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Abstract—Computer system simulators are major tools used
by architecture researchers. Two key elements play a role in the
credibility of simulator results: (1) the simulator’s accuracy, and
(2) the quality of the baseline architecture. Some simulators, such
as gem5, already provide highly accurate parameterized models.
However, finding the right values for all these parameters to
faithfully model a real architecture is still a problem. In this
paper, we calibrate the memory hierarchy of an in-order core
gem5 simulation to accurately model a real mobile Arm SoC. We
execute small programs, which we design to stress specific parts of
the memory system, to deduce key parameter values for the model.
We compare the execution of SPEC CPU2006 benchmarks on the
real hardware with the gem5 simulation. Our results show that our
calibration reduces the average and worst-case IPC error by 36%
and 50%, respectively, when compared with a gem5 simulation
configured with the default parameters.

Index Terms—computer system simulation, memory hierarchy

I. INTRODUCTION

Architectures become increasingly complex to improve the
performance and energy efficiency of modern computer sys-
tems. Parameterized simulators are a major tool driving this
progress in computer architecture research. They allow quick
iterations to test new architectures without having to fabricate
real hardware. These architectures are often evaluated with re-
spect to a baseline. Consequently, the relevance of the simulated
results strongly depends on the faithfulness of that baseline.

There are two different sources of error leading to a flawed
baseline: (1) errors in the simulation model (e.g., cache-bank
conflicts are not modeled), and (2) errors in the model param-
eterization (e.g., the simulator is configured with a single-bank
cache while the real reference architecture includes multiple
banks). While continuous simulator development effort aims to
remove the first source of errors, the second source is often
neglected and remains problematic. Typically, the translation
from documentation to simulator parameters is not obvious and
some key parameters are not even disclosed publicly.

In this paper, we investigate the timing errors in model
parameterization on the gem5 [1] simulator, which is being
widely used in industry and academia. Previous work on
gem5 simulation validation has mostly focused on the overall
simulation error against real Arm [2], [3] and x86 [4] platforms.
They all run small programs, named microbenchmarks, on
gem5 and the reference architecture to analyze the simulation
error of different components independently. However, none of
them discusses the systematic design of such microbenchmarks
in sufficient detail.
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Fig. 1. Memory system organization of the MediaTek Helio X20 SoC.

To address this issue, in this work, we delve into the
design of microbenchmarks for the calibration (i.e., finding the
correct parameter instantiation) of the memory hierarchy of a
gem5 model against a real hardware architecture. Importantly,
we propose to use non-intrusive monitoring (i.e., hardware
performance counters) to validate the microbenchmark intended
execution. In this initial work, we concentrate on the memory
hierarchy as a recent study shows that data movement domi-
nates system performance and energy consumption in modern
computing systems [5].

We make the following key contributions: (1) we describe the
design microbenchmarks to calibrate the memory hierarchy of a
parameterized simulator; (2) we calibrate a gem5 simulation of
the Cortex-A53 core in the MediaTek Helio X20 SoC; and (3)
we evaluate the simulation error running the SPEC CPU2006
benchmarks before and after calibration.

II. BACKGROUND

This section provides a brief background on modern System-
on-Chip (SoC) memory hierarchy and the computer system
simulator considered in this work.

The reference hardware architecture. We use the MediaTek He-
lio X20 SoC as the reference architecture for this work. Figure 1
illustrates the main blocks of this modern Arm big.LITTLE-
based architecture [6] optimized for mobile computing. It con-
tains three clusters exhibiting different performance vs. energy
efficiency trade-offs. The first cluster is composed of two
high-performance out-of-order Cortex-A72 CPUs. The other
two clusters include four energy-efficient in-order Cortex-A53
CPUs, which have been optimized for two different frequency
ranges. Every core of the system has its own private first level
cache divided into instructions (L1I) and data (L1D). All the
cores in a cluster share the same L2 cache memory. The L2
caches of each cluster are connected to each other and to the
main memory via a cache coherent interconnect. The main



memory system is composed of two memory controllers, each
connected to an off-chip LPDDR3 memory. In this paper, we
calibrate the timing of the memory hierarchy as experienced
by a single Cortex-A53 CPU.

The detailed memory hierarchy simulator. The gem5 simu-
lator [1] is an open-source system-level and processor sim-
ulator widely utilized in academic research and in industry
by companies such as Arm Research. Concretely, we use the
gem5 High Performance In-order (HPI) CPU to model the
Cortex-A53 clusters shown in Figure 1. The HPI CPU model
was introduced by Arm to model modern in-order Armv8-
A CPUs [7]. However, as we show in the paper, its default
parameterization does not model a Cortex-A53 CPU accurately
and it is not obvious how to calibrate the model given the huge
set of parameters to tune.

III. MICROBENCHMARK-BASED TIMING CALIBRATION

A gem5 simulation includes hundreds of parameters to
accurately model real architectures. We start by composing a
gem5 model based on the memory sub-system of the MediaTek
Helio X20 but including only a single Cortex-A53 CPU (see
Figure 1). Our model includes existing gem5 modules, such
as the mentioned HPI CPU, the cache, the XBar, and the
SimpleMemory modules that respectively model the CPU, the
cache memories, the interconnect, and the main memory.

To identify the key simulator parameters that describe the
memory hierarchy, we study the path that a memory request
follows during simulation. When a memory instruction is
executed by the Memory Unit (MU), the instruction is issued to
a Load/Store Queue (LSQ) and a memory request is generated.
The instruction stays in the LSQ until the memory request is
fully executed. Two parameters are important: the maximum
number of memory accesses and the size of the LSQ. Once a
memory requests is issued, it goes through the different levels
of the memory hierarchy depending on where the data sits.
Using the generic gem5 cache module, our model instantiates 2
cache levels with different parameter values for each level. For
the caches, we select five key parameters: size, associativity,
data access latency, replacement policy and clusivity, which
defines the inclusion policy. If a request misses both cache
levels, it goes to the main memory through the interconnect,
which the XBar module models as a fixed latency. Similarly, the
SimpleMemory module models accesses to the main memory
as fixed latency. We select all these key parameters, as listed
in Table I, for proper instantiation.

We now need to find the correct values for each parameter
to best match the timing of the real hardware platform memory
system. The first source of information is public first-party
documentation. We use the Cortex-A53 technical reference
manual [8] and the SoC functional specification documenta-
tion [9] to find all the parameters highlighted in bold in Table I.
However, several parameters that are key for an accurate timing
simulation are not available in the documentation (e.g., the
number of parallel access that can be processed by a cache,
or the memory controller buffering latency).

TABLE I
LIST OF KEY PARAMETERS WITH DEFAULT AND CALIBRATED VALUES.

gem5 Module gem5 Parameter Default Calibrateda

HPI

executeMaxAccessesInMemory 2 3
executeLSQTransfersQueueSize 2 3
enableIdling True False
srcRegsRelativeLatsb [2] [0]

HPI DCache

size 32KB 32KB
data latency 1 2
assoc 4 4
replacement policy LRURP RandomRP
clusivity incl excl
writeback clean False True

HPI L2

size 512KB 512KB
data latency 13 10
assoc 16 16
replacement policy LRURP RandomRP

Xbar forward latency 4 100

SimpleMemory latency 30ns 30ns

aBold values are extracted from documentation.
bParameter from the HPI DefaultMem64 submodule.

To discover the hidden key parameters, we propose to
execute microbenchmarks on the real hardware. A microbench-
mark is a small program that we design to target the extraction
of specific missing parameters. We start again from the behavior
of a memory request. The latter departs from the MU of the
processor core and accumulates delay as it travels deeper in
the target memory hierarchy (see Figure 1). The sum of these
individual delays constitutes the access time of the request, as
illustrated in Figure 2. Importantly, the path that a particular
memory request follows depends on a set of conditions, such as
where the data sits in the memory hierarchy or the current state
of the microarchitecture (e.g., a resource is busy with a prior
request). Thus, we exploit these dependencies to systematically
design our microbenchmarks with the following structure:

1) Data pinning. The microbenchmark initializes data in a
targeted level of the memory hierarchy and uses a fixed access
pattern to force all memory requests to follow a predetermined
path of the delay model. The data can be pinned in the different
cache levels as well as in the main memory. We set the location
of data by controlling the size of an array we repeatedly
access (e.g., if the array is small enough to fit in the cache,
consecutive accesses will not miss that cache) or by using
specific cache flushing instructions (e.g., dc civac in Armv8
ISA). By varying the pinned location of the data in different
microbenchmarks, all the paths from the delay model can be
covered by at least one microbenchmark.

2) Memory request dependency. Multiple accesses to mem-
ory hierarchy can have an effect on each other. Contention
conflicts or data movement can occur and modify the path

Start End+"# +"$%&'(# %&'($

Access time: Start → End +"*

Fig. 2. The delay of a memory request increases as it deepens in the hierarchy.
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Fig. 3. Proposed microbenchmark running on (a) the real board and on the gem5 simulator with two configurations: (b) default and (c) calibrated.

through the delay model (e.g., the L2 cache bank is still
busy with a previous request). By controlling the dependency
between consecutive memory requests, the microbenchmark
avoids or triggers such conflicts for further characterization.

3) Access time measurement. Once the memory access pat-
tern has been fixed, the microbenchmark iterates the pattern
many times in a loop, such that the overall execution time inter-
val is large enough to average out transient effects. Furthermore,
we unroll the body loop multiple times to minimize the impact
of the iterator count and the conditional check instructions.

Importantly, the delay path that the microbenchmark takes
during execution is not always obvious from its source code.
Accordingly, we use Hardware Performance Counters (HPC)
as a non-intrusive monitoring infrastructure to verify the execu-
tion of our microbenchmarks [10]. HPCs are present in all mod-
ern architectures and count events that occur in the hardware
without disturbing the running application. Thus, we use the
following HPCs to validate and correct our microbenchmarks:

• Total number of memory accesses: For example, a different
number of memory accesses than expected could indicate that
extra accesses are generated by the MMU or that accesses have
been optimized away by the compiler.

• Cache misses at specific cache levels: For example, if we
target the L2 access latency, the corresponding L1 cache miss
rate should be close to 100%. Otherwise, our programmed
memory access pattern has been overruled (e.g., by data
prefetching).

Once the HPC values are consistent with the intended
execution pattern, we run the microbenchmark to extract the
targeted parameters. For that, we use again HPCs to restrict
the timing measurement to the desired region of interest.

IV. REFERENCE SOC CHARACTERIZATION

In this section we illustrate the microbenchmarking pro-
cess with a concrete example. We design a microbenchmark
to extract some of the memory hierarchy timing parameters
mentioned in the previous section. We run the benchmark in a
single Cortex-A53 CPU of the MediaTek Helio X20 SoC.

Figure 4 shows an instance of the example microbenchmark.
The program generates MAX sequential load requests to a con-
tiguous region of memory named array of size N. Considering
that the granularity of data transfers in the memory subsystem
is a cache line (i.e., 64 bytes), the microbenchmark should
only access a single word of each cache line in array to

avoid cache line locality. In line 2, we initialize each element
in array allocated to a first word of a cache line. The
initialized elements include the address of another randomly
chosen element also allocated to a first word of a cache line.
By not repeating any address, we close a circular chain of
references. Thereby, we can generate an unlimited sequence
of random read requests to different cache lines by iterating
over array with a pointer (i.e., pointer chasing) as shown in
lines 6–8. We randomize the sequence to avoid triggering data
prefetching. Furthermore, the microbenchmark should traverse
the array many times for cold start misses to become negligible.
Accordingly, we select MAX to be several orders of magnitude
larger than N.

We can control the size of array with N. For instance,
if array is smaller than L1D, then array resides in L1D
throughout the whole execution and every load request takes
the access time of L1D. Thus, we can extract L1D access time
by dividing the time spent in the region of interest (see Figure 4)
by MAX (i.e., the number of load requests). Instead, if array
is much larger than L1D but still smaller than L2, then the
accesses to array always miss L1D and hit L2, which allows
us to measure L2 access time. The same process can be repeated
with an even larger N to measure the main memory access time.
To measure the time spent in the region of interest and/or verify
the access pattern, we initialize the HPCs at the begin of the
region of interest and read them at the end. Figure 3(a) shows
the average access time measured with the microbenchmark on
the real board for different sizes of array. The figure also
shows the L1 and L2 cache miss rates read from the HPCs.

We also use variations of the microbenchmark to measure
the level of parallelism in the memory hierarchy. The load
requests resulting from the same pointer-chasing operation
(e.g., line 7 in Figure 4) are data dependent: the load request
of iteration i should be completed before issuing the load
request of iteration i+1. However, we can create opportunities

1 long long int array[N], *pointer_1, *pointer_2, i;
2 init_ptr_chasing(array); // Randomly linked cache lines
3 ptr_1 = array[0]; // Init 1st pointer to a cache line
4 ptr_2 = array[8]; // Init 2nd pointer to another line
5 start_hw_perf_counters(); // Reset HPC
6 for(i = 0; i < MAX/2; i++){ // Region of Interest
7 ptr_1 = *ptr_1;
8 ptr_2 = *ptr_2;}
9 read_hw_perf_counters()(); //Read HPC

Fig. 4. C code of a typical microbenchmark.



for memory-level parallelism by having multiple independent
pointer-chasing operations. For example, Figure 4 shows a case
for two independent load requests. Accordingly, we vary the
number of independent requests from one to four as shown in
Figure 3(a). We discover that the performance of the L1D and
main memory improves linearly with the level of parallelism,
saturating after three parallel requests. Instead, the performance
of the L2 saturates after only two parallel requests. Therefore,
our microbenchmark shows that although the Cortex-A53 can
generate up to three outstanding memory requests, the L2 can
only handle up to two requests in parallel.

V. MODEL CALIBRATION

Figure 3(b) shows the average access times of running
our microbenchmark on the gem5 model using the default
parameters. We observe that the L1 and main memory access
times are lower than those of the real hardware, while the
opposite is true for the L2 access time. Furthermore, we find
that the number of outstanding requests in gem5 is only two
instead of the three indicated in the reference manual and
confirmed by our microbenchmark. Accordingly, we calibrate
the gem5 model by combining the information found in the
documentation with the timing values discovered via the exe-
cution of our microbenchmark. Table I shows the default and
calibrated values for the key timing parameters. Importantly,
Figure 3(c) shows that the new average access times of the
calibrated gem5 model are practically identical to those of the
real hardware. This demonstrates that by a proper systematic
parameter calibration, the simulation models can become quite
accurate. We also observe that the L1 and the main memory
respond very similarly to parallel requests. However, this is not
the case for the L2. In gem5, the L2 cache model is not able to
replicate under any parameterization the contention exhibited
by the real architecture. To reduce that error, we would need
to create a new contention-aware cache model, similar to the
one introduced by Evenblij et al. [11]. However, this falls out
of the scope of this paper as it corresponds to a modeling error
instead of a parameterization error.

VI. APPLICATION-LEVEL EVALUATION AND CONCLUSIONS

To evaluate the application-level accuracy of our
microbenchmark-based calibration, we run 20 of the 29
programs in the SPEC CPU2006 suite on the real hardware
and on two gem5 models: the default and the calibrated model
as described in Table I. We only exclude the programs that
we were not able to port to the Android-based MediaTek
Helio X20 SoC. In gem5, we use system call emulation and
follow a standard SimPoint methodology [12] with 100 million
instructions per slice and max K set to 30.

Figure 5 shows the Instruction Per Cycle (IPC) error nor-
malized to the real hardware execution. We sort programs
in ascending number of Misses Per Kilo-Instruction (MPKI),
which is a proxy for memory intensity. The figure shows that
the proposed memory hierarchy calibration reduces the average
and worst-case IPC error by 36% and 50%, respectively. We
also observe that the calibration does not always reduce the IPC
error. Actually, 11 out of 20 programs have a higher IPC error
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after calibration. This is not so surprising, as we only reduce
the parameterization error in the memory hierarchy while all
the other sources of error still remain after our calibration.
When errors contribute to the IPC in opposite directions (i.e.,
the errors cancel each other for that particular execution), the
removal of an error source can lead to a higher IPC error despite
the improvement in modeling accuracy. Importantly, we see
that the calibrated model consistently reduces the IPC error in
applications of higher memory intensity (i.e., the contribution
of the memory hierarchy error to the IPC is higher).

In conclusion, we presented a systematic method for instan-
tiating the key timing parameters of the memory hierarchy in
a gem5 model of a real modern mobile SoC. We described the
design of microbenchmarks for that purpose and we showed
significant improvements in IPC accuracy of the resulting
calibrated model running full applications. In future work, we
will extend the scope of our calibration to the data prefetching,
out-of-order CPUs, and multicore systems.
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