of the PhyML package).

3. CALIBRATING THE CLOCK

Molecular dating goes beyond standard phylogenetic
reconstruction by separating rates of molecular evolution
from actual (i.e., calendar) times. Separating rates and times
requires additional data in order to calibrate the estimated trees.
Extra data may take three distinct forms: (1) information about
the substitution rate, (2) information about paleogeography, or
(3) fossil data.

3.1. Dating Without Fossils
Although data about the mutation rates in model organisms
is available (see e.g., Drake et al., 1998), information about
substitution rates is relatively scarce. The only noticeable
exception concerns fast-evolving viruses. The pace at which
some viruses (HIV or influenza for instance) evolve indeed
makes it possible to obtain sequence data at different points
in time such that non-negligible numbers of substitutions have
accumulated between these time points (see Shankarappa et al.,
1999; Biek et al., 2015, and the excellent internet resource https://
nextstrain.org/, Hadfield et al., 2018). It then becomes feasible
to infer a “global” substitution rate, and models of (relative)
rates of evolution such as those introduced previously describe
fluctuations around this trend. I will not elaborate further on
serially sampled data for molecular dating here.

Information on the timing of past evolutionary events may
also be informed by knowledge about geological events such
as the appearance of land bridges or the emergence of islands
(Heads, 2005). Indeed, assuming that geography drives speciation
[through vicariance, geodispersal, or biological dispersal (Ho
et al., 2015b)], the age of an island may, in some circumstances,
provide a maximum (i.e., older) age for the birth of ancestral
species that colonized this territory. In a symmetric manner,
the appearance of land bridges is a necessary condition to

explain speciation by vicariance for some species, here again
potentially defining a maximum age for some internal nodes
in the reconstructed phylogeny. The same land bridges can
create barriers of dispersal (e.g., the Isthmus of Panama, that
arose 3.5 Mya, is a barrier of migration between the Atlantic
and Pacific oceans), thereby providing minimum rather than
maximum ages for particular speciation events. Under this line
of reasoning, one expects to observe a correlation between
the splits corresponding to cladogeneses in a phylogeny and
important geological events, mostly involving breakup sequences
of Gondwana and Laurasia (Croizat, 1962). Yet, evidence for
such correlation is difficult to ascertain (Heads, 2005) and
there are examples where important geological events and
cladogeneses appear to be disconnected. Hence, many terrestrial
animals display strong capability for overseas dispersal so that the
appearance of land bridges cannot always be used to establish a
maximum age (see de Queiroz, 2005 for a review). Nonetheless,
the rising and disappearance of physical connections between
geographical regions on the globe is likely to influence the
speciation process. Rigorous mathematical modeling, such as
that proposed by Landis (2017) for instance, should thus be
considered as an important step forward in molecular dating
analyses and more generally in ecology.

3.2. Dating With Fossils
3.2.1. Pre-processing of Fossil Data
Fossil data is another source of information commonly used for
molecular dating. It consists in a fairly intricate combination of
time and morphological information. Time information is only
indirect. It is derived from the estimated age of the sediments
in which the extinct taxon was collected. The age of these
sediments is itself often derived indirectly from that of rock
bodies that “bracket” the sediments of interest (Sterli et al.,
2013). Moreover, little information is available about the way the
different stratigraphic ranges were sampled in general. The data
produced by paleontologists generally consist in the combination
of a fossil description and the stratigraphic layer in which this
fossil was found. Additional information about the experimental
design, including the number and types of geological layers
surveyed or the excavation techniques that were used, is often
difficult to access. That lack of information is problematic. For
instance, from a mathematical modeling perspective, finding a
particular fossil after searching a single stratigraphic layer is very
different from finding the same fossil after examining multiple
layers. Finally, the rock record itself is highly heterogeneous
in space because of plate tectonics and net erosion, thereby
complicating even further the task of finding and interpreting
fossil data (Benton et al., 2009).

Morphological information is also difficult to deal with. First,
the analysis of one or multiple specimens of a given fossil
taxon by paleontologists leads to a selection of “informative
characters.” These morphological characters are selected based
on the phylogenetic signal they convey and result from complex
taphonomic processes. Characters showing apomorphies are
selected. These characters show evidence of derived states in
a subset of extant and extinct species while other species
display ancestral states for the same character. The subset of
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species showing apomorphies may vary from one morphological
character to another. For instance, a given fossil may display a
particular character state that is shared by species A and B but
not by species C and D. This fossil may also display a second
character with derived states shared by A, B, and C but not by
D. Both morphological characters point to different phylogenetic
placements for the fossilized species, thereby generating de facto
uncertainty in the calibration of the time tree, even though
the phylogenetic relationships between A, B, C, and D may be
known with good precision. The fact that the selection of a
subset of morphological characters is not random (i.e., characters
are selected based on their variability across sampled species)
may also be considered problematic (see section 3.2.3). Finally,
it is commonplace to assemble morphological characters from
multiple specimens of fossils that are deemed to belong to the
same ancient species (Parham et al., 2011). Here again, this
step relies on the interpretation of evidence by paleontologists.
In this context, it is important to stress that the validity of
molecular dating analyses relies heavily on the ease with which
the whole scientific community can access raw fossil data along
with detailed information about how this data was processed
in order to define calibration constraints. Without open and
systematic access to well-curated and extensive databases of raw
fossil data, dating experiments will not be fully reproducible,
thereby harming our field of research. Fortunately, rich sources of
information about the way fossil data is prepared prior to dating
analysis can be found online. For instance, the Fossil Calibration
Database1 (Ksepka et al., 2015) set out to use the rigorous
set of guidelines defined in Parham et al. (2011). It provides
useful, if partly outdated, information to generate calibration
constraints for more than 200 clades and does so on a transparent
forum that is open to the whole scientific community. Note
however that knowledge about fossil data is constantly evolving
(see e.g., Marjanović, 2019) and databases such as the Fossil
Calibration Database require ongoing and constant efforts in
order to remain relevant.

3.2.2. Expert-Based Analysis of Fossil Data
A fossil provides a minimum age for the smallest extant clade to
which it belongs, i.e., the youngest node from which it as well
as any two or more extant taxa are descended. The phylogenetic
position of a fossil is determined either by a phylogenetic analysis
of (a subset of) its parsimony-informative characters or by a
manual comparison with a list of apomorphies derived from a
prior phylogenetic analysis or from prephylogenetic taxonomic
work. Both approaches leave varying amounts of uncertainty,
depending in part on how fragmentary the fossil in question is.
Every fossil-based calibration thus contains age uncertainty and
phylogenetic uncertainty.

Fossils that branch near the tips in the calibrated clade
define looser younger ages for that clade compared to older
fossils that branch closer to the basal node. As a consequence,
paleontologists are always eager to discover older fossils that
still belong to the clade of interest. Unfortunately, older
fossils did not have sufficient time to accumulate as many

1https://fossilcalibrations.org/

apomorphies as younger fossils did. Early members of a
given taxon were also likely to be scarce and occupy a
limited geographic area (Marshall, 2019). As a consequence,
older fossils are also the most difficult to associate to well-
defined clades. Considerable uncertainty into the placement
of these fossils in the phylogenetic tree may then hamper
further analysis. At the other extremity, young fossils are
likely to sit at the end of long branches, along which
numerous morphological changes accumulated that took place
along this branch only, potentially leading to a saturation of
the signal.

Linking a given fossil to a group of taxa as is done here involves
a considerable amount of work and discussions among multiple
experts, as demonstrated by the wealth of information provided
in the journal Palaeontologia Electronica for animals, for instance
(see https://palaeo-electronica.org/content/fc-1). Note however
that only taxa considered as important receive high levels of
scrutiny. Hence, existing databases can be used to find well-
curated calibration information for “popular” taxa, in which cases
researchers rely on previous rigorous work by paleontologists in
order to calibrate their own analysis. Calibrating an analysis of
less well-characterized taxa generally involves a thorough search
of the primary literature followed by an in-depth comparative
analysis of raw morphological data as briefly explained in the
previous paragraphs (see also section 3.2.1 and Saladin et al., 2017
for an example).

3.2.2.1. The fossilized-birth-death model and other

model-based approaches to calibration
As seen above, defining younger bounds for calibration intervals
is difficult, although the fossil record provides rich information
to conduct this task in some cases. Deriving older bounds
is even more challenging. Indeed, the younger bound for a
given clade does not put any constraint on the older bound
for a nested clade. In other words, the younger bound for
the MRCA of a clade made of species A, B and C does not
convey any relevant information about the older bound for
the MRCA of the subclade made of A and B. Beside the
intervention of paleontologists, probabilistic modeling can also
be used to define older calibration bounds. The two techniques
described below rely on mathematical models depicting the
processes governing fossilization in order to define older bounds
of calibration constraints whose position in the tree is defined as
outlined above.

Tavaré et al. (2002) developed a probabilistic model and an
inference technique to estimate the length of the temporal gap
between the oldest fossil and the time of the MRCA of a given
clade, along with a confidence interval for that length. This
method uses as input the number of extant species in the clade
whose age is to be calibrated, the ages of the relevant stratigraphic
layers, the number of fossils found in them and the (relative)
fossil sampling intensities in these layers. Although this approach
relies on a sound mathematical model of species diversification
and properly accommodates for the specifics of the collection of
fossil data, it has not been used widely so far, most likely because
of the lack of software implementing it and, perhaps, the lack
of information regarding fossil sampling intensities. In a very
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thorough study about the treatment of fossil data to calibrate
the molecular clock, Marshall (2019) also described a method
similar to that of Tavaré et al. (2002), where the time elapsed
between the divergence date to be calibrated and the age of the
oldest fossil of a given focal clade has a probabilistic distribution
whose parameters depend on the number of fossil localities for
that clade.

Another attempt to tackle the same issue was proposed by
Stadler (2010) and Didier et al. (2012). The proposed approach
is based on a probabilistic model describing the tree-generating
process. Yet, it still relies on expert knowledge for placing
calibration constraints in a tree. The model put forward in
these two studies lies now at the core of the so-called “tip-
dating” methods whereby calibrating the molecular clock derives
from time information available at the tips of the phylogeny
corresponding to both extant and extinct (and fossilized) species.
Both approaches model the stochastic process generating a
tree including sampled extant and fossil species. The so-called
fossilized birth-death process (FBD) assumes that lineages give
birth to new species or die at given per capita rates, which
are deemed to be constant during the course of evolution. An
ancestral lineage may also fossilize, an event that takes place
at a particular rate, which is to be estimated from the data.
After sampling, only a subset of extant and extinct species are
available for the analysis (Figure 4). The joint probability density
of the age of “observed” lineage splits in a phylogeny given
the time of sampling of extant and extinct taxa, along with the
birth, death, fossilization rates, and sampling fraction, can be
evaluated analytically. When considering the calibration of one
particular node using the FBD model, one has to truncate the
joint probability density of node ages such that its value is null
whenever the node is younger than the oldest fossil used for this
particular calibration. This truncation is fairly straightforward
to deal with in the context of Bayesian molecular dating using
Markov Chain Monte Carlo techniques, and Heath et al. (2014)
provide an analytical solution to this problem. Younger bounds
for calibration intervals thus derive directly from the analysis of
the fossil data. Older bounds are defined indirectly and depend
on the values of the FBD model parameters. More specifically,
information about the relative node heights derives mainly from
the analysis of genetic sequences only (i.e., calibration data is less
informative about the phylogeny itself). These relative heights
then serve as a basis to infer the parameters of the FBD model
which, in turn, help defining older bounds for the ages of the
calibrated nodes. One thus relies here on a hierarchical model
whereby the phylogeny is treated alternatively as a parameter and
as data, depending on the level in the hierarchy that is considered.

3.2.2.2. Performance of model-based approaches for defining

calibration constraints
The two techniques aforementioned are not the only ones
that can be used to define calibration constraints. In fact,
any tree-generating model may extract some information from
the available data about the marginal age of nodes used for
calibrating the clock. In the following, I assess the relevance of
tree-generating models for specifying calibration constraints by
focusing on the particular case where genetic sequences are of

FIGURE 4 | Rationale underlying the calibration of the molecular clock with the

FBD model. The stars point to fossils. The fossils in red (green) calibrate the

internal nodes presented as disks of the same color. The vertical arrows define

the corresponding calibration intervals. tred and tgreen refer to the lower bounds

associated to these two intervals. The corresponding upper bounds are

determined by the birth, death, and fossilization parameters of the FBD model.

infinite length and the correct models of sequence evolution and
rate variation across edges are used for molecular dating. The
relative node ages are then known with maximum precision. We
observe a single fossil that helps us determine the scaling factor
of all node ages, thereby allowing us to infer absolute (rather than
relative) node ages. I will here consider the simple case where
only three taxa are examined. t1 denotes the relative age of node
n1, the MRCA of these three species, and t2 is the relative age
of the calibrated node, n2 (see insert in Figure 5). Time grows
backward with the present time set to zero. Finally, u is the age
of the fossil. We therefore have 0 ≤ u ≤ αt2 ≤ αt1, where α is
a scaling factor that defines the correspondence between relative
and absolute node ages. Equation (5) in Stadler (2012) gives the
expression for pBD(αt2|αt1, λ,µ), the probability density of αt2
given αt1 (and λ plus µ, the birth and death rates respectively, as
well as the sampling fraction which we assume to be equal to 1.0
here) under the birth-death process with sampling, conditioned
on the time of the MRCA of the three sampled species αt1. This
expression serves as a basis to derive that of pBD(αt2|αt1, t2 ≥

u, λ,µ) = pBD(αt2|αt1, λ,µ)/
∫ αt1
u pBD(x|αt1, λ,µ)dx, i.e., the

probability density of the age of node n2 conditioned on its value
being greater than the age of the fossil used for the calibration, u.

Figure 5 focuses on the value of pBD(αt2|αt1,αt2 ≥

u, λ
α
, µ
α
)d(αt2) (y-axis) as a function of α (x-axis). This expression

corresponds to the conditional probability density of the age of n2
being equal to αt2, given that the age of n1 is equal to αt1 while
the birth and death rates are equal to λ

α
and µ

α
, respectively. α

is thus used here to control the pace at which the tree process
unfolds. Values of this parameter greater than one therefore lead
to a decrease in the rate at which birth and death of lineages
take place, thereby pushing nodes in the phylogeny to be older.
Values of the parameter smaller than one have the opposite effect.
Note however that precise characterization of the relationship
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FIGURE 5 | Probability density of the age of n2 as a function of the tree length

for various calibration constraints. The y-axis gives

pBD(αt2|αt1,αt2 ≥ u, λ
α
, µ
α
)d(αt2) as a function of α (x-axis) for a three-taxon

rooted tree with n2 being the youngest internal node and n1, the root node.

This tree has fixed relative node ages t2 = 0.5 (age of n2) and t1 = 1.0 (age of

n1). The corresponding absolute node ages are αt2 and αt1, where α is a

scalar which takes values in [u/t2, 3]. u is the age of the fossil calibrating αt2,

defining the younger bound for the corresponding node.

between α and the ages of n1 and n2 would deserve a more
thorough examination.

When the fossil is found very near the tips of the tree (i.e.,
u = 0.01), the age distribution of node n2 is not influenced
by the value of α, i.e., older ages and lower birth and death
rates have the same probability as younger ages and higher rates.
This observation is not surprising: parameters of the birth-death
model are not identifiable from the relative node ages only, and
multiplying the node heights by a given scaling factor while
dividing the birth and death rates by the same factor leads to
absolute node ages with the same probabilities. Increasing the
value of u, i.e., considering older ages for the fossil, sees increasing
amounts of information about absolute node ages. Indeed, there
are substantial differences between probabilities of trees with
young node ages (high probabilities, small values of α) compared
to that of trees with older ages (lower probabilities, large values
of α). Therefore, with older fossils, the probabilistic distribution
of the absolute age of n2 is no longer flat as it is when u ≃ 0.0
and it becomes feasible to use the tree-generating process to
define meaningful older bounds for calibration intervals. Results
in Figure 5 therefore suggest that the calibration interval will be
tighter for analyses that rely on older fossils compared to younger
ones. A better understanding of this result may be obtained
by considering how trees could be simulated under various
constraints on the age of n2. The simplest approach would be to
simulate under the standard birth-death process and then discard
the generated trees where n2 is younger than u. It then becomes
clear that the older u, the larger the proportion of discarded trees.

The valid trees therefore represent a smaller proportion of all
possible trees. In layman’s terms, these trees therefore convey
more information about the distribution of node ages compared
to the case where no constraints apply.

The previous analysis focuses on the relationship between
the age of the young bound for a calibration interval and the
probabilistic distribution of the corresponding older bound.
Yet, the applicability of these results depends on how accurate
estimates of birth, death and, in the case of the FBD model,
fossilization rates are (assuming, here again, complete sampling).
In particular, the fossilization rate might be very difficult to
estimate as it is influenced by a variety of factors. First,
taphonomic phenomena are the source of major biases in the
fossil record since organisms with hard body parts have a
greater chance of being represented in this record. Moreover, the
majority of fossils result frommaterial deposited on the bottom of
water bodies, thereby adding another source of bias shaping the
fossil record. This heterogeneity in the fossil record is expected
to show at large time scales. Smaller time scales, however, are
expected to be less impacted by this phenomenon and the
Poisson process arguably provides here a better description of the
fossilization process.

Inaccurate estimates of the fossilization rates may impact the
inference of node ages substantially (Matschiner, 2019). Figure 6
shows the influence of the rate of fossilization on the probabilistic
distribution of the age of a node that may then serve as a basis to
calibrate the dating analysis. Didier and Laurin (2020) describe
a method to derive the marginal distribution for the age of an
internal node given the ages of all tips in a set of phylogenetic tree
topologies. Using the same data set as in their article, comprising
109 dated extinct taxa covering Amniota and Diadectomorpha,
I used the software DateFBD (available from https://github.com/
gilles-didier/DateFBD) to infer the age of the Amniota clade. The
estimation is conditioned here on a particular tree topology, in
which Diadectomorpha is placed as outgroup. This topology is
one of thousands of equally-most-parsimonious trees obtained
from the analysis of a matrix of morphological characters (Didier
and Laurin, 2020).

Although the three distributions are not conditioned here
on having the same younger bound (i.e., by forcing the three
densities to have the same 95% upper quantile for instance),
substantial differences in their modes and the variances are
observed depending on the value of the fossilization rate.
Note however that the uncertainty around the fossilization
rate estimated by Didier and Laurin (2020) is much smaller
than the two orders of magnitude considered here. Their
analysis focused on 109 data points corresponding to a rich
collection of fossils. In situations where the fossil record is
not as extensive as it is here, our results suggest that the
conversion of node heights from molecular into calendar time
units is highly sensitive to the fossilization rate estimate. Ages
are indeed shifted toward older values for large values of that
rate and vice versa. Accurate estimation of that rate is therefore
paramount to the accurate inference of node ages. In practice,
the sensitivity of the age estimates to the prior distribution on
fossilization rate should thus be assessed on a systematic basis
when using the FBDmodel, or any other tree-generating process,
for molecular dating.

Frontiers in Genetics | www.frontiersin.org 12 May 2020 | Volume 11 | Article 526

https://github.com/gilles-didier/DateFBD
https://github.com/gilles-didier/DateFBD
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Guindon Strengths and Weaknesses of Molecular Dating Methods

FIGURE 6 | Distribution of the time of divergence of Amniota under the FBD

model for various values of the fossilization rate (ψ ). The birth and death rates

were set to those given in Didier and Laurin (2020).

Stadler et al. (2018) recently proposed an extension of the
original FBD model that accounts for multiple fossils per species
and different modes of speciation. Although this work inches
toward a more realistic modeling of the actual mechanisms
generating the observations, more efforts are still needed in
order to assess the robustness of the FBD model to deviations
from the current hypotheses regarding the mechanisms of
fossilization and the specifics of the data collection process. In
particular, calibration information is generally provided by the
oldest fossils in their respective clades instead of collections of
randomly sampled fossils. In its current form, the FBD model
does not take this information into account, which may result
in substantial node age overestimation (Matschiner, 2019). The
FBD also neglects information related to the absence of fossils
in particular geological strata. In other words, this approach
expects to find fossils in geological strata in which there is
strong evidence against their presence. The absence of fossils
is valuable information and node dating techniques provide
a framework that helps accommodating for it in a simplified
manner (see Marjanović and Laurin, 2007 for an example).
Dealing with the absence of fossils in certain geological strata
is not straightforward though. “Absence of evidence” should be
distinguished from “evidence of absence.” Indeed, in the context
of interest here, “absence of evidence” has to do with the way
the sampling of geological strata was conducted. Models such
as the birth-death skyline plot (Stadler et al., 2013) provide
a relevant framework to accommodate for the variation in
time of sampling intensity. “Evidence of absence” corresponds
instead to the outcome of the data-generating process. Uneven
preservation of fossils is one of the phenomena involved

here. These processes need to be dealt with through adequate
probabilistic modeling.

3.2.2.3. Calibrating using marginal distributions
Molecular dating based on the FBD model can be considered
a mechanistic approach as it relies on a model that mimics
the actual process underlying splitting or extinction of lineages
and fossilization events. The use of univariate probabilistic
distributions to describe the age of certain clades has more
to do with a phenomenological approach instead. Drummond
et al. (2006) first introduced probabilistic distributions for node
age calibration in the context of molecular dating using a fully
Bayesian approach (but see Hedges and Kumar, 2004; Yang
and Rannala, 2005 for an earlier introduction of this idea).
They used normal and log-normal distributions but did not
provide detailed explanations about the way the parameters of
these distributions were selected from the analysis of the fossil
record. Current approaches, available in BEAST (1 and 2) and
MrBayes, implement standard statistical distributions, such as
exponential, lognormal, or normal densities, with offset values set
to the younger (i.e., minimum) age of the corresponding clade.
mcmctree offers a selection of more sophisticated probabilistic
distributions (see Yang and Rannala, 2005) but still relies on
the same rationale. The older bound for each calibration is
then defined by a variance parameter that controls for the
probability that the age of the clade of interest is older than a
given value, corresponding typically to the 95% upper quantile
of the distribution. Hence, as opposed to the previous approach
based on the FBD model, it is relatively straightforward here to
define older bounds for each calibration interval. However, in
its classical formulation, the “marginal distribution” approach
does not account for uncertainty in the placement of the fossils
in the phylogeny, which constitutes a serious limitation of that
technique (but see Guindon, 2018 and below).

Drummond et al. (2006) account for the interaction between
marginal priors2 and the joint distribution of the other node ages
using an approach that does not respect fundamental rules of
calculus with probabilities. Their approach results in multiple
distributions (one defined by the marginal prior plus one derived
from the tree-generating process) applying to the same node ages
(Heled and Drummond, 2011; Warnock et al., 2015; Rannala,
2016). In Yang and Rannala (2005), calibrated and non-calibrated
nodes are clearly separated in the derivation of a joint prior
density of node ages that accommodates for fossil information.
More specifically, let T = {T1, . . . ,Tn−1} denote the vector of
all internal node ages T1 ≥ . . . ≥ Tn−1 and 9 the ranked tree
topology with n tips. Both T and 9 are random variables here.
t and τ denote realizations of these random variables. e and i
denote subsets of taxa and the corresponding time constraints
respectively (R.V.: E and I). Each subset of taxa in e defines a
clade and the corresponding element in i defines the time interval
for the age of that clade. The joint density of the vector of node

2These marginal distributions are in fact derived from fossil data, and should thus

not be considered prior densities per se, although most studies refer to them using

this term based on the fact that marginal distributions are instantiated prior to

observing genetic sequences.
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ages t and the tree topology τ , given calibration constraints e, i, is
as follows:

pT,9 (t, τ |E = e, I = i) =

pT−c (t−c|Tc = tc,9 = τ )× pTc (tc|9 = τ ,E = e, I = i)

× Pr(9 = τ |E = e, I = i), (13)

where T−c is the vector of node ages that are not subject to
any calibration constraint. Yang and Rannala (2005) give an
expression for the conditional density pT−c (t−c|tc, τ ) under the
birth-deathmodel with sampling. pTc (tc|τ , e, i) is the joint density
of the ages of all calibrated nodes. Yang and Rannala (2005) define
this joint density as the product of the marginal “prior” densities
used for calibration purposes. This definition is problematic since
the joint density of calibrated ages is conditioned on the ranked
tree topology. As a consequence, the calibrated ages cannot
be considered independent from one another. In fact, when
conditioning on a particular ranked tree, some combinations of
node ages are not observable and the corresponding joint density
should in fact be equal to zero. The probability of such “non-
observable” outcomes depends on the parameters of the tree-
generating process and cannot be simply ignored by the MCMC
analyses used for Bayesian molecular dating. The discrepancy
between the product of marginal calibration densities and the
actual joint density that is used by these inference techniques is
arguably the most obvious manifestation of the same issue (Heled
and Drummond, 2011; Warnock et al., 2015). Rannala (2016)
acknowledges this conundrum, only to reach the conclusion that
“the objective of preserving marginal calibrations is impossible
to attain.”

In Guindon (2018), I describe a new approach to node dating
and provide a solution to the problem of uncertainty in the
placement of fossil lineages in the tree. In this work, calibration
constraints, e and i, are no longer considered as data. Instead, one
acknowledges here that the actual data correspond to the fossils,
noted as α (R.V.: F) and the calibration constraints then become
parameters of the model, with inherent uncertainty. More
specifically, the joint density of the time-tree and the calibration
parameters given fossil data is now expressed as follows:

pT,9 ,E,I(t, τ , e, i|F = α) = pT,9 (t, τ |E = e, I = i)

×pE,I(e, i|F = α), (14)

where E and I denote the random variables corresponding
to subsets of taxa and the corresponding time intervals that,
altogether, define calibration constraints. The term pE,I(e, i|F =

α) serves as a basis to incorporate uncertainty in the calibration
constraint due to ambiguity in interpreting the fossil data. In
practice, experts may decide that a given fossil calibrates the
age of the MRCA of species A and B with probability p,
while the clade defined by species A, B, and C is calibrated
by the same fossil with probability 1 − p, thereby effectively
accommodating for uncertainty related to fossil data. Moreover,
the probabilistic distribution of the calibration constraints is
not conditioned here on the tree topology. The combination of
multiple calibration constraints therefore does not suffer from the
issues mentioned above that are responsible for the discrepancy
between “realized” distributions of calibrated node ages and the

corresponding marginal priors. In other words, the marginal
“priors” agree with their joint density as given by pE,I(e, i|α)
(yet, the marginal distributions of calibrated node ages derived
from pT,9 (t, τ , e, i|α) still disagree with these marginal priors, as
expected from Equation 14).

Finally, the same approach may be extended in order to
incorporate knowledge about the way fossils were collected.
Equation (14) would then yield:

pT,9 ,E,I(t, τ , e, i|F = α, S = s) = pT,9 (t, τ |E = e, I = i)

×pE,I(e, i|F = α)× pF(α|S = s),

(15)

where the random variable S conveys information about the way
sampling was conducted when collecting fossil data. For instance,
the probability of observing a fossil of an ancient species that
lived X million years ago would be equal to zero if sampling was
conducted in geological strata corresponding to time intervals
that do not include X. This term could also serve as a basis to
incorporate geographical information in the analysis, translating
the fact that some fossils are more likely to be found in particular
regions and less in other areas.

3.2.3. Model-Based Analysis of Fossil Data
The molecular dating methods presented above all rely on
expert knowledge to determine, even approximately, where in the
phylogeny fossil lineages should be placed. Yet, computational
approaches can replace expert judgment here. Phylogenetic
analyses of morphological data, including fossils, are most often
conducted using parsimony. However, parametric methods like
Bayesian inference, which use probabilistic models to describe
the evolution of the morphological characters of which fossil data
consist, can also be used. Such approaches offer the advantage
that molecular data can be included in the same analysis (the
“total-evidence” approach). Further, they can be combined with
a tip-dating analysis to derive the joint posterior distribution of
internal node ages from the combined probabilistic analysis of
molecular and morphological data.

Pyron (2011) and Ronquist et al. (2012a) implemented this
approach and analyzed concatenated alignments of molecular
and morphological data. In this large matrix, molecular data is
observed only for present-day sampled species (although ancient
DNA is also a source of molecular data) while morphological data
along with time information are available for both the sampled
fossils and modern species. A phylogeny that incorporates fossils
as bona fide taxa is then built from the analysis of this data.
In this context, it is thus relatively straightforward to account
for uncertainty in the placement of the fossil lineages. All the
internal nodes on the path between a fossil tip and the root are
constrained to be older than the age of the fossil. In theory, the
time elapsed between fossil tips and the present could help define
the rate of morphological evolution which would then serve as a
basis to express all node ages in calendar time units.

Ronquist et al. (2012a) opted for an ad hoc approach where
the rate of molecular evolution was first estimated using a
node dating approach and then used as prior information in a
subsequent dating analysis based on a total-evidence approach.
Pyron (2011) also relied on a classical node dating approach to
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specify the distribution of the age of the root node. More recently,
Gavryushkina et al. (2017) relied on a node dating approach too
to calibrate the origin of the tree-generating process (thereby
indirectly defining a marginal prior for the age of the root node),
combined with a prior distribution on the rate of morphological
evolution. Moreover, their approach rests on the FDB model as
the tree-generating process, thereby using information from rates
of birth, death and fossilization to further inform the absolute age
of internal nodes (see section 3.2.2).

The three studies cited above are tip-dating analyses based
on total evidence. They all relied on a classical node dating
approach to derive absolute node ages from the combined
analysis of molecular and fossil data. Although there is nothing
wrong with mixing various approaches, the systematic reliance
on node dating suggests that, at least in these three cases,
morphological data alone may not have conveyed enough signal
to infer reliable rates of morphological character evolution in
practice, a necessary step for inferring absolute node ages in
the absence of additional information for calibrating the clock.
In fact, one may even wonder whether such a rate exists at all.
Each morphological character having its own state space, one
may indeed question whether it is meaningful to refer to an
expected number of character changes per unit of calendar time
(see Goloboff et al., 2018 for a discussion of this issue along
with Goloboff et al., 2019). Furthermore, unlike for nucleotide
or amino-acid characters, it is not always straightforward to
define the alphabet of states for each morphological character
(see e.g., Gavryushkina et al., 2017). dos Reis et al. (2016)
also indicate that ascertainment biases due to the selection of
parsimony-informative morphological characters from raw fossil
data is difficult to deal with from a computational perspective
and a proper correction, able to handle ambiguous alphabets
of character states, is not implemented in any current software
program for molecular dating.

4. CONCLUSIONS

Modeling the evolution of the rate of molecular evolution and
accounting for fossil data are two challenging tasks that lie at the
core of molecular dating techniques. Although much work has
been done on these different aspects, in-depth exposition of the
simplifications, the approximations, and the assumptions behind
the proposed approaches helps gain a better understanding of
their inherent strengths and limitations.

For instance, clearly separating the substitution rate
trajectories that depict the fluctuations of the instantaneous
substitution rates, from the average rates along edges of the
phylogeny, leads to interesting observations. In particular,
the “not-so-strict” clock model in which instantaneous rates
vary while averages do not, could serve as a basis to revisit
the clock hypothesis. At the very least, it constitutes an
intermediate model between the strict and relaxed clock models
that is worth considering. Furthermore, close examination of
uncorrelated clock models reveals some of their shortcomings.
The exponential clock model, in particular, has statistical
properties that are not realistic from a biological perspective.
More generally, uncorrelated clock models lead to stronger
deviations from the strict clock constraint in trees with

large numbers of tips compared to smaller trees, thereby
revealing sampling-consistency issues that should be of concern.
Autocorrelated clock models behave more sensibly altogether.
Some of these models explicitly accommodate the variation
of both instantaneous and average substitution rates without
extra computational cost, making them superior to uncorrelated
models from that point of view.

Taking into account fossil data in molecular dating
experiments is another challenging statistical problem. The
most recent techniques bet on an “all-modeling” approach
that is hindered by a number of important limitations. In
particular, unrealistic assumptions underlying the probabilistic
models describing the evolution of selected morphological
features should be of serious concern to total-evidence
approaches. Assuming that fossils are “presence-only” data
is also problematic. However, valuable information about
the absence of some fossils in older geological strata is often
available. The most recent inference techniques, including
tip-dating and all approaches based on the fossilized-birth-death
model, ignore this information, thereby enabling node age
estimates that potentially contradict what is known from the
fossil record. Node dating techniques rely on expert knowledge
to define the position of fossils in the phylogeny plus the younger
(and, oftentimes, the older) age bound(s) for the calibrated
clades. Although expert knowledge involves subjectivity, which
can be perceived as a weakness, one could argue that these
approaches make better use of the available data for now. The
future of molecular dating probably lies at the frontier between
“all-expert” and “all-model” approaches whereby experts will
provide prior information to plug into relevant statistical models
for describing curated fossil data.

In any case, molecular dating will undoubtedly keep playing
a crucial role in biology in the future. Our understanding of
important phenomena such as species diversification or dispersal,
population migration and demography, or the molecular
signature resulting from environmental changes, depends on our
ability to date past evolutionary events. The wealth of available
techniques to perform this task provides a powerful set of tools
to make progress in this direction. Yet, in-depth analysis of
the mathematical and biological properties of the proposed new
techniques, combined with rigorous and extensive assessments of
their implementations, will be decisive to ensuring the soundness
of our findings.
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