
HAL Id: lirmm-03065320
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03065320v1

Submitted on 14 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Randomness Tests: Theory and Practice
Alexander Shen

To cite this version:
Alexander Shen. Randomness Tests: Theory and Practice. Blass A.; Cégielski P.; Dershowitz N.;
Droste M.; Finkbeiner B. Fields of Logic and Computation III, 12180, Springer-Verlag, pp.258-
290, 2020, Lecture Notes in Computer Science, 978-3-030-48005-9. �10.1007/978-3-030-48006-6_18�.
�lirmm-03065320�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03065320v1
https://hal.archives-ouvertes.fr

Randomness tests: theory and practice

Alexander Shen?

LIRMM, CNRS & University of Montpellier, 161 rue Ada, Montpellier, France,
34095, alexander.shen@lirmm.fr

To Yury Gurevich, with whom we have had a lot
of interesting and sometimes heated discussions
on many topics, including randomness

Abstract. The mathematical theory of probabilities does not refer to
the notion of an individual random object. For example, when we toss
a fair coin n times, all 2n bit strings of length n are equiprobable out-
comes and none of them is more “random” than others. However, when
testing a statistical model, e.g., the fair coin hypothesis, we necessarily
have to distinguish between outcomes that contradict this model, i.e.,
the outcomes that convince us to reject this model with some level of
certainty, and all other outcomes. The same question arises when we
apply randomness tests to some hardware random bits generator.
A similar distinction between random and non-random objects appears
in algorithmic information theory. Algorithmic information theory de-
fines the notion of an individual random sequence and therefore splits
all infinite bit sequences into random and non-random ones. For finite
sequences there is no sharp boundary. Instead, the notion of random-
ness deficiency can be defined, and sequences with greater deficiency
are considered as “less random” ones. This definition can be given in
terms of randomness tests that are similar to the practical tests used for
checking (pseudo)random bits generators. However, these two kinds of
randomness tests are rarely compared and discussed together.
In this survey we try to discuss current methods of producing and testing
random bits, having in mind algorithmic information theory as a refer-
ence point. We also suggest some approach to construct robust practical
tests for random bits.

1 Testing a statistical hypothesis

Probability theory is nowadays considered as a special case of measure theory:
a random variable is a measurable function defined on some probability space
that consists of a set Ω, some σ-algebra of the subsets of Ω, and some σ-additive
measure defined on this σ-algebra. A random variable determines a probability
distribution on the set of possible values.

? Supported by ANR-15-CE40-0016-0 RaCAF project

When probability theory is applied to some “real world” case, it provides a
statistical hypothesis that is a mathematical model of the process. For example,
for n trials and the fair coin the corresponding model is the uniform distribution
on the set Bn of all possible outcomes, i.e., on all n-bit binary strings. Each
string has probability 2−n. The set Bn can be considered as a probability space,
and ith coin tossing is represented by a random variable ξi defined on this space:
ξi(x1x2 . . . xn) = xi.

Having a mathematical model for a real-life process, we need some way to
check whether this model is adequate or not. Imagine that somebody gives us a
coin, or a more advanced random bits generator. This coin can be asymmetric,
and the bit generator can be faulty. To check whether this is the case, we need
to perform some experiment and look at its results. Assume, for example, that
we toss a coin and get 85 heads in a row, as it happened to Rosencrantz and
Guildenstern in Stoppard’s play [34, Act 1]. Should we reject the fair coin hy-
pothesis? Probably we should — but how can we justify this answer? One can
argue that for a fair coin such an outcome is hardly possible, since its probabil-
ity is negligible, namely, equals 2−85. However, any other sequence of 85 heads
and tails has the same negligible probability — so why this reasoning cannot be
applied to any other outcome?

To discuss this problem in a more general case, let us introduce suitable
terminology. Consider some set X of possible outcomes. We assume that X is
finite. Fix some statistical model P , i.e., a hypothetical probability distribution
on X. A randomness test is an event T ⊂ X that has small probability according
to P . If an experiment produces an outcome that belongs to T , the test is not
passed, and we may reject P . This approach has two main problems. The first
problem, mentioned earlier, is that in most cases every individual outcome x ∈ X
has negligible probability, so the singleton {x} is a test that can be used to reject
P . We discuss this problem later. Now let us comment on the other problem:
how to choose the threshold value for the probability, i.e., how small should be
the probability of T to consider T as a valid randomness test.

In practice, the statistical model is often called the null hypothesis. Usually
we have some experimental data that, as we hope, exhibit some effect. For ex-
ample, we may hope that a new drug increases the survival rate, and indeed we
see some improvement in the experimental group. However, this improvement
could be just a random fluctuation while in fact the survival probability remains
unchanged. We formulate the null hypothesis based on the old value of the sur-
vival probability and then apply some test. The rejection of the null hypothesis
means that we do not consider the data as a random fluctuation, and claim that
the new drug has at least some effect.1

In this approach, the choice of the threshold value obviously should depend on
the importance of the question we consider. Any decision based on statistical con-
siderations is inherently unreliable, but an acceptable level of this unreliability
depends on the possible consequences of a wrong decision. The more important
the consequences are, the smaller threshold for statistical tests is needed. The

1 Of course, in practice we want also to be convinced that this effect is beneficial.

choice of the threshold value is often debated. For example, there is a paper [2]
signed by 72 authors that proposes “to change the 〈. . .〉 threshold for statistical
significance from 0.05 to 0.005 for claims of new discoveries”. It may look ridicu-
lous — obviously both the old threshold and the new one are chosen arbitrarily
— but it reflects the existing situation in natural sciences. Other people point
out that fixing a threshold, whatever it is, is a bad practice [1].

2 Randomness tests

Now let us address the other problem mentioned above. After the experiment
is made, we can find a set T of very small measure that contains the actual
outcome of the experiment, and declare it to be a randomness test. For example,
Rosencrantz could toss a coin 85 times, write down the sequence x of heads and
tails obtained, and then try to convince Guildenstern that the fair coin hypoth-
esis should be rejected, because the set T = {x} is a test that has probability
2−85 according to the hypothesis and still the actual outcome is in T .

This argument is obviously wrong, but it is not that easy to say what exactly
is wrong here. The simplest — and rather convincing — answer is that the
test should be fixed before the experiment. Indeed, if Rosencrantz showed some
sequence of heads and tails to Guildenstern and after that the coin tossing gave
exactly the same sequence, this would be a very convincing reason to reject the
null hypothesis of a fair coin.

Still this answer is not universal. Imagine that we buy a book called “A
Million Random Digits”2. We open it and find that it is filled with zeros. Do we
have reasons to complain? If we have said “Look, this book is suspicious; may
be it contains only zeros” before opening the book, then we definitely do — but
what if not? Or what if we find out that the digits form the decimal expansion
of 8.5π? Note that this hypothesis hardly can come to our mind before we study
the book carefully.

Sometimes the experiment is already in the past, so we look at the data
already produced, like Kepler did when analyzing the planet observations. Prob-
ably, in this case we should require that the test is chosen without knowing the
data, but it is (a) more subjective and (b) rarely happens in practice, usually
people do look at the data before discussing them.

On the other hand, even the test formulated before the experiment could be
dubious. Imagine that there are many people waiting for an outcome of the coin
tossing, and each of them declares her own statistical test, i.e., a set of outcomes
that has probability at most ε. Here ε is some small number; it is the same for
all tests. After the experiment it is found that the outcome fails one of the tests,
i.e., belongs to the small set declared by one of the observers. We are ready to
declare that the null hypothesis is rejected. Should we take into account that
there were many tests? One can argue that the probability to fail at least one
of the N tests is bounded by Nε, not ε, so the result is less convincing than the

2 By the way, one can still buy such a book [27] now (August 2019) for 50.04 euro, or
903.42 euro, if you prefer the first edition, but agree to get a second-hand copy.

same result with only one observer. This correction factor N is often called the
Bonferroni correction and is quite natural. On the other hand, the observer who
declared the failed test could complain that she did not know anything about
other observers and it is a completely unacceptable practice if actions of other
people beyond her control and knowledge are considered as compromising her
findings. And it is difficult to answer in a really convincing way to this complaint.

In fact, this is not only a philosophical question, but also an important prac-
tical one. If a big laboratory with thousand researchers uses threshold value 0.05
for statistical significance, then we could expect dozens of papers coming from
this lab where this threshold is crossed — even if in fact the null hypothesis is
true all the time.

There are no universally accepted or completely convincing answers to these
questions. However, there is an important idea that is a philosophical motivation
for algorithmic information theory. We discuss it in the next section.

3 “Remarkable” events as tests

Recall the example with zeros in the table of random numbers and the corre-
sponding singleton test that consists of the zero sequence. Even if we have not
explicitly formulated this test before reading the table, one can say that this test
is so simple that it could be formulated before the experiment. The fact that all
outcomes are heads/zeros is remarkable, and this makes this test convincing.

This question is discussed by Borel [5]. He quotes Bertrand who asked whether
we should look for a hidden cause if three stars form an equilateral triange. Borel
notes that nobody will find something strange if the angle between two stars is
exactly 13◦42′51.7′′, since nobody would ask whether this happens or not before
the measurement (“car on ne se serait jamais posé cette question précise avant
d’avoir mesuré l’angle”). Borel continues:

La question est de savoir si l’on doit faire ces mêmes réserves dans le
cas où l’on constate qu’un des angles du triangle formé par trois étoiles
a une valeur remarquable et est, par exemple, égal à l’angle du trian-
gle équilatéral 〈. . .〉 Voici ce que l’on peut dire à ce sujet : on doit se
défier beaucoup de la tendance que l’on a à regarder comme remarquable
une circonstance que l’on n’avait pas précisée avant l’expérience, car le
nombre des circonstances qui peuvent apparâıtre comme remarquables,
à divers points de vue, est très considérable [5, p. 112–113]3

This quotation illustrates a trade-off between the probability of the event spec-
ified by some randomness test and its “remarkability”: if there are N events

3 The question is whether we should have the same doubts in the case where one of
the angles of a triangle formed by tree stars has some remarkable value, for example,
is equal to the angle of an equilateral triangle. 〈. . .〉 Here we could say the following:
one should resist strongly to the tendency to consider some observation that was not
specified before the experiment as remarkable, since the number of circumstances
that may look remarkable from different viewpoints is quite significant.

of probability at most ε that are “as remarkable as the test event” (or “more
remarkable”), then the probability of the combined test event is at most Nε. In
other words, we should consider not an individual test, but the union of all tests
that have the same probability and the same (or greater) “remarkability”.

The problem with this approach is that we need to quantify somehow the
“remarkability”. The algorithmic information theory suggests to take into ac-
count the Kolmogorov complexity of the test, i.e., to count the number of bits
needed to specify the test. More remarkable tests have shorter descriptions and
smaller complexity. The natural way to take the complexity into account is to
multiply the probability by O(2n) if the complexity of the test is n, since there
is at most O(2n) different descriptions of size at most n bits and therefore at
most O(2n) tests of complexity at most n.

However, the word “description” is too vague. One should fix a “description
language” that determines which test corresponds to a given description, i.e., to
a given sequence of bits. Algorithmic information theory does not fix a specific
description language; instead, it defines a class of description languages and
proves that there are optimal description languages in this class. Optimality
is understood “up to O(1) additive term”: a language L is optimal if for any
other language L′ in the class there exist a constant c (depending on L′) with
the following property: if a test T has description of length k via L′, it has a
description of length at most k+ c via L. This implies that two different optimal
languages lead to complexity measures that differ at most by O(1) additive term.

Probably this O(1) precision is the best thing a mathematical theory could
give us. However, if one would like to define “the gold standard” for valid use of
statistical tests, this is obviously not enough, and one should fix some specific de-
scription language. It looks like a difficult task and there are no serious attempts
of this type. Still one could expect that this language should be domain-specific
and take into account the relations and constants that are “naturally defined”
for the objects in question. This is discussed in details by Gurevich and Pass-
more [9]. The authors note that questions about statistical tests and their validity
do arise in courts when some statistical argument is suggested as evidence, but
there are no established procedures to evaluate statistical arguments.4 One could
also mention a similar (and quite important) case: statistical “fingerprints” for
falsified elections. There are many examples of this type (see the survey [31] and
references within). Let us mention two examples that illustrate the problem of
“remarkable post factum observations”. Fig. 1 (provided by Kupriyanov [15])
presents the official results of the “presidential elections” in Russia in 2018 and
is constructed as follows: for every polling station where both the reported par-
ticipation rate and the fraction of votes for de facto president of Russia (Putin)

4 In this paper some thought experiments and one real story are considered as exam-
ples. One of the thought experiments is as follows: the wife of a president of a state
lottery turns out to be its winner. Recently I learned that this example is not so far
from the real life as one could think: in 2000 BBC reported that “Zimbabwean Pres-
ident Robert Mugabe has won the top prize [about $2600] in a lottery organised by
a partly state-owned bank” (http://news.bbc.co.uk/2/hi/africa/621895.stm).

http://news.bbc.co.uk/2/hi/africa/621895.stm

Fig. 1. “Putin’s grid” in 2018 [15]. Note that vertical and horizontal lines are formed
by data points, they are not the added grid lines.

exceed 80%, a corresponding grey point is shown. If several points coincide, a
darker/bigger point appears. Looking at the “grid lines” formed by these points
(for integer percentages; more visible lines appear for the percentages that are
multiples of 5), one probably agrees that such a remarkable grid has negligi-
ble probability to appear naturally for any kind of elections. However, it is far
from obvious which statistical test should be considered here and how can we
quantitatively estimate its complexity and its probability.

Related example is provided by “referendum results” in Crimea (Ukraine).
As noted by Alexander Kireev [13], the “official results” in Sevastopol (Crimea)
include the following data: total numbers of registered voters (306258), total
number of ballots (274101) and the number of “yes for the annexation” votes
(262041). The two main ratios (the participation rate and “yes” rate) are suspi-
ciously round: 274101/306258 = 0.895000294 and 262041/274101 = 0.95600162.
Indeed, in both cases the numerator can be obtained by multiplying the denom-
inator by the integer number of promilles and rounding to the closest integer.
Probably most statisticians would agree that this coincidence is remarkable and
has very small probability, but it is difficult to agree on a specific quantitative
estimate of the corresponding probability after a suitable Bonferroni correction.5

5 A rough estimate is attempted in the survey mentioned above [31, p. 49–50]. It takes
into account other information about the case. Both anomalies, the integer grid and
round percentages, appeared in earlier “elections”, so it is not really fair to call them
“post factum observations”. For the Crimea’s “referendum results” the upper bound
for the probability after the correction is estimated as 0.1%.

4 Randomness as incompressibility

Algorithmic information theory (also called Kolmogorov complexity theory) is
outside the scope of this survey6, but let us mention a few results that have philo-
sophical importance and should be kept in mind when discussing randomness at
any level.

Roughly speaking, algorithmic information theory says that randomness is
incompressibility. More precisely, a binary string looks plausible as an outcome
of a fair coin (does not convince us to reject the fair coin hypothesis) if it is
incompressible, i.e., if there is no program that produces this string and is much
shorter than the string itself. In other words, we

– define Kolmogorov complexity of a string as the minimal length of a pro-
gram that produces it; in this definition we use some optimal programming
language that makes complexity minimal up to an O(1) additive term;

– note that all n-bit strings have complexity at most n+O(1), since a trivial
program “print x” has almost the same size as x;

– note that at most 2−c fraction of n-bit strings have complexity less than
n− c, so this is a very small minority for non-negligible values of c; we treat
members of this minority as non-random strings.

This approach is consistent with what we said above about valid tests for ran-
domness as simple sets of small probability. Namely, we consider a test that
consists of highly compressible strings, and note that this test is universal in
some sense, i.e., it is as sensitive as any other test, up to an O(1)-constant.

Technically speaking, there is a result that relates complexity to the random-
ness deficiency in terms of tests. We state this result for a simple case (uniform
distribution on the set of strings of given length; see the textbook [33, Sect. 14.1]
for a more general statement). It uses the notion of conditional complexity C(x|u)
of a string x given some u (an integer) defined as the minimal length of a program
that produces x given u as an input.

Consider some integer function d(x) defined on bit strings. Call it a deficiency
function if it satisfies two requirements:

– d(x) is lower semicomputable, i.e., d(x) can be presented as a limit of a
non-decreasing computable sequence of integers (uniformly in x), and

– for every k, the fraction of n-bit strings such that d(x) > k, is O(2−k).

Such a deficiency function determines, for every n, a series of tests for uni-
formly distributed n-bit strings, where the kth test set for n-bit strings consists
of strings of length n such that d(x) > k. In terms of the next section, 2d(x)

is a probability bounded test up to a constant factor. The second requirement
guarantees that the test sets have small probability according to the uniform

6 The short introduction can be found in the lecture notes [30] or in the introductory
part of the textbook [33]. The algorithmic statistics, the part of algorithmic informa-
tion theory that deals specifically with the statistical hypotheses and their testing,
is discussed in two surveys [36,37].

distribution. The first one means, informally speaking, that the test is “semi-
effective”: if x has some peculiar property that makes it non-random, then we
will ultimately discover this property and d(x) will become large, but we never
can be sure that x does not have properties that make it non-random, since d(·)
is not required to be computable.

Proposition 1. Among the deficiency functions there is a maximal one up to
O(1), i.e., a deficiency function d such that for every other deficiency function
d′ we have d(x) > d′(x)− c for some c and all x. This maximal function is equal
to n− C(x|n) +O(1) for n-bit strings x.

This result shows that the difference between length and complexity is the
“universal measure of non-randomness” that takes into account all regularities
that make a string x non-random. It is easy to prove also that if a string x
belongs to a simple small set, then its deficiency is large, thus confirming the
informal idea that a small set exhibits non-randomness of its elements.

There are many results about randomness deficiencies in this sense, but we
cannot go into the details here and return instead to some other topics that are
important for practical randomness tests.

5 Families of tests and continuous tests

The law of large numbers says that for independent Bernoulli trials, e.g., for
fair coin tossing, the number of successful trials is with high probability close
to its expectation, i.e., to n/2 for n coin tossings. Therefore, large deviation is
a rare event and can be used as a randomness test: as the deviation threshold
increases, the probability of the event “the deviation exceeds this threshold”
decreases, usually rather fast.

Instead of fixing some significance level and the corresponding threshold one
could consider a family of tests: for every significance level ε we consider a set
Tε of measure at most ε. It consists of the outcomes where deviation exceeds
some threshold that depends on ε. As ε decreases, the threshold increases, and
the set Tε and its measure decrease.

Such a family of tests can be combined into one non-negative function t(x)
defined on the set of possible outcomes, if we agree that Tε is the set of outcomes
where t(x) > 1/ε. Here we use c = 1/ε as the threshold instead of ε to simplify
the comparison with expectation-bounded tests discussed below. In this language
the bound for the probability of Tε can be reformulated as

Pr[t(x) > c] 6 1/c for every c > 0 (∗)

Informally speaking, t(x) measures the “rarity”, or “randomness deficiency” of
an outcome x: the greater t(x) is, the less plausible is x as an outcome of a
random experiment.

Functions t that satisfy the condition (∗) are called probability-bounded ran-
domness tests [3]. Sometimes it is convenient to use the logarithmic scale and

replace t by log t. Then the condition (∗) should be replaced by the inequal-
ity Pr[t(x) > d] 6 2−d. Note that a similar condition was used for deficiency
functions in Sect. 4.

The condition (∗) is a consequence of a stronger condition
∫
t(x) dP (x) 6

1 where P is the probability distribution on the space of outcomes. In other
terms, this stronger requirement means that the expected value of t (over the
distribution P) is at most 1, and the condition (∗) is its consequence, guaranteed
by Markov’s inequality. The functions t that satisfy this stronger condition are
called expectation-bounded randomness tests [3].

In fact these two notions of test are rather close to each other: if t is a
probability-bounded test, then t/ log2 t is an expectation-bounded test up to
O(1)-factor. Moreover, the following general result is true:

Proposition 2. For every monotone continuous function u : [1,+∞] → [0,∞]
such that

∫∞
1
u(z)/z2 dz 6 1 and for every probability-bounded test t(·) the com-

position u(t(·)) is an expectation-bounded test.

The statement above [7] is obtained by applying Proposition 2 to u(z) =
z/ log2 z.

6 Where do we get randomness tests?

As we have mentioned, different classical results of probability theory can be
used as randomness tests. Take for example the law of large numbers. It says
that some event, namely, a large deviation from the expected value, has small
probability. This event can be considered as a test set. Mathematical statistics
provides a whole bunch of tests of this type for different distributions, including
χ2-test, Kolmogorov–Smirnov test, and others.

Another source of statistical tests, though less used in practice, is provided
by the probabilistic existence proofs. Sometimes we can prove that there exists
an object with a given combinatorial property, say, a graph with good expansion
properties, and the proof goes as follows. We consider a probabilistic process
that constructs a random object. In our example this object is a graph. We
prove that with high probability this random object satisfies the combinatorial
property. Now we use the bit source that we want to test as a source of random
bits for the algorithm. If we find out that the object constructed by the algorithm
does not have the combinatorial property in question, we conclude that a rare
event happened, and our source of random bits failed the test.

One should also mention tests inspired by algorithmic information theory
(see, e.g., a 1992 paper by Maurer [20]) Each file compressor (like zip, bzip,
etc.) can be considered as a random test. Assume that we have a sequence of bits,
considered as a file, i.e., a sequence of bytes. If this file can be compressed by n
bytes for some non-negligible n, say, by a dozen of bytes, then this bit sequence
fails the test and can be considered as non-random one. Indeed, the probability of
this event is at most 256−n, up to a factor close to 1. The Bonferroni correction
here says that we should multiply this probability by the number of popular

compressors, but even if we assume that there are thousands of them in use, it
usually still keeps the probability astronomically small.

There is also a general way to construct probability-bounded tests. It is called
“p-values”, and the two previous examples of randomness tests can be considered
as its special cases. Consider an arbitrary real-valued7 function D defined on the
space of outcomes. The value D(x) is treated as some kind of “deviation” from
what we expect, so we use the letter D. Then consider the function

pD(x) = Pr[{y : D(y) > D(x)}].

(defined on the same set of outcomes). In other words, for every threshold d we
consider the set

Td = {y : D(y) > d}

of all outcomes where the deviation is at least d, and measure the probability of
this event, thus “recalibrating” the deviation function. In this language, pD(x)
is the probability of the event TD(x), the chance to have in a random experiment
of the given type the same deviation as it happened now, or a larger one.

Proposition 3.
(a) For every c > 0, the probability of the event pD(x) 6 c is at most c.
(b) If each value of function D has probability at most ε, then the probability

of the event pD(x) 6 c is between c− ε and c.

Proof. The probability pd = Pr[Td] decreases (more precisely, does not increase)
as d increases. The function d 7→ pd is left-continuous since the inequalities
D > d′ for all d′ < d imply D > d. However, it may not be right-continuous, and
a similar argument shows that the gap between the value of pd and the right
limit limd′→d+0 pd′ is the probability of the event {x : D(x) = d}. Now we add to
this picture some threshold c, see Fig. 2. It may happen (case 1) that c is among

𝑑

𝑝𝑑

𝑐

𝑑0

𝑝𝑑 ⩽ 𝑐 ⇔ 𝑑 ⩾ 𝑑0

Pr[𝐷(𝑥) = 𝑑0] ⩽ 𝜀

Pr[𝐷(𝑥) ⩾ 𝑑0] = 𝑐
𝑑

𝑝𝑑

𝑐

𝑑0

𝑝𝑑 ⩽ 𝑐 ⇔ 𝑑 > 𝑑0

gap ⩽ 𝜀

Pr[𝐷(𝑥) > 𝑑0] = Pr[𝑝𝐷(𝑥) ⩽ 𝑐]
𝑑

𝑝𝑑

𝑐

𝑑0

𝑝𝑑 ⩽ 𝑐 ⇔ 𝑑 ⩾ 𝑑0

Pr[𝐷(𝑥) ⩾ 𝑑0] = 𝑐

Fig. 2. Proof of Proposition 3

the values pd. This case is shown on the left and right pictures (Fig. 2). On the

7 This trick in a more general situation where the values of D are elements of some
linearly ordered set, is considered in a paper by Gurevich and Vovk [10].

right picture the function pd is constant on an interval where there are no values
of D or these values have probability 0. Case 2: the threshold c may fall in a gap
between some value of pd and the right limit in the same point (denoted by d0),
as shown in the middle picture. The size of the gap is the probability of the event
D(x) = d0 and is at most ε according to our assumption. For the left and right
pictures the inequality pD(x) 6 c means that D(x) > d0, and the probability of
the event pD(x) 6 c is exactly pd0 = c, so both statements (a) and (b) are true.
In this case the value of ε does not matter. For the middle picture pD(x) 6 c
when d > d0, and the probability of this event is not the value of pd when d = d0
but the right limit of pd as d → d0 + 0. Still the difference does not exceed ε
according to the assumption in (b), and again both statements are true.

Remark 1. This proof is given for the general case (X may be infinite); in the
finite case the function pd has only finitely many values, and the graph is a finite
family of horizonal lines.

Remark 2. Proposition 3 obviously implies that the function 1/pD(x) is a prob-
ability-bounded test. This observation allows us to construct many probability-
bounded tests, starting from almost any random variable D. For example, we get
a test from a probabilistic existence proof if we let D be the function that appears
in the combinatorial statement, e.g., the second eigenvalue for the probabilistic
proof that expander graphs exists. The only caveat is that we need to compute
the function d 7→ pd, and this is usually not so easy. This function is often
replaced by some its approximation, and this may lead to problems; see the
discussion below.

Remark 3. If we apply this procedure to a function D that is already a probabi-
lity-bounded test, then by definition we get some new test t = 1/pD such that
t(x) > D(x) for all x. In general, the function t could exceed D if the inequality
in the condition (∗), Sect. 5, is strict.

7 Secondary tests

There is an important type of randomness tests that can be called “secondary
tests”. Tests of this type appeared already in the classical book of Knuth [14,
Sect. 3.3.1, B] and are extensively used in practical test suites [17]. Recall Propo-
sition 3 and assume for a while that every individual value of D has very small
probability, so we may assume that there are (almost) no gaps in the graph of pd.
Then Proposition 3 says that the random variable pD is uniformly distributed
on [0, 1]. Repeat the test N times, using fresh random bits (from the generator
we are testing) for each repetition. Assuming that the null hypothesis is true,
we get N independent reals that are uniformly distributed in [0, 1]. Then we
may apply any test for the independent uniformly distributed variables, e.g., the
Kolmogorov–Smirnov test for this distribution.

This procedude converts any p-value test for a random bits generator that has
negligible probabilities of individual values into a “secondary test” that could

be much more sensitive. Knuth describes a similar trick, but he does not use
the recalibration using p-values and applies the Kolmogorov–Smirnov (KS) test
directly to the values of D and the distribution that should appear if the null
hypothesis is true:8

. . . We should observe that the KS test may be used in conjunction with
the χ2 test. . . Suppose we have made, say, 10 independent χ2 tests of
different parts of a random sequence, so that values V1, V2, . . . , V10 have
been obtained. It is not a good policy simply to count how many of the
V ’s are suspiciously large or small. This procedure will work in extreme
cases, and very large or very small values may mean that the sequence has
too much local nonrandomness; but a better general method would be to
plot the empirical distribution of these 10 values and to compare it to the
correct distribution. . . This would give a clearer picture of the results of
the χ2 tests, and in fact the statisticsK+

10 andK−10 [from KS test] could be
determined as an indication of the success or failure. . . [Speaking about
an example discussed earlier:] Notice that all 20 observations in Fig. 4 (c)
[a figure from Knuth’s book that we do not reproduce] fall between the
5 and 95 percent levels, so we would not have regarded any of them as
suspicious, individually; yet collectively the empirical distribution shows
that these observations are not at all right [14, Sect. 3.3.1, p. 50–51].

We return to the use of secondary tests in practical test suites in the next
section.

8 Testing (pseudo)randomness in practice

There are several suits of randomness tests that are often used. The early history
of randomness tests (as well as pseudorandom number generators) is described by
Knuth [14, Sect. 3.3]. He starts with χ2 and Kolmogorov–Smirnov tests, explains
secondary testing (see the quote in the previous section) and also describes
several ad hoc tests.

8.1 Diehard

Later George Marsaglia developed a diehard series of tests that were included
(as C and Fortran sources) in a CD that he prepared [17]. That CD also in-
cluded a collection of files with “random” bits, constructed by combining the
output of hardware random bits generators with some deterministic pseudoran-
dom sequences, see below Sect. 10. The description of the tests could be found
in Marsagila’s papers [16,19]; see also the file tests.txt in the source code of
the tests [17].

However, there are some problems with these tests. They heavily use the
secondary test approach but not always in a correct way. First, one of the tests

8 This is an equivalent approach since KS-test gives the same result after any monotone
recalibration of the empirical values and theoretical distribution.

computes p-values for data that are not independent, as the following description,
copied verbatim from the source code, shows:

This is the BIRTHDAY SPACINGS TEST

Choose m birthdays in a year of n days. List the spacings

between the birthdays. If j is the number of values that

occur more than once in that list, then j is asymptotically

Poisson distributed with mean m^3/(4n). Experience shows n

must be quite large, say n>=2^18, for comparing the results

to the Poisson distribution with that mean. This test uses

n=2^24 and m=2^9, so that the underlying distribution for j

is taken to be Poisson with lambda=2^27/(2^26)=2. A sample

of 500 j’s is taken, and a chi-square goodness of fit test

provides a p value. The first test uses bits 1-24 (counting

from the left) from integers in the specified file.

Then the file is closed and reopened. Next, bits 2-25 are

used to provide birthdays, then 3-26 and so on to bits 9-32.

Each set of bits provides a p-value, and the nine p-values

provide a sample for a KSTEST.

As we see from this description, the different p-values use overlapping bits (2–
25, 3–26, etc.) of the same numbers. There is no reason to expect that they
are independent, contrary to the requirements of the Kolmogorov–Smirnov test.
This description also exhibits another problem that appears in many tests from
diehard suite. We use some asymptotic approximation, in this case the Pois-
son distribution, instead of the true distribution, ignoring the approximation
error for which we have no upper bounds. Moreover, even if the error can be
upper-bounded for the primary test, this upper bound does not translate easily
into a bound for an error in the secondary test where we use the approximate
distribution for recalibrating the deviations. Sometimes even the parameters of
approximate distribution are only guessed. For example, in the description of one
of the tests (named OQSO) Marsaglia writes about the distribution: “The mean
is based on theory; sigma comes from extensive simulation”. For the other one
(called “parking lot test”) even the mean is based on simulation: “Simulation
shows that k should average 3523 with sigma 21.9 and is very close to normally
distributed. Thus (k− 3523)/21.9 should be a standard normal variable, which,
converted to a uniform variable, provides input to a KSTEST based on a sample
of 10”. Here KSTEST is the Kolmogorov–Smirnov test for uniform distribution.
The arising problem is described by Marsaglia as follows:

NOTE: Most of the tests in DIEHARD return a p-value, which should
be uniform on [0, 1) if the input file contains truly independent random
bits. Those p-values are obtained by p = F (X), where F is the assumed
distribution of the sample random variable X — often normal. But that
assumed F is just an asymptotic approximation, for which the fit will
be worst in the tails. Thus you should not be surprised with occasional
p-values near 0 or 1, such as .0012 or .9983. When a bit stream really

FAILS BIG, you will get p’s of 0 or 1 to six or more places. By all means,
do not, as a Statistician might, think that a p < .025 or p > .975 means
that the RNG has “failed the test at the .05 level”. Such p’s happen
among the hundreds that DIEHARD produces, even with good RNG’s.
So keep in mind that “p happens”.

This note combines two warnings. One is quite general and is related to the
question of many tests applied to one sequence, see the discussion of the Bonfer-
roni correction above, Sect. 2. The other one that should be separated from the
first (but is not) is that diehard tests are not really tests in statistical sense,
since they use the approximate distribution for recalibration and therefore small
p-values could appear more often than they should.

Some other tests (not included in diehard) were later suggested by Marsaglia
and Tsang [18].

8.2 Dieharder

A decade later Robert Brown [6] produced an extended version of the diehard

test suite, called dieharder. The code was rewritten and published under GNU
public license, integrated with GNU statistical library and parametrized, so now
one can vary the sample size and the number of p-values easily. New tests were
added and other improvements made. The resulting package is supported by
mainstream Linux distributions. The package involves an extensive documenta-
tion. In particular, the man page says:

A failure of the distribution of p-values at any level of aggregation signals
trouble. 〈. . .〉 The question is, trouble with what? Random number tests
are themselves complex computational objects, and there is a probability
that their code is incorrectly framed or that roundoff or other numeri-
cal — not methodical — errors are contributing to a distortion of the
distribution of some of the p-values obtained.

In this quote two problems are noted: the coding errors in the tests, and the
problems related to the mathematical flaws in the approximate data used to
construct the tests. The suggested solution for both problems is the same: testing
these tests on “reference” random number generators. The man page says:

There are a number of generators that we have theoretical reasons to
expect to be extraordinarily good and to lack correlations out to some
known underlying dimensionality, and that also test out extremely well
quite consistently. By using several such generators and not just one,
one can hope that those generators have (at the very least) different
correlations and should not all uniformly fail a test in the same way
and with the same number of p-values. When all of these generators
consistently fail a test at a given level, I tend to suspect that the problem
is in the test code, not the generators, although it is very difficult to be
certain. . .

Tests (such as the diehard operm5 and sums test) that consistently fail
at these high resolutions are flagged as being “suspect” 〈. . .〉 and they
are strongly deprecated! Their results should not be used to test ran-
dom number generators pending agreement in the statistics and random
number community that those tests are in fact valid and correct so that
observed failures can indeed safely be attributed to a failure of the in-
tended null hypothesis.

Unfortunately, dieharder-3.31.1, the last version available as of September
2019, also has some problems. One of them, affecting almost all tests, is the
incorrect code that computes the Kolmogorov – Smirnov statistic. This code
produces incorrect values, sometimes even impossibly small values, and in this
case the computation of p-value gives 1. Indeed, in this case with probability 1
the deviation will be bigger than this impossibly small value. This is (correctly)
interpreted as the test failure. Fortunately, it seems that for larger sample sizes
the error in the statistics computation becomes less important.

8.3 NIST test suite

In 2000 the National Institute of Standards published a description of a test
suite for randomness, including the source code. Now there exists an updated
version [21].9

The description starts with some general words about randomness: “For ex-
ample, a physical source such as electronic noise may contain a superposition
of regular structures, such as waves or other periodic phenomena, which may
appear to be random, yet are determined to be non-random using statistical
tests” (p. 1-2). Then the authors speak about two types of possible errors: Type
I (rejecting a good generator) and Type II (accepting a bad one) and about
probabilities of these errors. However, their comments are misleading. Authors
explain that a Type I error probability is a probability for a random sequence
to get into the rejection set under a null hypothesis H0 — and this is correct.
But then they say something confusing about the Type II errors: “Type II error
probability is 〈. . .〉 P (accept H0|H0 is false)” [21, p.1-4]. While H0 is a statistical
hypothesis (model), namely, the assumption that the bits are independent and
uniformly distributed, the words “H0 is false” do not define any distribution, so
one cannot speak about this conditional probability. The authors acknowledge
this by saying “The probability of a Type II error is denoted as β. 〈. . .〉 Unlike α
[the probability of a Type I error], β is not a fixed value. 〈. . .〉 The calculation of
Type II error β is more difficult than the calculation of α because of the many
possible types of non-randomness” — but still one could conclude from what the
authors say that Type II error probability is well defined and is some number,
though difficult to compute. This is a gross misunderstanding.

9 The original version contained 16 randomness tests. In 2004 some errors in two tests
were pointed out [12]. Correcting these errors, the revised version (2010) deleted one
of the tests (the Lempel – Ziv test) and corrected the other one (the Fourier spectral
test).

Then the authors explain the meaning of p-values, but again their explana-
tions sound confusing, to say the least: “If a P-value for a test is determined
to be equal to 1, then the sequence appears to have perfect randomness” (page
1-4). In reality the value 1 is not much better than the value 0, since the cor-
rectly computed p-values have uniform distribution. Even more strange is the
following remark: “For a P-value > 0.001, a sequence would be considered to be
random with a confidence of 99.9%. For a P-value < 0.001, a sequence would be
considered to be non-random with a confidence of 99.9% [21, p. 1-4, line 6 from
below]. The second part could be interpreted in a reasonable way, though one
should be cautious here, especially in the case of many tests. But the first part
is completely misleading. Of course, one test that did not fail convincingly does
not mean that the sequence is random with high confidence!

General remarks about tests constitute Part I of [21]. Parts II and III consist
of the description and commentary for 15 tests. Some are similar to the tests
in diehard while some other are different. The final Part IV, “Testing strategy
and the Result Interpretation”, recommends two ways to analyze the results of
the tests. When several runs of a test produce a sequence of p-values, two forms
of analysis of this sequence are recommended: “Proportion of Sequences Passing
a Test” (4.2.1) and “Uniform Distribution of P -values” (4.2.2). Both are some
variants of secondary tests: assuming that the distribution of p-values is uniform
in [0, 1], authors recommend to look at the proportion of values exceeding some
threshold and to compare it with the Bernoulli distribution (4.2.1), or divide the
interval [0, 1] into some number of bins and apply χ2-test (4.2.2). This approach
replaces the Kolmogorov–Smirnov test used by Marsaglia in diehard, and in
dieharder.

As for the case of dieharder, many tests from the NIST collection use ap-
proximations for computing p-values. The only warning about the consequences
of this approach appears in the last section (p. 4-3):

In practice, many reasons can be given to explain why a data set has
failed a statistical test. The following is a list of possible explanations.
The list was compiled based upon NIST statistical testing efforts.
(a) An incorrectly programmed statistical test. 〈. . .〉
(b) An underdeveloped (immature) statistical test.
There are occasions when either probability or complexity theory isn’t
sufficiently developed or understood to facilitate a rigorous analysis of
a statistical test. Over time, statistical tests are revamped in light of
new results. Since many statistical tests are based upon asymptotic ap-
proximations, careful work needs to be done to determine how good an
approximation is.
(c) An improper implementation of a random number generator. 〈. . .〉
(d) Improperly written codes to harness test input data. 〈. . .〉
(e) Poor mathematical routines for computing P-values. 〈. . .〉
(f) Incorrect choices for input parameters.

It is hardly surprising that with such a relaxed approach to statistical test-
ing (“over time, statistical tests are revamped”) the authors have included two

bad tests in the original version of the document, see the paper [12] where the
errors are noted. It is instructive to look at the errors in these tests. The first
error, in the Fourier spectral test, happened because the expectation and vari-
ance of the approximating normal distribution were computed incorrectly. The
second is more interesting, since two different (and quite predictable) problems
with the p-values approach appeared at the same time. First, the distribution
of the test statistics based on the Lempel–Ziv compression algorithm was not
computed exactly but was approximated using some presumably good pseudo-
random number generator as reference. The experiments with other generators
made in the paper [12] showed that this approximation is dubious. The other
problem could be related to the non-negligible probability of individual values.
As we have mentioned, in this case the distribution of the p-values differs from
the uniform one. The results of numerical experiments described in the paper
suggest that this could be the reason for the rejection of truly random sequences.
In the current version of the NIST document10 this test is excluded (it contains
15 tests instead of 16).

9 How to make a robust test

There are different ways to deal with errors in statistical tests. Finding and
correcting the coding errors is a general problem for all software, and tests are no
exceptions here. One may argue that, since errors are anyway possible for many
reasons (see the list above), we should not insist on the mathematical correctness
of tests, just deleting the tests when they are discovered to be incorrect. Still the
other approach is to do whatever we can to avoid errors that could be avoided. In
this section we explain, following the technical report [32], how one could avoid
problems related (a) to the approximation errors while computing p-values, and
(b) to the non-negligible probabilities of individual outcomes. This will be done
in two steps.

Step 1. Let us still assume that a reference generator that is truly random
is available. But instead of using the reference generator to find the approxi-
mate distributions or to look for suspicious tests, as suggested by the authors
of dieharder and NIST tests, we use it directly. Recall that the we used the
Kolmogorov–Smirnov test to check that the distribution of p-values is consistent
with the uniform distribution, and our problem was that due to approximation
errors and non-zero probabilities of individual deviation values the distribution
of p-values is not exactly uniform under the null hypothesis. However, there is
a version of the Kolmogorov–Smirnov test that deals with two samples. Here
the null hypothesis is that the two samples are formed by independent random

10 Unfortunately, the current version of the NIST report [21] was not checked carefully
either. For example, the description of the serial test (sect. 2.11.4, (5)) contains
conflicting instructions for computing p-values: the example includes division by
2 that is missing in the general formula. The C code follows the example, not the
general formula. Also the values of igamc function in this section are incorrect, while
the correct values do appear few lines later, in sect. 2.11.6.

variables with the same distribution, but nothing is assumed about this distri-
bution.

Therefore, we may proceed as follows. The first sample of p-values is con-
structed using the random numbers generator that we test, as before. The second
sample is constructed exactly in the same way but using the reference generator.
Then we apply the Kolmogorov–Smirnov test for two samples. This procedure
remains valid even if the formulas used to convert the deviations into p-values
are only approximately true, or even completely wrong, since even completely
wrong formulas would be the same for both generators, the one we test and the
reference one. So we can omit the recalibration step completely and just consider
the samples of deviations.

Remark 4. In fact, only the ordering is important, so the Kolmogorov–Smirnov
test for two samples can be presented as follows. We have two arrays of reals,
x1, . . . , xn (one sample) and y1, . . . , ym (another sample). Then we combine them
into one array of length n + m and sort this array, keeping track of the origin:
elements that came from the first and second samples are marked by letters X
and Y respectively. In this way we get a sequence of n + m letters X and Y
that contains n letters X and m letters Y , and consider some test statistic for

the following null hypothesis: all
(
n+m
m

)
sequences of this type are equiprobable.

The Kolmogorov–Smirnov test uses some specific statistic, namely, the maximal
difference between the frequencies of X’s and Y ’s in all prefixes, but the same
approach can be used with any other test for this distribution.

Remark 5. In this way we get a test that does not depend on the approximations
to the distributions that we do not know how to compute. However, there is some
price for it. Since now the reference generator is an additional source of random
variations, we need more samples to get the same sensitivity of the test. This
increase, however, is rather modest.

Step 2. We constructed a randomness test that does not rely on unproven
assumptions about distributions that we cannot compute exactly. However, it
uses a reference generator that is assumed to be truly random, and this is crucial.
Obviously, if we use a faulty reference generator to test a truly random one, the
test will fail (the procedure is symmetric, so we get exactly the same result
when testing a faulty random generator against a truly random reference). In
some sense, we constructed only a “randomized test of randomness”. This is
unsatisfactory, but can be easily avoided using the following trick.

Let us consider n deviation values d1, . . . , dn obtained by using bits from the
generator we are testing. Then construct the other sample, d′1, . . . , d

′
m, but this

time let us use not the reference generator but the bitwise xor of the bits from
the reference generator and fresh bits from the generator we are testing. Then
we apply the Kolmogorov–Smirnov test to these two samples. If

1. the generator that we are testing is truly random, and
2. the reference generator and the test generator are independent,

then the probability to fail the test is guaranteed to be small due to Kolmogorov–
Smirnov’s result.

Remark 6. Of course, if the reference generator is not independent with the one
that we want to test, the correctness claim is no more true. For example, if during
the second part the reference generator produces the same bits as the generator
we are testing, the xor bits will be all zeros. However, the independence condition
looks much easier to achieve. For example, the reference bits could be produced
in different place, or in advance, or can even be an output of a fixed deterministic
pseudorandom generator.

Remark 7. If the reference generator produces truly random bits that are in-
dependent from the output of the generator we are testing, then xor-bits are
also truly random. So our new test is as sensitive as the previous one (the com-
parison with the reference generator) if the reference generator is truly random,
but the correctness of the new test does not depend on the assumption of true
randomness for the reference generator.

Remark 8. There is one small problem that we have not mentioned yet: while
sorting the array of deviations, we may have ties. If some value from the first
sample coincides with some value from the second sample, then the letter (X
or Y in our notation, see above) is not well defined. However, we can break the
ties randomly, using the bits of the generator we are testing. In this way we may
assume that these bits are truly random when bounding the probability of Type
I error.

Remark 9. The same idea can be used even for “informal” tests. For example,
imagine that we construct some image based on the bits we test, and then people
look at this image and decide whether it looks similar to the pictures of the same
type that use reference generator or there are some visible differences11. Recalling
the interactive non-isomorphism proof and using the same trick as before, we
can make a robust test. Take 2n disjoint bit blocks from the generator under
testing. Use n of them to create images, and do the same for other n blocks but
use the bitwise xor of these blocks and n blocks of the same size from some other
origin. As a source of these auxiliary blocks one may use a reference generator,
or the binary representation of π, or any other source. The only requirement
is that the auxiliary blocks should be fixed before sampling our generator. If
a human expert (or a machine-learning algorithm), looking at the resulting 2n
images, can correctly classify them into two groups according to their origin,
then the generator fails the test, and the probability of this for a true random
bits generator is 2−2n, up to a poly(n)-factor.

One can also consider a more advanced version of this test. Several experts
say how “random” the images are. Then the images are ordered according to
their approval ratings and Kolmogorov–Smirnov test for two samples is used.

11 This is not a purely theoretic possibility: the documentation for some hardware
random bit generators contains pictures of this type.

10 Hardware random generators

Randomness is ubiquitous — from the coin tossing and cosmic rays to the ther-
mal noise in audio and video recordings, Brownian motion, quantum measure-
ments and radioactive decay. So one may think that constructing a good random-
ness generator is an easy task. However, if we require that the output distribu-
tion is guaranteed with high precision, the problem becomes much more difficult.
Coins may be biased, the independence between the two consecutive coin tosses
may be not absolute, the circuit with the noise is affected also by some unde-
sirable signals that may not be random, etc. In addition, some technical errors
could happen.

For an illustration one may look at the sequences of bits that are included in
the CD prepared by Marsaglia [17]. Among them there are two bit sequences that
he got from two devices he bought (one from Germany, one from Canada) and a
third bit sequence produced (as Marsaglia says) by some hardware random gen-
erator in California. The names are canada.bit, germany.bit and calif.bit.
The device makers claimed that the bits produced by their devices are perfectly
random. However, applying diehard tests to these sequences, Marsaglia found
that they are far from being random. In fact, looking at two of them (Canada
and Germany), one could guess one of the reasons for their non-randomness [8].
Namely, splitting the bit sequences into bytes (integers in 0 . . . 255 range) and
searching for the two-byte substring 10 10, we find that this substring does not
appear at all (at least among the first 106 bytes I tested), while the expected
number of occurrences is several dozens. To get an idea why this happens, one
may also count the substrings of the form 13 x and find out that one of them
appears much more often than the others: the substring 13 10 occurs more than
four thousand times (instead of expected few dozens).

If the reader worked a lot with Unix and MSDOS computers in 1990s, she
would immediately see a plausible explanation: the file was converted as a text
file from Unix to MSDOS encoding. In Unix the lines of a text file were separated
just by byte 10, while in MSDOS they were separated by 13 10. Converting 10 to
13 10, we make substrings 10 10 impossible and drastically increase the number
of substrings 13 10.

The third file calif.bit probably had some other history that did not in-
volve Unix to MSDOS conversion, but still fails the tests for the other reasons.12

Marsaglia solved this problem by combining (xoring) the output of the hard-
ware random generators with pseudorandom sequences obtained by some deter-
ministic generators [17, file cdmake.ps]

The sixty 10-megabyte files of random numbers are produced by com-
bining two or more of the most promising deterministic generators with
sources of random noise from three physical devices (white noise), for
those who feel that physical sources of randomness are better than de-
terministic sources. Some of the files have white noise combined with

12 We also tested the corrected files, replacing groups 13 10 by 10 in canada.bit and
germany.bit. They still fail many tests in the dieharder suite.

black noise, the latter from digital recordings of rap music. And a few
of the files even had naked ladies thrown into the mix, from pixel files
on the network. The last two, digitized music and pictures, are thrown
in to illustrate the principle that a satisfactory stream of random bits
remains so after combination [xor-ing] with the bits of any file.

Fig. 3. A fragment of table of random digits from [27]

A similar combination of the hardware source of somehow random bits and post-
processing was used for the table of random digits published in 1955 [27] (see
Fig. 3 for a small fragment of it):

The random digits in this book were produced by rerandomization of a
basic table generated by an electronic roulette wheel. Briefly, a random
frequency pulse source, providing an average about 100,000 pulses per
second, was gated about once per second by a constant frequency pulse.
Pulse standardization circuits passed the pulses through a 5-place binary
counter. In principle the machine was a 32-place roulette wheel which
made, on the average, about 3000 revolutions per trial and produced
one number per second. A binary-to-decimal converter was used which
converted 20 of the 32 numbers (the other twelve were discarded) and
retained only the final digit of two-digit numbers; this final digit was fed
into an IBM punch to produce finally a punched card table of random
digits.
Production from the original machine showed statistically significant bi-
ases, and the engineers had to make several modifications and refine-
ments of the circuits before production of apparently satisfactory num-
bers was achieved. The basic table of a million digits was then produced
during May and June of 1947. This table was subjected to fairly exten-
sive tests and it was found that it still contained small but statistically
significant biases. 〈. . .〉
[Comparing the results of tests before and after one month of continuous
operations:] Apparently the machine had been running down despite the
fact that periodic electronic checks indicated that it had remained in
good order.
The table was regarded as reasonably satisfactory because the deviations
from expectations in the various tests were all very small — the largest
being less than 2 per cent — and no further effort was made to generate

better numbers with the machine. However, the table was transformed by
adding pairs of digits modulo 10 in order to improve the distribution of
the digits. There were 20,000 punched cards with 50 digits per card; each
digit on a given card was added modulo 10 to the corresponding digit of
the preceding card to yield a rerandomized digit. It is this transformed
table which is published here 〈. . .〉
These tables were reproduced by photo-offset of pages printed by the
IBM model 856 Cardatype. Because of the very nature of the table, it
did not seem necessary to proofread every page of the final manuscript
to catch random errors of the Cardatype. All pages were scanned for
systematic errors, every twentieth page was proofread 〈. . .〉

We see that the same scheme was used here. However, the post-processing al-
gorithms used in both cases are far from perfect. The sum modulo 10 used by
RAND is almost reversible (if we know the resulting table and the first card,
then we can reconstruct all the cards), so it cannot significantly change the en-
tropy or the Kolmogorov complexity of the data string. This entropy is probably
insufficient if simple tests fail on the string. The same can be said about xor-ing
with a (deterministic) pseudorandom sequence used by Marsaglia. In the latter
case, the rap music and naked ladies could save the day, assuming that these
strings have enough complexity (generating processes have enough entropy) and
are independent from the data from the electronic devices. But obviously one
would like to have less frivolous and more regular procedure.

11 Random source and post-processing

Noise sources are cheap and easy to find. A classical example is a Zener diode
which costs few cents; the noise generated by it is strong enough to be captured
by an inexpensive audio card that has microphone inputs, and one can then try
to convert this noise to a high-quality random bits (“white noise”) using some
processing called “conditioning” or “whitening”. Many commercial devices uses
this scheme (usually with a higher frequency and a lower precision than used in
typical audio cards); here is the description of one of devices of this type:

The TrueRNG Hardware Random Number Generator uses the avalanche
effect in a semiconductor junction to generate true random numbers. The
avalanche effect has long been used for generation of random number /
noise and is a time-tested and proven random noise source. The semicon-
ductor junction is biased to 12 volts using a boost voltage regulator (since
USB only supplies 5V), amplified, then digitized at high-speed. The dig-
itized data is selected and whitened internal to the TrueRNG and sent
over the USB port with more than 400 kilobits/second of throughput.
〈. . .〉
The new entropy mixing algorithm takes in 20 bits of entropy and out-
puts 8 bit to ensure that maximum entropy is maintained. The algorithm
uses multiplication in a Galois field similar to a cyclic redundancy check

to mix the ADC inputs thoroughly while spreading the entropy evenly
across all bits [35].

On the other hand, one should be careful here, since the properties of Zener
diodes are not guaranteed13, as a simple experiment shows (Fig. 4). It is quite

Fig. 4. The noise signal and its spectrum for two Zener diodes from the same roll, dig-
itized by the same sound card (Behringer 1204usb) and analyzed by the same program
(audacity).

possible that noise properties may change over time and depend on the environ-
ment (exact voltage and current, temperature etc.) The post-processing should
somehow be robust enough to convert these varying types of noise into random
bits with the same uniform distribution.

The scheme of such a hardware random number generator is shown in a
picture from NIST publication [23] (Fig. 5). In addition to the analog source
and the conditioning block this scheme also provides a “health tests” block,
with the obvious goal to raise an alarm when, for example, the analog noise
source becomes broken for some reason, or drastically changed its parameters.
The circuit is called an “entropy source”, not a random bits generator, and
the conditioning block is optional, since in [23] a more complicated scheme is
considered: the output of this block is subjected to the next layer of conditioning
before being sent to the customer. See below Sect. 13.

12 What we would like to have

The ideal situation can be described as follows. There exist

13 The manufacturers of Zener diodes do not care much about the noise since the
primary purpose of Zener diodes is different (and somehow opposite): to produce a
stable voltage.

Fig. 5. A general scheme of a hardware entropy sources [23, p. 5]

– some mathematical property (E) of the output distribution of the (digital)
noise source; its informal meaning is that “there is enough randomness in
the output of the noise source”;

– some hardware device for which the physicists guarantee (E) unless the de-
vice is visibly broken;

– a deterministic transformation (“conditioning”) and a mathematical theorem
that guarantees that the output of this transformation is distributed almost
uniformly if its input has the property (E).

Unfortunately, the current practice is rather far from this ideal. The NIST
publication mentioned above suggests the property “min-entropy is large” as (E).
This means that each individual outcome has small probability (by definition,
the min-entropy of a distribution is at least k if every outcome has probability
at most 2−k). Here is what they say:

The central mathematical concept underlying this Recommendation is
entropy. Entropy is defined relative to one’s knowledge of an experiment’s
output prior to observation, and reflects the uncertainty associated with
predicting its value — the larger the amount of entropy, the greater the
uncertainty in predicting the value of an observation. There are many
possible measures for entropy; this Recommendation uses a very conser-
vative measure known as min-entropy, which measures the effectiveness
of the strategy of guessing the most likely output of the entropy source
[23, p. 4].

However, min-entropy, being a very important notion, is still not enough to
guarantee the good distribution after any (deterministic) conditioning transfor-
mation. Namely, for any transformation T : Bn → B that maps n-bit strings
into bits, there is a random variable ξ with values in Bn that has min-entropy

at least n − 1 (almost maximal) such that T (ξ) is a constant. Indeed, one of
the preimages T−1(0) and T−1(1) has size at least 2n−1, and we may let ξ be
uniformly distributed in this preimage.

Moreover, even a stronger requirement than high min-entropy, introduced
long ago by M. Santha and U. Vazirani [29], is not enough. This requirement,
for a sequence of random Boolean variables ξ1, ξ2, . . . , ξn, says that

Pr[ξm = 1|ξ1 = x1, . . . , ξm−1 = xm−1] ∈
(

1

2
− δ, 1

2
+ δ

)
for every m 6 n and for every (m − 1)-bit string x1 . . . xm−1. Here δ ∈ (0, 1/2)
is some constant. Assume for example that δ = 1/6; then the requirement says
that whatever bits we have observed, the conditional probabilities to have 0 and
1 as the next bit differ at most by factor 2, being in the interval (1/3, 2/3). This
implies that min-entropy (and Shannon entropy) grows linearly with n, but is
a much stronger condition, saying that in no circumstances we may predict the
next bit reliably. Still, as proven in [29], this condition is not enough to extract
even one “whitened” bit: there is no whitening algorithm that is better than the
trivial one (taking the first bit). This claim can be slightly generalized: no way
to extract k bits is better than the trivial one (just taking the first k bits). Here
is the exact statement that implies this result.

Proposition 4. Let A ⊂ Bn be a subset that has uniform probability p and
let δ ∈ (0, 1/2). Then there exists a sequence of n random Boolean variables
ξ1, . . . , ξn that satisfies the Santha–Vazirani condition for this δ, such that

Pr[ξ1 . . . ξn ∈ A] > pα,

where α is a number such that (1/2)α =

(
1

2
+ δ

)
.

Therefore, if the uniform probability of A is (1/2)k for some k, then the proba-
bility of the event ξ1 . . . ξn ∈ A guaranteed by Proposition 4 (for some Santha–
Vazirani source) is at least (1/2 + δ)k. This means that no transformation
T : Bn → Bk can be better (in terms of extracting min-entropy from Santha–
Vazirani source) than taking the first k bits. Indeed, one of the points in Bk has
T -preimage in Bn of uniform probability at most (1/2)k, and applying Propo-
sition 4 to this preimage we conclude that for some Santha–Vazirani source
ξ1, . . . , ξn the min-entropy of T (ξ1 . . . ξn) is not better than just for ξ1 . . . ξk:
probability of some point in the image distribution is at least (1/2 + δ)k.

Proof. We need to construct a distribution on Bn that satisfies Santha–Vazirani
condition and assigns large probability to A. We do it inductively, following
the suggestion by Ruslan Ishkuvatov. The case n = 1 is obvious. For n > 1,
we split A into two parts 0A0 and 1A1 according to the first bit, where A0

and A1 are subsets of Bn−1 that can be considered as two faces of the Boolean
cube. Let p0 and p1 be the probabilities of A0 and A1 according to the uniform
distribution in Bn−1, so their average is p. Assume that p0 6 p1, so p0 = p − x

and p1 = p+ x for some x ∈ [0, p]. The induction assumption gives two Santha–
Vazirani distributions on Bn−1 that give large probabilities to A0 and A1, namely,
at least pα0 and pα1 . They can be combined into one distribution on Bn, we only
need to chose the probability (between 1/2 − δ and 1/2 + δ) for the first bit,
and then use the two Santha–Vazirani distributions provided by the induction
assumption as conditional distributions. To maximize the resulting probability,
we should put maximal allowed weight on the face where the probability is
greater. It remains to prove then that(

1

2
− δ
)
pα0 +

(
1

2
+ δ

)
pα1 =

(
1

2
− δ
)

(p− x)
α

+

(
1

2
+ δ

)
(p+ x)

α > pα.

For α 6 1, the function t 7→ tα is concave, therefore the left hand side is a
concave function of x, and it is enough to check this inequality for endpoints
x = 0 (where it is obvious), and x = p. In the latter case we need to prove that
(1/2 + δ)(2p)α > pα, and this follows directly from the definition of α.

Remark 10. A very simple proof for the case of 1-bit output [28] goes as follows.
If p > 1/2, then for some Santha–Vazirani distribution with parameter δ one can
achieve probability at least 1/2 + δ. Why? It is enough to spread the probability
1/2 + δ uniformly on a subset A′ ⊂ A with uniform probability 1/2, and spread
the remaining probability 1/2− δ uniformly on the complement of A′.

So the situation is far from ideal: large min-entropy and even stronger Santha–
Vazirani condition are not enough to guarantee the correct distribution after
whitening, for any fixed whitening function. Still some practical solutions, i.e.,
some common sense recommendations that help us to avoid obviously faulty
generators, are needed, even if no theoretical guarantees are provided. In the
next section we look at the NIST approach to this problem.

13 What we have

There are three documents produced by NIST that cover different aspects of
random bits generation. The first, SP 800-90A [22], deals with algorithmic pseu-
dorandom bits (or numbers) generators, called there deterministic random bits
generators14. Here the relevant mathematical theory is not the algorithmic infor-
mation theory but the complexity theory where the notion of (cryptographically
strong) pseudorandom number generator was introduced by Manuel Blum, Sil-
vio Micali and Andrew Yao [4,38]. This theory goes far beyond the scope of our
survey.

Roughly speaking, such a generator is a polynomial-time algorithm that maps
a truly random seed into a (much longer) sequence of bits that is “indistinguish-
able” from a random one by polynomial-size circuits. The indistinguishability
means that no polynomial-size circuit can have significantly different probabil-
ities of (a) accepting the output of the generator for a truly random seed, and

14 Note an oxymoron.

(b) accepting a sequence of truly random bits. An equivalent definition says that
there is no way to predict by a polynomial-size circuit the next bit of the output
sequence (for a random seed) significantly better than by guessing.

The existence of generators with these properties is equivalent to the exis-
tence of one-way functions [11], and this existence is an unproven assumption.
This assumption implies P 6= NP, while the reverse implication is not known. For
this reason we do not know any cryptographically strong pseudorandom number
generator for which this property can be proven. Moreover, since the construc-
tions from [11] are quite complicated, practical pseudorandom generators may
use stronger assumptions, like hardness of factoring, or just have no theoreti-
cal justification at all. In fact, NIST [22] not only recommends but also insists
on using “allowed” methods to generate random bits from the seed, and these
methods are far from being justified mathematically, even in a very weak sense.
For example, one of the methods uses hash values for consecutive bit strings (see
Fig. 6). As explained in [22, page 37], “mechanisms specified in this Recommen-

Fig. 6. Part of Fig. 8 on p. 39 in [22] related to the random bit generation using a hash
function (the initialization part is omitted).

dation have been designed to use any approved hash function and may be used
by consuming applications requiring various security strengths, providing that
the appropriate hash function is used and sufficient entropy is obtained for the
seed”. On the next page a list of these “approved” hash functions is provided
that includes SHA-1, SHA-224, SHA-512/224, SHA-256, SHA512/256, SHA-384,
SHA-512. According to NIST [25]:

An approved hash function is expected to have the following three prop-
erties:
1. Collision resistance: It is computationally infeasible to find two dif-
ferent inputs to the hash function that have the same hash value. That
is, if hash is a hash function, it is computationally infeasible to find two
different inputs x and x′ for which hash(x) = hash(x′). Collision resis-
tance is measured by the amount of work that would be needed to find a
collision for a hash function with high probability. If the amount of work
is 2N , then the collision resistance is N bits 〈. . .〉

2. Preimage resistance 〈. . .〉
3. Second preimage resistance 〈. . .〉

Obviously, for a specific function like SHA-1 or any other mentioned in the list
above, the collision resistance requirement makes no sense if understood liter-
ally: computation infeasibility means high complexity of some function, and here
we have no function. If somebody comes with a collision pair x, x′, the collision
resistance in the näıve sense disappears starting from this moment, so it is not
a mathematical property of a hash function (a mathematical property cannot
suddenly become false), but some property of the current state of art (still mea-
sured in bits!). Moreover, the hash functions mentioned above are obtained by a
complicated ad hoc construction and there are no reasons to believe that some-
thing similar to collision resistance can be proven. Finally, as it is mentioned [22,
p. 89],

Hash DRBG’s [the random generator based on hash functions] security
depends on the underlying hash function’s behavior when processing a
series of sequential input blocks. If the hash function is replaced by a ran-
dom oracle, Hash DRBG is secure. It is difficult to relate the properties
of the hash function required by Hash DRBG with common properties,
such as collision resistance, pre-image resistance, or pseudorandomness.

Indeed, it is impossible to relate the “required” properties with “common” prop-
erties, since a function with no known collisions and high preimage resistance
still may have much more 1s than 0s in most of its outputs, or have the last bit
always equal to 1, therefore being completely unsuitable for Hash DRBG.15 So
the reference to the security properties of the allowed hash functions can only
create a false feeling of security.

The second NIST publication, SP 800-90B [23], describes the allowed con-
structions of the “entropy source” (see Fig. 5 above) while the third one [24]
“addresses the construction of RBGs from the mechanisms in SP 800-90A and
the entropy sources in SP 800-90B” [23, p. 1]. The idea here is that the whitening
(conditioning) process is splitted into two stages. The first stage, described in
SP 800-90B, does only some “rough” conditioning and may not produce a dis-
tribution that is very close to the uniform one. We hope only that the entropy
of its output is close to the output length or at least is a significant fraction of
the length. Then the second stage that may involve deterministic random bits
generators or not is used for “fine-tuning”.16

15 And the claim about the random oracle model is obviously true and obviously irrel-
evant.

16 The final stage may also use pseudorandom bit generators to provide additional
“backup” layer if the physical source stops working. For example, one may follow
Marsaglia and produce xor of the bit sequences from physical and deterministic
sources. Note that this operation, hiding the problems with physical source, makes
the testing of the output sequence almost useless; testing should be done before this
last step.

But what is meant by “entropy” in this description? As we have said, the
NIST recommendations claim to use min-entropy. Still there are some problems
with this approach.

– There is no way to get a reliable lower bound for the min-entropy of a
physical source. If there is some isolated value that appears with probability
2−k, the min-entropy is at most k, but one needs to make Θ(2k) trials to
have a reasonable chance to see this value at least once.17

– Quite often the NIST recommendations treat the notion of entropy infor-
mally, as some mystical substance that can be present in a binary string
(and not in a random variable) and even can be accumulated and/or con-
densed18. For example, it is written [23, p. 11] that “in all cases, the DRBG
[deterministic random bits generator] mechanism expects that when entropy
input is requested, the returned bitstring will contain at least the requested
amount of entropy.” The closest approximation to this interpretation is Kol-
mogorov complexity, but it is (a) non-computable and (b) defined up to a
constant, and different reasonable optimal programming languages easily can
give the values that differ by several thousands, so it does not make sense to
ask whether the complexity exceeds (say) 512 or not.

– Moreover, in some cases even more enigmatic explanations are given: “For
the purposes of this Recommendation, an n-bit string is said to have full
entropy if the string is the result of an approved process whereby the entropy
in the input to that process has at least 2n bits of entropy (see [ILL89] and
Section 4.2)” [24, p. 11]. Here [ILL89] is the preliminary version of [11] and
neither says anything about approved processes nor justifies the requirement
about 2n bits of entropy.

– As mentioned above for a similar situation, the properties of the functions
used for conditioning, in particular the standard requirements for the security
of a hash function, do not guarantee, even informally, that the output distri-
bution for the hash function applied to an input source of high min-entropy,
is close to the uniform distribution. However, this is implicitly assumed in
the recommendations when an approved process of obtaining a string of full
entropy is described.

– The recommendations encourage the designer to use different combinations
of “approved” constructions (see, e.g., Fig. 7); even if some good properties
of one-stage construction are plausible, the claim that the composition of
several stages will still have good properties, is much less founded.

17 Things are much better for independent identically distributed (i.i.d.) variables [23,
p. 11]; there are also some physical sources where i.i.d. assumptions are reasonable,
and some tests that can detect some violations of i.i.d. property.

18 “When the entropy [string?] produced by the entropy source(s) is very long (e.g.,
because the entropy rate of the entropy source(s) is very low), and the entropy bits
may need to be condensed into a shorter bitstring, the Get Entropy function in
Section 10.3.1.1 or Section 10.3.1.2 shall be used to condense the entropy bits without
losing the available entropy in the bit string.” [23, sect. 10.3.1, p. 44]

Fig. 7. The construction of a random bits generator with several layers [24, p. 19].

All these critical remarks do not mean that NIST recommendations are un-
necessary: they reflect the current state of technology, the existing practice and
prevent the appearance of completely bogus generators, therefore playing a very
important role. However, one should keep in mind that they are not based on
any “hard science”; they sometimes use mathematical notions and results but
only as hints and sources of inspiration.

Could we have better recommendations? This is a difficult question. One can
hope for the security through obscurity : if a long sequence of different mathe-
matical operations is performed, this could make an attack much more difficult.
However, the idea that random actions give random results does not look as
a good plan for designing random bits generators. It could be that the careful
choice of a noise source plus one-layer conditioning procedure that is based on
something more suitable than just hash functions, would give a better result
than a complicated multi-layer approach using cryptographic primitives.

14 Final remarks

The space limitations do not allow us to discuss other interesting questions
related to theory and practice of random bit generators.

On the theory side, there is a lot of knowledge about randomness extractors
— from a complexity-theoretic viewpoint, they are much closely related to the
practical task of conditioning raw randomness than hash functions. It is not
completely clear to what extent we can achieve the goal: to have a clear and
reasonable assumption about raw distribution that provably guarantees that the
output distribution is close to the uniform one. Still we may hope that some
constructions inspired by this theory could be practically useful. In particular,
there are results about extractors with many sources that could be easier to use
(literally or as a source of inspiration), since independence appears more often
in the “real world” than uniform distributions.

From the viewpoint of physics there is a difference between a “random noise”
that comes from statistical mechanics, say, the thermal noise in a resistor, or
the Brownian motion, or some chaotic dynamical systems with external noise,
and more “refined” randomness that comes out of quantum mechanical systems

where the events related to individual microscopic objects can be observed, for
example, experiments with individual photons. However, one can argue that

– there is no clear distinction between two categories: how do we classify Geiger
counter events for a macroscopic piece of slightly radioactive material? how
do we classify the noise in a PN junction (definitely related to some quantum
effects but in multi-particle systems)?

– from the practical viewpoint, it is not clear if one can construct an experimen-
tal device that is “clean” enough to avoid the conditioning step. And if we
use conditioning, do we really have an advantage using a delicate quantum-
mechanical experiment instead of cheaper alternatives? One can argue that
it is better to have “true randomness” instead of “mere chaos”, or something
like this. It definitely sounds good for philosophers or for a sales brochure,
but are there more essential advantages?

Last but not least, the notions that appear in this discussion (randomness
tests, individual random objects) can be studied from the viewpoint of algorith-
mic information theory. There are many interesting questions and results of this
type [3,26] that are starting points for the “quantitative” theory of randomness.
In this approach, roughly speaking, a result of the form “if α is algorithmically
random, then β is algorithmically random” is made more precise by proving
the upper bound for the randomness deficiency of β in terms of the random
deficiency of α. Interesting questions also appear when we try to translate the
results about some combinatorial constructions (say, randomness extractors or
secret sharing) into the language of algorithmic information theory. But this is
a topic for another long survey.

Acknowledgments

The author is grateful to all the people in the RaCAF project and the ES-
CAPE team (LIRMM, Montpellier), Kolmogorov Seminar (Moscow), Theoreti-
cal Computer Science Lab (Moscow, HSE), and all others from whom I learned
about randomness including my (late) teacher Vladimir Uspensky, Leonid Levin,
Alexander Zvonkin, Nikolay Vereshchagin, Vladimir Vovk, Vladimir Vyugin, An-
drei Romashchenko, Bruno Durand, Gregory Lafitte, Laurent Bienvenu, Péter
Gács, Wolfgang Merkle, Paul Vitányi, Daniil Musatov, Andrei Rumyantsev,
Mikhail Andreev, Gleb Novikov, Bruno Bauwens, Konstantin Makarychev, Yury
Makarychev, Ilya Razensteyn, Gleb Posobin, Alexey Vinogradov, Ruslan Ishku-
vatov. The work was supported by ANR RaCAF grant ANR-15-CE40-0016-0.

References

1. Wasserstein, R.L., Lazar, N.A.: Editorial: The ASA’s statement on p-values: Con-
text, process, and purpose. The American Statistician 70(2), 129–133 (2016),
http://dx.doi.org/10.1080/00031305.2016.1154108

http://dx.doi.org/10.1080/00031305.2016.1154108

2. Daniel J. Benjamin and others (72 authors): Redefine statistical significance. Na-
ture human behaviour 2, 6–10 (2018)

3. Bienvenu, L., Gács, P., Hoyrup, M., Rojas, C., Shen, A.: Algorithmic tests and
randomness with respect to a class of measures. Proceedings of the Steklov Institute
of Mathematics 274, 34–89 (2011), see also http://arxiv.org/abs/1103.1529

4. Blum, M., Micali, S.: How to generate cryptographically strong sequences of ran-
dom bits. SIAM Journal on Computing 13(4), 850–864 (1984), https://doi.org/
10.1137/0213053, (preliminary version was presented at FOCS 1982 conference)

5. Borel, É.: Le Hasard. Librarire Félix Alcan (1920)
6. Brown, R.G.: Dieharder: A Gnu public random generator, version 3.31.1. Tech.

rep., Duke University Physics Department (2006–2018), http://www.phy.duke.

edu/~rgb/General/dieharder.php
7. David, A.P., de Rooij, S., Shafer, G., Shen, A., Vereshchagin, N., Vovk, V.: Insuring

against loss of evidence in game-theoretic probability. Statistics and Probability
Letters 81, 157–162 (2011), https://doi.org/10.1016/j.spl.2010.10.013

8. Davies, R.: Hardware random number generators. Tech. rep., Statistics Research
Associates Limited (2000), http://robertnz.net/hwrng.htm, presented at 15th
Australian Statistics Conference, July 2000, and 51st conference of New Zealand
Statistical Association, September 2000

9. Gurevich, Y., Passmore, G.O.: Impugning randomness, convincingly. Studia Logica
100(1-2), 193–222 (April 2012), https://link.springer.com/article/10.1007/
s11225-012-9375-1, see also https://arxiv.org/pdf/1601.00665.pdf, https:

//www.cl.cam.ac.uk/~gp351/Gurevich-Passmore-IRC.pdf
10. Gurevich, Y., Vovk, V.: Test statistics and p-values. Tech. rep., arXiv (2017), work-

ing paper #16, On-line compression modelling project (new series), http://www.
alrw.net/articles/16.pdf. See also https://arxiv.org/pdf/1702.02590.pdf

11. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999),
https://doi.org/10.1137/S0097539793244708

12. Kim, S.Y., Umeno, K., Hasegava, A.: Corrections of the NIST statistical test
suite for randomness. Tech. rep., eprint.iacr.org (2004), https://eprint.iacr.

org/2004/018.pdf
13. Kireev, A.: On the falsified results of the “referendum” in Sevastopol [in Rus-

sian]. Tech. rep., LiveJournal (November 2014), https://kireev.livejournal.

com/1095568.html
14. Knuth, D.: The Art of Computer Programming. Volume 2. Seminumerical Algo-

rithms, vol. 2. Addison–Wesley, 2 edn. (1981), ISBN 0-201-03822-6
15. Kupriyanov, A.: Gauss against Churov: preliminary conclusions. Tech. rep., Troit-

sky variant (Russian newspaper) (May 2018), https://trv-science.ru/2018/05/
08/gauss-protiv-churova-promezhutochnyj-itog

16. Marsaglia, G.: A current view of random number generators. In: Computer Science
and Statistics, Sixteenth Symposium on the Interface. pp. 3–10. Elsevier, North-
Holland (1985)

17. Marsaglia, G.: Random numbers CDROM including the Diehard battery of tests
of randomness. Tech. rep., University of Florida (1995), http://stat.fsu.edu/

pub/diehard/, was available at http://stat.fsu.edu/pub/diehard/; now (2019)
still avaliable as snapshots from https://web.archive.org. Contains the preprint
version of [19,16]

18. Marsaglia, G., Tsang, W.W.: Some difficult-to-pass tests of randomness. Journal
of Statistical Software 7(3) (2002), https://www.jstatsoft.org/article/view/
v007i03

http://arxiv.org/abs/1103.1529
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
https://doi.org/10.1016/j.spl.2010.10.013
http://robertnz.net/hwrng.htm
https://link.springer.com/article/10.1007/s11225-012-9375-1
https://link.springer.com/article/10.1007/s11225-012-9375-1
https://arxiv.org/pdf/1601.00665.pdf
https://www.cl.cam.ac.uk/~gp351/Gurevich-Passmore-IRC.pdf
https://www.cl.cam.ac.uk/~gp351/Gurevich-Passmore-IRC.pdf
http://www.alrw.net/articles/16.pdf
http://www.alrw.net/articles/16.pdf
https://arxiv.org/pdf/1702.02590.pdf
https://doi.org/10.1137/S0097539793244708
https://eprint.iacr.org/2004/018.pdf
https://eprint.iacr.org/2004/018.pdf
https://kireev.livejournal.com/1095568.html
https://kireev.livejournal.com/1095568.html
https://trv-science.ru/2018/05/08/ gauss-protiv-churova-promezhutochnyj-itog
https://trv-science.ru/2018/05/08/ gauss-protiv-churova-promezhutochnyj-itog
http://stat.fsu.edu/pub/diehard/
http://stat.fsu.edu/pub/diehard/
http://stat.fsu.edu/pub/diehard/
https://web.archive.org
https://www.jstatsoft.org/article/view/v007i03
https://www.jstatsoft.org/article/view/v007i03

19. Marsaglia, G., Zaman, A.: Monkey tests for random number generators. Computers
and Mathematics with Applications 26(9), 1–10 (November 1993)

20. Maurer, U.M.: A universal statistical test for random bit generators. Journal of
Cryptology 5(2), 89–105 (1992), https://link.springer.com/article/10.1007/
BF00193563

21. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Leven-
son, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test
suite for random and pseudorandom number generators for cryptographic applica-
tions, revision 1 by Lawrence E. Bassham III. Special Publication 800-22-1a, Na-
tional Institute of Standards and Technology, Technology Administration, U.S. De-
partment of Commerce (NIST) (April 2010), https://www.nist.gov/publications/

statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic. Previ-
ous version seems to be unavailable at this site, but the review of Elaine B.
Barker, ITL Bulletin (December 2000, 3 pp.), is available at https://tsapps.

nist.gov/publication/get_pdf.cfm?pub_id=151231. The Lempel–Ziv test, crit-
icised in [12], was there (#10) according to the review; it is missing in the updated
version.

22. Barker, E., Kelsey, J.: Recommendation for random number generation using deter-
ministic random bit generators. Special Publication 800-90A, National Institute of
Standards and Technology, Technology Administration, U.S. Department of Com-
merce (NIST) (June 2015), https://csrc.nist.gov/publications/detail/sp/

800-90a/rev-1/final, previous version: January 2012

23. Turan, M.S., Barker, E., Kelsey, J., McKay, K., Baish, M., Boyle, M.: Recom-
mendation for the entropy sources used for random bit generation. Special Pub-
lication 800-90B, National Institute of Standards and Technology, Technology
Administration, U.S. Department of Commerce (NIST) (January 2018), https:

//csrc.nist.gov/publications/detail/sp/800-90b/final

24. Barker, E., Kelsey, J.: Recommendation for random bit generator (RBG) con-
structions (second draft). Special Publication 800-90C, National Institute of Stan-
dards and Technology, Technology Administration, U.S. Department of Com-
merce (NIST) (April 2016), https://csrc.nist.gov/CSRC/media/Publications/
sp/800-90c/draft/documents/sp800_90c_second_draft.pdf

25. Dang, Q.: Recommendation for applications using approved hash algo-
rithms, revision 1. Special Publication 800-107r1, National Institute of Stan-
dards and Technology, Technology Administration, U.S. Department of Com-
merce (NIST) (August 2012), https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-107r1.pdf

26. Novikov, G.: Randomness deficiencies. In: Computability in Europe, 2017: Un-
veiling Dynamics and Complexity. Lecture Notes in Computer Science, vol. 10307,
pp. 338–350. Computability in Europe Association, Springer (2017), https://doi.
org/10.1007/978-3-319-58741-7_32

27. RAND corporation: A Million Random Digits with 100,000 Normal Deviates. Free
press (1955), reissued in 2001 as ISBN 0-8330-3047-7

28. Reingold, O., Vadhan, S., Wigderson, A.: A note on extracting randomness
from santha–vazirani sources. Tech. rep., available from Reingold (2014), https:
//omereingold.files.wordpress.com/2014/10/svsources.pdf

29. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random
sources. Journal of Computer and System Sciences 33, 75–87 (1986), https://doi.
org/10.1016/0022-0000(86)90044-9

https://link.springer.com/article/10.1007/BF00193563
https://link.springer.com/article/10.1007/BF00193563
https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic
https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=151231
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=151231
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/CSRC/media/Publications/sp/800-90c/draft/documents/sp800_90c_second_draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-90c/draft/documents/sp800_90c_second_draft.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.pdf
https://doi.org/10.1007/978-3-319-58741-7_32
https://doi.org/10.1007/978-3-319-58741-7_32
https://omereingold.files.wordpress.com/2014/10/svsources.pdf
https://omereingold.files.wordpress.com/2014/10/svsources.pdf
https://doi.org/10.1016/0022-0000(86)90044-9
https://doi.org/10.1016/0022-0000(86)90044-9

30. Shen, A.: Measures of Complexity. Festschrift for Alexey Chervonenkis, chap. 7,
Around Kolmogorov complexity: Basic Notions and Results, pp. 75–116. Springer
(2015), https://link.springer.com/chapter/10.1007/978-3-319-21852-6_7

31. Shen, A.: Election and statistics: the case of “United Russia”, 2009–2018. Tech.
rep., arXiv (2018), https://arxiv.org/abs/1204.0307

32. Shen, A.: Making randomness tests more robust. Tech. rep., HAL (February 2018),
https://hal.archives-ouvertes.fr/hal-01707610

33. Shen, A., Uspensky, V.A., Vereshchagin, N.K.: Kolmogorov Complexity and Algo-
rithmic Randomness. American Mathematical Society (2017), http://www.lirmm.
fr/~ashen/kolmbook-eng-scan.pdf

34. Stoppard, T.: Rosencrantz and Guildenstern Are Dead, a play (1966). Grove Press
(1971), ISBN978-0-8021-3275-8

35. TrueRNG: Truerng documentation. Tech. rep., Ubld.it (2019), http://ubld.it/
truerng_v3

36. Vereshchagin, N., Shen, A.: Measures of Complexity. Festschrift for Alexey Cher-
vonenkis, chap. 17, Algorithmic Statistics Revisited, pp. 235–252. Springer (2015),
https://link.springer.com/chapter/10.1007/978-3-319-21852-6_17, see also
https://arxiv.org/abs/1504.04950v2

37. Vereshchagin, N., Shen, A.: Algorithmic statistics: Forty years later. In: Day, A.R.,
Fellows, M.R., Greenberg, N., Khoussainov, B., Melnikov, A.G., Rosamond, F.A.
(eds.) Computability and Complexity – Essays Dedicated to Rodney G. Downey on
the Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 10010,
pp. 669–737. Springer (2017), https://doi.org/10.1007/978-3-319-50062-1_

41, see also https://arxiv.org/abs/1607.08077

38. Yao, A.C.: Theory and application of trapdoor functions. In: 23rd Annual Sym-
posium on Foundations of Computer Science (FOCS). pp. 80–91 (1982), http:

//ieeexplore.ieee.org/document/4568378/

https://link.springer.com/chapter/10.1007/978-3-319-21852-6_7
https://arxiv.org/abs/1204.0307
https://hal.archives-ouvertes.fr/hal-01707610
http://www.lirmm.fr/~ashen/kolmbook-eng-scan.pdf
http://www.lirmm.fr/~ashen/kolmbook-eng-scan.pdf
http://ubld.it/truerng_v3
http://ubld.it/truerng_v3
https://link.springer.com/chapter/10.1007/978-3-319-21852-6_17
https://arxiv.org/abs/1504.04950v2
https://doi.org/10.1007/978-3-319-50062-1_41
https://doi.org/10.1007/978-3-319-50062-1_41
https://arxiv.org/abs/1607.08077
http://ieeexplore.ieee.org/document/4568378/
http://ieeexplore.ieee.org/document/4568378/

	Randomness tests: theory and practice

