
HAL Id: lirmm-03107918
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03107918v1

Submitted on 12 Jan 2021 (v1), last revised 22 Jan 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GANNoC: A Framework for Automatic Generation of
NoC Topologies using Generative Adversarial Networks
Maxime Mirka, Maxime France-Pillois, Gilles Sassatelli, Abdoulaye Gamatié

To cite this version:
Maxime Mirka, Maxime France-Pillois, Gilles Sassatelli, Abdoulaye Gamatié. GANNoC: A Framework
for Automatic Generation of NoC Topologies using Generative Adversarial Networks. 13th Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools (RAPIDO 2021), Jan 2021,
Budapest, Hungary. �lirmm-03107918v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03107918v1
https://hal.archives-ouvertes.fr

GANNoC: A Framework for Automatic Generation of NoC
Topologies using Generative Adversarial Networks

Maxime Mirka, Maxime France-Pillois, Gilles Sassatelli, Abdoulaye Gamatié
LIRMM, Université de Montpellier

Montpellier, France
<name>.<surname>@lirmm.fr

ABSTRACT
We propose GANNoC, a framework for automatic generation of
customized Network-on-Chip (NoC) topologies, which exploits
generative adversarial networks (GANs) learning capabilities. We
define the problem of NoC generation as a graph generation prob-
lem, and train a GAN to produce such graphs. We further present
a Reward-WGAN (RWGAN) architecture, based on the Wasser-
stein GAN (WGAN). It is coupled to a reward network enabling
to steer the resulting generative system towards topologies hav-
ing desired properties. We illustrate this capability through a case
study aimed at producing topologies with a specific number of
physical connections. After training, the generative network pro-
duces unique topologies with a 36% improvement regarding the
number of connections, when compared to those found in the train-
ing dataset. NoCs’ performance assessment is carried out using the
Ratatoskr 3D-NoC simulator with state-of-the-art characteristics.
Results suggest interesting opportunities in learning correlations
between intrinsic NoC features and resulting performance.

KEYWORDS
Generative Adversarial Network, Network-on-Chip, NoC Topology,
Neural Networks
ACM Reference Format:
Maxime Mirka, Maxime France-Pillois, Gilles Sassatelli, Abdoulaye Gamatié.
2021. GANNoC: A Framework for Automatic Generation of NoC Topologies
using Generative Adversarial Networks. In Proceedings of RAPIDO’21: 13th
Workshop on Rapid Simulation and Performance Evaluation: Methods and
Tools (RAPIDO’21). ACM, New York, NY, USA, 8 pages. https://doi.org/xxx

1 INTRODUCTION
Complex and heterogeneous Systems-on-Chip (SoCs) typically com-
prise hundreds of IPs with tight performance demand. This requires
powerful Network-on-Chip (NoC) architectures [3], which have
become the de facto communication infrastructures thanks to their
performance scalability. The design of NoCs is a challenging task.
Indeed, the characteristics of NoCs must be determined accord-
ing to the SoC architecture and performance requirements. The
performance of a NoC often depends on various factors. Some are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RAPIDO’21, January 20, 2021, Budapest, Hungary
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/xxx

levers in the hands of the NoC designers like the network topol-
ogy, the router architecture and the routing algorithm. Others are
application-dependent, e.g. the traffic pattern.

A large part of the existing literature on NoC design [3, 7, 21] has
been devoted to the improvement of router architecture and routing
algorithms. While NoC topologies are often assumed regular in
these studies, here we rather consider both regular and irregular
topologies for optimizing the NoC performances, e.g. the average
packet delivery latency and the network saturation threshold. Then,
we encode theNoC topology exploration issue as a graph generation
problem, in which non-trivial graph properties can be identified
w.r.t. given performance metrics. This is achieved by exploiting
Machine Learning (ML) techniques.

The use of deep learning has grown exponentially in the scientific
community, in a vast variety of fields, from basic data classifica-
tion to medical image interpretation [26]. In particular, generative
AI emerged in this decade, with impressive results in building ac-
curate models through unsupervised learning. From this field of
deep learning techniques, we distinguish two major architectures:
variational autoencoder (VAE) [17] and generative adversarial net-
work (GAN) [13]. The former is typically used to extract features
from a set of data. The latter is used to generate new data and
explore a dataset space. The GAN architecture has been proven ef-
fective in many application fields for generating data having similar
characteristics as those of the dataset. Indeed, from the generation
of photo-realistic images [16] to medical applications [26], GANs
always show impressive learning capabilities.

In this work, we use GANs to generate NoC topologies that
contribute in improving NoC performance. Given a traffic pattern
and a routing policy as input design constraints, we first rely on a
NoC simulator to produce and evaluate different NoC topologies. In
particular, we use the Ratatoskr fast and cycle-accurate simulator
[15]. The produced topologies make up the dataset based on which
our GAN network is trained. Through this process, the network
will learn the relevant topological features with a beneficial impact
on NoC performance. Ultimately, the GAN is capable of generating
novel NoC designs, i.e. not included in the training dataset, with
higher performance scores.

The main contributions of this paper are as follows:

• an automated generation of customized NoC topologies (e.g.
by targeting some specific router interconnections) through
GAN training. For this purpose, we explore two kinds of
GANs: the improved Wasserstein GAN (WGAN) presented
in [14] and our proposed Reward Wasserstein GAN (RW-
GAN). The former is an upgraded architecture of GAN, with
better convergence compared to conventional GANs [13].
The latter takes into account a reward function based on a

https://doi.org/xxx
https://doi.org/xxx

RAPIDO’21, January 20, 2021, Budapest, Hungary Maxime Mirka, Maxime France-Pillois, Gilles Sassatelli, Abdoulaye Gamatié

specific objective function. To the best of our knowledge, this
is the first application of GANs to the NoC design problem;
• a demonstration that both types of GANs can learn and
produce novel relevant network topologies, i.e. 100% of the
generated topologies do not belong to the training dataset.
This opens an interesting perspective for NoC design space
exploration (DSE) on top of such trained GANs;
• an illustration of the NoC average latency improvement by
37%, enabled by RWGAN over WGAN. This is obtained by
considering the number of connections inside a NoC as the
fitness function. Here, the RWGAN-based NoC generation
improves the performance by producing NoC topologies
where the number of router connections is increased by
36% in average. Note that the increase in the number of
connections in itself is not enough, the positions of these
connections within the NoCs also play an important role.

The remainder of the paper is organized as follows: Section 2
presents some background considerations on NoCs and GAN net-
works; Section 3 describes our methodology for generating suitable
NoC topologies by leveraging GANs; Section 4 evaluates our pro-
posal through some preliminary experimental results; Section 5
discusses some related work and finally Section 6 gives concluding
remarks and indicates further research directions.

2 BACKGROUND NOTIONS
We first recall some basic notions about NoCs. Then, we discuss the
NoC topology modeling as compact graph representation. Finally,
we give an overview of the GAN network concept.

2.1 NoC Features and Performances
We focus our study on the topological attributes of NoCs. These
attributes include the number of routers, the number of connections,
the number of connections per router (i.e. the routers’ degree).
Furthermore, NoC performances are evaluated for static routing
(see Section 4.1.2) and different traffics. A traffic is characterized
by its pattern (e.g. uniform, hotspot) and its injection rate (IR) in
percentage of flits per cycle (% flits/cycle). Various metrics can be
used to evaluate NoC performances. Here, we consider the latency
of a network, generally correlated to the throughput and bandwidth
of the network. Hence, it is a relevant metric to evaluate NoC
performances.

In Figure 1, several plots are depicted to demonstrate the influ-
ence of such attributes on the NoC performance. We present results
for a dataset of NoCs with nine routers. They are evaluated with
Ratatoskr [15], under both uniform traffic (see Figures 1a and 1b)
and hotspot traffic (Figures 1c and 1d). Evaluations are conducted
for an injection rate of 10%. Figures 1a and 1c show the latency
according to the number of connections of the simulated NoC. In
Figures 1b and 1d, are plotted the latency values according to the
mean distance between routers. The mean distance of a NoC corre-
sponds to the average number of routers a message has to travel
through, before reaching its destination. Naturally, this value is also
influenced by the routing method implemented.

We notice the significant impact of the number of connections
and the mean distance over the network performance, under a
uniform traffic. Although we could expect similar results (i.e. the

8 10 12 14 16 18
Number of connections

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
la

te
nc

y

(a) Number of connections im-
pact. Traffic = uniform, IR=10%

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Mean distance

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
la

te
nc

y

(b) Mean distance impact. Traffic
= uniform, IR=10%

8 10 12 14 16 18
Number of connections

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
la

te
nc

y

(c) Number of connections im-
pact. Traffic = hotspot, IR=10%

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Mean distance

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
la

te
nc

y

(d) Mean distance impact. Traffic
= hotspot, IR=10%

Figure 1: Nine router NoC performance evaluation.

more connections, the more bandwidth and the smaller the mean
distance, the lesser the latency), the same conclusion cannot be
reached when the network is submitted to hotspot traffic. Indeed,
despite a similar tendency, under hotspot traffic we notice a rather
wide spread in latency, for the same feature value. Hence, we cannot
confirm the direct impact of these features on the NoCs latency.

While the previous uniform traffic analysis is quite intuitive,
we see that the hotspot case requires further study. Indeed, no
obvious causality between the considered NoC topology features
and NoC performance can be inferred. Moreover, we can assume
that similar conclusions can be expected when dealing with more
complex traffic patterns, especially considering the heterogeneous
nature of SoCs. Hence, the idea to train a generative model that may
learn non-intuitive correlations between intrinsic NoC parameters
and performance.

2.2 NoCs as Graphs
We describe a NoC topology as a set of routers and a list of con-
nections between those routers. While this representation is the
most standard form of NoC description, one can then add details
to the design description like the routers design or the type of
connections (bi-directional, uni-directional, etc.). In our work, we
keep the simplest form, as we consider all routers and connections
to be of the same type. This enables to reduce the NoC problem
to a graph problem by direct analogy, i.e. routers are vertices and
connections are edges. Then, as we implement routers with four
external connections — typically referred to as North, South, East,

GANNoC: A Framework for Automatic Generation of NoC Topologies using Generative Adversarial Networks RAPIDO’21, January 20, 2021, Budapest, Hungary

West, plus the Local port — we set the maximum degree of our
resulting graphs to four.

From this analogy, we can refer to several works on graph gen-
eration [10–12, 27]. For most, the chosen representation of a graph
is its adjacency matrix. This matrix offers a formal, non-ambiguous,
graph representation. Indeed, essential properties such as the num-
ber of edges and the vertices’ degree can be directly extracted from
this representation.

A NoC of𝑛 routers will be represented by a𝑛x𝑛 adjacencymatrix.
Hence, the matrix is made of 𝑛2 elements, where each element is a
Boolean which encodes an existing connection between two routers.
Furthermore, a characteristic of this matrix is that it is symmetric
along the diagonal (i.e. top-left to bottom-right). This property
results from our decision to consider only bidirectional connections
between routers. It makes it a particularly relevant choice for GAN
training, as it is the first pattern the neural network may learn,
before converging to more specific details.

2.3 Generative Adversarial Network

1 1

GAN Architecture

Generator 𝒁

∈ 𝟎; 𝟏

X Real
Dataset

X Fake

Discrimi-

nator

𝒀𝑿𝒇𝒂𝒌𝒆 𝒀𝑿𝒓𝒆𝒂𝒍

Noise

Figure 2: Generative Adversarial Network diagram.

The generative adversarial network is a neural network architec-
ture first proposed in 2014 by Goodfellow et al. [13]. As shown in
Figure 2, GANs consist of two main components: a generator and a
discriminator. The generator is a generative neural network that
learns to create new data-points from a prior dataset space. The
discriminator is a discriminative neural network that learns to tell
apart samples coming from the dataset and the generator’s output.
As depicted in Figure 2, the discriminator takes both real and fake
data as input (respectively X Real and X Fake). Real data represent
samples from the training dataset, and the fake ones are from the
generator output. It outputs a probability value 𝑌 , as it behaves
as a binary classifier. The closer the 𝑌 to 1, the more realistic the
input, as seen by the discriminator. In Figure 2 we distinguish two
outputs: 𝑌𝑟𝑒𝑎𝑙 and 𝑌𝑓 𝑎𝑘𝑒 , respectively the discriminator’s output
from real and fake input.

The two networks are trained simultaneously in two unique
fashions. The discriminator follows a supervised learning, where
the data from the dataset are labelled as real and the ones from
the generator output are labelled as fake. On the other hand, the
generator follows an unsupervised learning, where its sole goal is
that the discriminator labels its output as real. Generator’s input is
a random vector 𝑧 extracted from the latent space 𝑍 , called Noise.
It learns to produce fake samples from it (here, NoC topologies).

To formalize it, let 𝐺 and 𝐷 represent the generator model and
the discriminator model. Let 𝑥 denote the real input. Both generator

and discriminator have unique objectives, and can be seen as a two
players game following the minimax rule detailed in Eq. 1 [13]:

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷
(E
𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥)

[𝑙𝑜𝑔(𝐷 (𝑥))]+ E
𝑧∼𝑝𝑧 (𝑧)

[𝑙𝑜𝑔(1−𝐷 (𝐺 (𝑧)))]) (1)

where E[𝑋] denotes the expected value of 𝑋 , 𝑝𝑑𝑎𝑡𝑎 is the dataset
distribution, 𝑝𝑧 is the input noise distribution and the notation
𝑦 ∼ 𝑝𝑦 (𝑦) means a variable 𝑦 of the probability distribution 𝑝𝑦 .
Thus, the generator learns to generate samples to fool the discrimi-
nator, and the discriminator learns to differentiate inputs correctly.
Along training, this process eventually converges toward a zero-
sum game, where each learning improvement of one network leads
to a learning deterioration of the second.

Such neural network architecture appears extremely sensitive
during the training and achieving convergence is often considered
difficult. In [2], Arjovsky et al. propose the use of a Wasserstein loss
(from the Wasserstein distance), under the name of Wasserstein
GAN (WGAN), to improve the convergence of GAN model. With
this model, the discriminator no longer acts as a binary classifier.
Indeed, using the Wasserstein loss, the output of this block is no
longer comprised in [0, 1] as in the conventional GAN, but within
[−∞, +∞]. This new output can be interpreted as a better measure
of "authenticity" or rather "fraudulentness" in the produced data.
From this conceptual change, the discriminator network is renamed
as the critic network, for a more consistent denomination, and will
be denoted by𝐶 . Then, an improvement of this method is presented
in [14]. The authors present WGAN-GP, where a technique of
gradient penalty (GP) is included in the training. The loss function
regarding the generator does not change from that of the WGAN,
but the critic loss (𝐿𝐶) is modified as follows:

𝐿𝐶 (𝑥𝑖 ,𝐺 (𝑧𝑖)) = 𝐶 (𝐺 (𝑧𝑖)) −𝐶 (𝑥𝑖)︸ ︷︷ ︸
original critic loss

+𝛼 (∥∇𝑥𝑖𝐶 (𝑥𝑖)∥2 − 1)
2︸ ︷︷ ︸

gradient penalty

(2)

where 𝐺 and 𝐶 are the generator and critic component, ∇ is the
usual gradient operator, 𝑥𝑖 and 𝑧𝑖 represent a single sample from the
dataset and the latent space respectively and 𝑥𝑖 = 𝜖𝑥𝑖 + (1−𝜖)𝐺 (𝑧𝑖)
with 𝜖 ∼ 𝑈 [0, 1] a random number. The 𝛼 coefficient value is set to
10, as in the original paper [14].

This improved GAN architecture is therefore used throughout
our subsequent investigations.

3 THE GANNOC FRAMEWORK
We here describe the GAN network-oriented methodology for gen-
erating suitable NoC topologies. The resulting NoC generation
framework is referred to as GANNoC.

3.1 Overview
Our framework is built on two essential parts: (1) a neural network
that aims to learn how to generate NoC designs and (2) a NoC
simulator which is used to evaluate NoC designs. As illustrated in
Figure 3, the framework flow starts from user defined constraints.
We distinguish three types of constraints. One concerns the NoC
topology and is noted "Topology constraints". There are applied
when creating the NoC dataset. In our work, we restrict those con-
straints to the number of routers. The second type of user defined
constraints are related to the simulation settings. They define the
traffic under which NoCs are evaluated. The third constraint is the

RAPIDO’21, January 20, 2021, Budapest, Hungary Maxime Mirka, Maxime France-Pillois, Gilles Sassatelli, Abdoulaye Gamatié

1 1

GAN
Generative AI

Step 1:

Training

Step 2:

 NoC

topologies

generation

DATASET
A collection of NoC topologies,

alongside corresponding

simulation results.

NoC SIMULATOR

Topic

USER
Defines constraints:

• Topology constraints e.g. #routers, #conn.

• Simulation constraints e.g. traffic type

• Reward definition e.g. NoC performances

Fitness Topologies

NoC

topo. Sim.

results

Reward

definition

Topology

constraints

Generated NoCs Performances

Training

set

S
im

u
la

ti
o

n
 c

o
n

s
tr

a
in

ts

Generated

topo.

Figure 3: GANNoC framework.

definition of the reward. Indeed, with this framework, one could
customize a reward to approximate a fitness function that matches
NoC properties of interest such as high number of connections
or a low latency (further details in 3.2). From the topology and
simulation constraints, the dataset is built. To begin with, we create
a set of NoC according to the topology constraints, and following
the procedure detailed in 4.2. The devised dataset is a collection
of NoC topologies combined with a score, also called "fitness". It
depends on the metric one would like to optimize (here the number
of connections enhancing the NoC average latency). The GAN is
finally trained with the created dataset. After training, we leverage
the NoC simulator to assess the generated NoCs’ performances.

3.2 Implemented GAN
The implemented GAN extends the WGAN principles described
in Section 2.3. As illustrated in Figure 4, the GAN architecture we
propose consists of three connected nets: a generator 𝐺 , a critic 𝐶
and a reward 𝑅. The two first are the basic WGAN blocks described
before. The reward module aims at assessing given NoC properties.

The reward network 𝑅 is trained prior to the WGAN training
(i.e. 𝐺 and 𝐶 together) to approximate a chosen fitness function.
Then it is included into the WGAN training as a generator learning
guidance. This particular generator learning process is depicted in
Figure 4. We call the final architecture Reward-WGAN (RWGAN).

Generator Network. The architecture of the generator is a classic
multi-layer perceptron (MLP). From the obtained empirical results,
we found unnecessary to implement a more complex network for
this block. The generator takes a sample from a random noise
space (𝑍) and generates a NoC graph as an adjacency matrix. It
is trained to create adjacency matrices of NoCs with user-defined
characteristics. In this paper, the characteristics will be the number
of routers and the bidirectional connections property on the one

11

GAN Architecture

Generator Critic

Reward

Noise

𝒁 𝒀 ∈ −∞;∞

𝑾 ∈ −𝟏; 𝟏

𝒇(𝒀,𝑾)

Generator training feedback

NoC Topology

Figure 4: Reward-Wasserstein GAN diagram and its genera-
tor loss function 𝑓 (𝑌,𝑊).

hand (𝑛x𝑛 adjacency matrix), and the number of connections on
the other hand. The former properties are learned through the basic
GAN training. The latter is learned thanks to the inclusion of the
reward output into the generator learning. The generator learns to
maximize the output of the reward (i.e.𝑊), which corresponds to
the fitness value of generated NoCs.

The resulting new generator loss (𝐿𝐺) is formulated in Eq. 3.

𝐿𝐺 (𝑧𝑖) = (1 − _)𝐿𝐶 (𝐺 (𝑧𝑖)) + _[𝛽𝐿𝑅 (𝐺 (𝑧𝑖))] (3)

where 𝐺 denotes the generator, 𝑧𝑖 represents a single sample from
the latent space, _ is the ratio between the reward loss (𝐿𝑅) and critic
loss (𝐿𝐶) and 𝛽 is a weight coefficient to balance both reward and
critic losses. Indeed, while the critic loss is in theory not bounded,
the reward loss has bounds. Hence, depending on how the critic
loss converges, the coefficient 𝛽 has to be tuned (in this work we
set it to 3, but it remains effective within 1 to 5).

Thus, the generator loss is a linear combination of the loss from
the critic output and the one from the reward output (i.e. 𝑓 (𝑌,𝑊)
in Figure 4). To smooth the training from learning general NoC
features to specific performances, the linear combination ratio _

is slowly increased from 0 to 0.1 until reaching 10% of reward loss
and 90% of critic loss.

Critic Network. The critic loss remains the same as the one in the
WGAN-GP (see Eq. 2). The critic network is made of convolutional
layers. It can learn patterns from 2-dimensional inputs such as
adjacency matrices. We further exploit the rows and columns order
of the adjacency matrix to retain router IDs information.

Reward Network. The reward network reproduces the same ar-
chitecture as the critic network. It is used as a guide through the
generator training. Indeed, while the critic network helps global
convergence to learn how to generate valid NoC designs, the reward
network narrows this learning to induce a characteristic to the gen-
erated NoCs. In other words, the generator and critic network flow
enables to learn general NoC topology attributes from the training
dataset. The generator and reward flow encourages the learning of
a specific attribute of interest, corresponding to the fitness function.
As mentioned before, the training dataset is made of NoC adjacency
matrices alongside fitness values. Note that any arbitrary fitness
function can be used for the reward training. We here choose to
focus on an easily measurable parameter, i.e. the number of connec-
tions, so as to demonstrate the capability of steering the generative
process. Other non-obvious cost function like latency, bandwidth or
power consumption values can also be retrieved from the simulator
and fed as features for training the Reward. From these properties

GANNoC: A Framework for Automatic Generation of NoC Topologies using Generative Adversarial Networks RAPIDO’21, January 20, 2021, Budapest, Hungary

data, the reward network is used to predict a score regarding the
fitness of the corresponding generated NoC. By including this in-
formation in the generator training feedback loop, we can make it
generate NoCs with custom characteristics.

4 EXPERIMENTAL RESULTS
This section evaluates GANNoC. The experimental setup is first
described. Then, some NoCs are generated and evaluated.

4.1 The Ratatoskr Simulator
We use Ratatoskr [15] to evaluate the performance of the consid-
ered NoCs under specific traffics. Ratatoskr is a flexible, fast and
cycle-accurate NoC simulator, that makes it possible to assess NoC
performance within state-of-the-art [5] accuracy. It is an open-
source project that allows one to conduct various NoC simulations,
with a large scalability regarding input parameters. Among others,
users can easily customize the NoC topology and some architecture
features (e.g. buffers depth, virtual channels, etc.). Various traffics
are already implemented, such as the uniform and hotspot, but pre-
recorded traces can also be injected. Then, the injection rate is also
scalable, which provides an extensive range of possibilities. Hence
the interest in using this simulator, which opens broad perspectives
for the diversity of simulation parameters, while ensuring a rela-
tively small simulation time (approx. 5s for a 100k cycles simulation
of a 3x3 mesh under a uniform traffic of 10% IR and XY-routing, on
an Intel E3-1225 at 3.2 GHz).

4.1.1 NoC parameters. In this section, we list the global NoC pa-
rameters used in the Ratatoskr simulation. We only exploit the
network performance outputs from Ratatoskr, which do not require
to specify the technology used (this information is however manda-
tory for area and power estimations). Ratatoskr uses wormhole
packet switching. Here, we simulate NoCs with 32 flits per packet,
4-flit deep FIFO buffers, a single virtual channel and a 1 GHz clock.

4.1.2 Routing algorithm. To evaluate NoCs, we must set the rout-
ing algorithm. As we consider a vast range of NoC topologies, we
need to implement a universal routing algorithm within Ratatoskr
to enable routing any NoC topologies. Thus, we decide to imple-
ment the routing method presented in [25]. It provides an effective
static deadlock-free routing methodology. In this work we consider
the routing algorithm as a constraint and not as a lever. Thus, this
routing method has been chosen for its simplicity of implementa-
tion while providing effective universal routing. We take advantage
of using a simulator to rely on routing tables. Further investiga-
tions may consider more complex routing methods such as table
reduction or algorithmic routing techniques.

4.2 Datasets
The dataset we use to train the GAN model is a set of adjacency
matrices corresponding to NoC topologies satisfying the following
criteria: i) the connections of the NoC form a path between any
pair of routers, i.e. a connected set of pair-wise router connections;
ii) each router 𝑟 must have less than five neighbour connections
within a set 𝐶 of all connections of the NoC, i.e. 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑟,𝐶) ≤ 4;
and iii) all connections are bidirectional. Algorithm 1 describes a
simple procedure to generate an adjacency matrix M of a NoC.

Algorithm 1: Creation of a NoC adjacency matrix M
Data: 𝑛𝑅 the number of routers, 𝑛𝐶 the desired number of

connections, P the set of all possible NoC
connections 𝑐 = [𝑟0, 𝑟1] where 𝑟0 and 𝑟1 are routers,
𝑀𝑎𝑥𝑇𝑟𝑦 the maximum number of consecutive
unsuccessful constructions of a connected set C.

Result: The adjacency matrix M of the NoC to create.

1 C ← { } %initially empty set of NoC connections% ;
2 𝑡𝑟𝑦 ← 1 %first try% ;
3 while 𝑇𝑟𝑢𝑒 do
4 for nC iterations do
5 if ∃𝑐 = [𝑟0, 𝑟1] ∈ P, such that (degree(𝑟0, C)< 4) and

(degree(𝑟1, C)< 4) then
6 select 𝑐 ;
7 add 𝑐 to C %this increases the degrees

of both 𝑟0 and 𝑟1 by 1 in the set C% ;
8 else goto line 13 %restart the procedure% ;
9 if C is connected then
10 Create M from the set of connections C ;
11 return M ;
12 else
13 𝑡𝑟𝑦++ ;
14 if 𝑡𝑟𝑦 < 𝑀𝑎𝑥𝑇𝑟𝑦 then
15 C ← {} ;
16 else return;

We implement the above algorithm in Python. The choice of
designing a homogeneous dataset w.r.t the number of NoC connec-
tions comes from the fact that the topology of a NoC is known to be
a prime factor on latency, confirmed by the analysis of uniform traf-
fic. Each NoC in the dataset is simulated in Ratatoskr to collect its
performance (i.e. latency), and the final dataset consists of a list of
NoCs with their number of connections and their mean latency for
analytic purpose. Then, a dataset corresponds to a defined traffic.

4.3 Results
In this section, we present various results illustrating the perfor-
mance of our framework to help one to design customized NoC
topologies, with specific characteristics.

4.3.1 Training dataset. The training dataset consists of a collec-
tion of NoCs of 9 routers. Those NoCs have between 8 and 18
connections, with 10000 unique samples for each class (number of
connections). Thus, the dataset is homogeneous w.r.t. this feature.
We consider here to analyze NoCs with a uniform traffic of 10% IR.

In this work, we propose to train the reward to evaluate the
number of connections of an input topology. Indeed, as we showed
in Section 2.1, under uniform traffic, the NoC latency is directly cor-
related with the number of connections. Hence, the fitness function
approximated by the reward is a function that, given an input adja-
cency matrix, outputs a fitness value corresponding to the number
of connections. This fitness value is a normalization of this number.

4.3.2 Neural networks architecture. We build both WGAN and RW-
GAN from the same blocks. The generator is a 3-layers MLP of

RAPIDO’21, January 20, 2021, Budapest, Hungary Maxime Mirka, Maxime France-Pillois, Gilles Sassatelli, Abdoulaye Gamatié

{162, 162, 81} hidden units respectively, with 𝑡𝑎𝑛ℎ as activation
function. The last layer is eventually reshaped to match the two-
dimensionality of the generated matrices (here, 9x9 matrices). It
takes a 100-units random array as input. Both critic and reward are
made of four layers, using the LeakyReLU activation function with
a 0.2 slope for negative values. The first and the second ones are con-
volutional layers of respectively {64, 128} units using {9x9, 3x3} fil-
ters and strides of {1, 2}. The two following ones are fully-connected
layers of {512, 1} units. The training uses the RMSprop optimizer
with a 5 × 10−5 learning rate, as recommended in [14]. The neural
networks are implemented in Python, through Keras API [6] with
Tensorflow [1] backend.

4.3.3 WGAN. We first focus on the WGAN training. The global
training converges correctly. Indeed, once trained the generator is
able to create NoCs with the standard features (number of routers,
maximum degree, connected graph) in up to 82% of the cases.

11

: Training set

: Generated set

(a) Comparison w.r.t. the number
of connections

11

: Training set

: Generated set

(b) Comparison w.r.t. the mean
distance between routers

Figure 5: Comparisons between the original dataset and the
WGAN generated samples. Latency values are evaluated for
a uniform traffic at 10% injection rate.

Figure 5 presents a comparison of the training set performances
with a set of generated NoCs. All generated NoC topologies are
unique, which emphasizes the creativity potential of the genera-
tor. We see that latencies of the generated NoCs have a similar
distribution as those of the training set, regarding both the number
of connections (i.e. Figure 5a) and the routers’ mean distance (i.e.
Figure 5b). Thus, we can conclude the generator learns effectively
the global NoC characteristics from the dataset.

However, we notice the generator has difficulties to produce
NoCs topologies with extreme numbers of connections i.e. 8 and 18.
This is caused by the learning process on its own. Indeed, during
training, the generator will learn to generate data likely to be in-
cluded in the training set. This makes it learns to converge around
the mean of the training dataset space. As this space is homoge-
neous regarding the number of connections, the mean of this space
is around 13 connections. Added to this typical learning behaviour,
topologies generated with a high number of connections are more
likely to not meet the constraints to have a maximum router de-
gree of four. Hence the lack of 18-connections NoCs. On the other
side, a generated topology of eight connections is less likely to be
connected. Hence the lack of 8-connections NoCs.

11

0 2

543

7 86

1

Epoch 1 Epoch 100 Epoch 250

9 connections 17 connections

G
e

n
e

ra
to

r

o
u

tp
u

t
s

a
m

p
le

C
o

rr
e

s
p

o
n

d
in

g

N
o

C
 t

o
p

o
lo

g
y

0 2

543

7 86

1

Training Phase 2 Phase 3

Include
Reward

Epoch 101

Figure 6: Impact of the reward in the RWGAN training.

Results: The implemented WGAN is able to learn global NoC
topology features. It generates valid topologies at up to 82% of the
generations. All of these generated topologies are unique i.e. do not
belong to the training dataset.

4.3.4 RWGAN. As noticed before in Section 2.1, under uniform
traffic, superior performance directly relates to a high number of
connections i.e. densely connected NoCs. Thanks to the reward net-
work, we train the generator to produce topologies with a greater
number of connections. Hence, topologies generated by the RW-
GAN should exhibit better performances than by WGAN.

The experiments of the complete RWGAN architecture consist
of three distinct phases: (1) the reward network is trained alone
to detect the number of connections in a given NoC topology i.e.
adjacency matrix. (2) the RWGAN is trained without the reward
(i.e. _ = 0), like a WGAN training, until it stabilizes. This allows the
generator to first learn the basic characteristics of a NoC, through
the critic feedback. (3) the reward output is progressively included
into the generator training loop (see Eq. 3). It is important to em-
phasize that the reward network is no longer trained, since step (1).
In Figure 6 is illustrated the impact of the reward on the generator
training (from phase (2) to (3)). Phase (2) corresponds to the period
from epoch 0 to epoch 100, and Phase (3) is from epoch 101 to
the end (epoch 250). During this time, the breakdown between the
critic feedback and reward feedback to the generator is progres-
sively tailored from 0% and 100% (respectively the reward and critic
proportions), to 10% and 90%. Given the same input, the generator
learns to increase the number of connections when the reward
feedback is included into the RWGAN training.

In Figure 7, we compare the NoC topologies generated by both
the WGAN trained alone (i.e. no reward net), and the RWGAN,
after a 250 epochs training. We first analyze the number of connec-
tions. As expected, the mean number of connections is increased
by 36% (from 11 to 15), which represents as well an increase of
36% regarding the min/max possibilities (between 8 and 18). Then,
latency distributions are compared in the bottom plot of Figure 7.
The mean packet latency is decreased from 45.4ns to 43.3ns. When
normalized according to the ensemble of possibilities (from about
40ns to 54ns), the normalized latency is decreased from 0.38 to 0.24,
hence an improvement of 37% of the mean NoC packet latency.

We now analyze the saturation plots of the generated NoCs under
uniform traffic, regarding packet latency. Those plots are obtained

GANNoC: A Framework for Automatic Generation of NoC Topologies using Generative Adversarial Networks RAPIDO’21, January 20, 2021, Budapest, Hungary

6 8 10 12 14 16 18
Number of Connections

0.0

0.1

0.2

0.3

De
ns

ity

WGAN
RWGAN

40 42 44 46 48 50 52 54
Latency (ns)

0.0
0.1
0.2
0.3
0.4

De
ns

ity

WGAN
RWGAN

Figure 7: WGAN vs. RWGAN comparison. The distributions
of generatedNoC topologies according to the number of con-
nections (top) and the packet latency of the NoCs (bottom).

from Ratatoskr simulations, by sweeping through the entire range
of injection rates, until the saturation threshold.

First, in Figure 8, we propose to compare the performances of
three classes of NoCs. These classes differ in fitness function value,
here the number of connections. Hence, we present five different
saturation plots of five different generated NoCs, for each class. The
three classes are respectively for NoCs of 11 connections (in black),
15 connections (in blue) and 16 connections (in red). To compare
with existing regular topologies, we provide network saturation
plots of a nine-router ring, mesh and torus (respectively 9, 12 and 18
connections). It can be observed that a NoC with a higher number
of connections performs overall better, though a significant overlap
exists. Indeed, we observe a 11-connections NoC with a higher
saturation threshold than a 15-connections NoC. Same applies to
a 15-connections NoC performing better than a 16-connections
NoC and the 18-connections torus with similar performance as
a 16-connections NoC. This highlights the fact that the number
of connections is not the sole parameter impacting performance.
It also suggests that a reward network trained to approximate a
refined fitness function (e.g. latency) can enable to generate NoCs
with optimized performances. For instance, the generator could
produce NoCs performing lower latency, for a similar number of
connections.

Finally, in Figure 9, we propose to compare saturation results
from NoC topologies generated by both the WGAN (i.e. black plots)
and the RWGAN (i.e. red plots) after a training of 250 epochs. To
obtain these curves, we give to both the WGAN and RWGAN the
same 5 inputs. On Figure 9, one type of marker represent one input.
The resulting generated topologies are then simulated through
Ratatoskr and the results are plotted.

From these results, we see that, despite identical inputs, the
generators output NoCs topologies with different performances and
number of connections. In particular, the RWGAN outputs NoCs
with better performances than those produced by the WGAN. It
illustrates the effectiveness of the reward. In addition, we recognize
the broad range of performances from the NoCs generated by the
WGAN, as the training leads it to mimic the dataset space.

Results: The proposed architecture demonstrates significant
improvements of the generated NoCs. While the number of valid
generations is reduced by the impact of the reward, the quality in

10 15 20 25 30 35 40 45 50
Injection Rate (%)

40

50

60

70

80

90

100

110

La
te

nc
ie

s (
ns

)

Class
11 conn.
15 conn.
16 conn.
ring (9c.)
mesh (12c.)
torus (18c.)

Figure 8: Saturation curves of RWGAN generated NoCs and
classic topologies. Generated NoCs are distinguished accord-
ing to three different numbers of connections: 11, 15 and 16.

10 15 20 25 30 35 40 45 50 55
Injection Rate (%)

30

40

50

60

70

80

90

100

La
te

nc
ie

s (
ns

)

RWGAN
15 conn.
16 conn.
14 conn.
15 conn.
14 conn.

WGAN
9 conn.
15 conn.
11 conn.
13 conn.
11 conn.

Figure 9: Saturation curves of NoCs generated by both RW-
GAN (red) and WGAN (black), after a 250-epoch training.

terms of expected performances of the valid generated topologies
is increased. Indeed, as the generator learns to increase the number
of connections, it degrades its ability to assert the constraint of
the maximum degree of 4, and we get up to a 54% probability to
obtain a valid NoC (against 82% without including the reward i.e.
WGAN alone). However, we obtain a 36% improvement of the NoCs
number of connections (i.e. reward cost function). This significant
improvement proves the ability of the Reward to speed up the
generator learning process to converge toward the generation of
NoC topologies with desired characteristics.

5 RELATEDWORK
In this work, we consider a GAN network to generate optimized
NoC topologies. To do so, we formulated the NoC design problem
as a graph structure learning problem. Graph generation with deep
learning approach has been investigated in previous work, typi-
cally for graph pattern learning. Authors in [10] focus on pattern
identification in large graph structures such as social networks. An
implementation of a GAN is proposed, based on Long Short-Term
Memory (LSTM) networks.

In [27], the authors perform graph generation using an adjacency
matrix representation. They define a neural network that learns

RAPIDO’21, January 20, 2021, Budapest, Hungary Maxime Mirka, Maxime France-Pillois, Gilles Sassatelli, Abdoulaye Gamatié

how to produce the neighbour connections of a given node within a
graph. In [12], the authors useWasserstein GAN to produce labelled
graphs. They obtained some promising results regarding the com-
plexity of the generate data. Indeed, their GAN is able to generate
not only an adjacency matrix, but also a label matrix. Their work
is inspired by the MolGAN framework [4], where labelled graphs
are also generated. In MolGAN graphs represent molecules. The
labels feature the type of atoms and bonds. The MolGAN approach
presents a GAN architecture with a third network, referred to as
Reward network. This third network is implemented to guide the
learning generator for converging towards a sub-space of solutions
matching the user constraints. The Reward network relies on rein-
forcement learning (RL), by invoking an external software during
the training process. Contrary to MolGAN, our third network does
not use RL but rather a CNN that can be trained beforehand with
the same dataset used to train the GAN critic module. Therefore, it
enables a faster global training as it does not require an external
software module (e.g. a NoC simulator) during the training process.
Regarding the design of guided GANs, we can also cite the work of
Lee and Seok in [18, 19]. They first proposed a controllable GAN
[18], inspired by conditional GAN [20], but using a third network
as a classifier. They extended this work by adding a fourth network
[19], which helps the generator to produce more diversified and
high-quality data, i.e. inception score [24].

Regarding NoC design with machine learning (ML), the MLNoC
approach has been proposed by Rao et al. in [22]. The authors show
that ML can be efficient in predicting general NoC designs such as
the type of topology (i.e. mesh, torus, etc.) or the arbitration policy,
according to SoCs features. While MLNoC only explores supervised
learning techniques, no existing work specifically addresses the
NoC topology generation using generative deep neural networks.
Finally, in [23], Reza et al. dealt with the problem of designing
heterogeneous energy-efficient NoCs by exploring dynamic control
solutions through online learning, to adapt NoC configuration at
runtime. Our design approach rather operates at design time as it
generate physical topologies.

6 CONCLUSION
This paper presents GANNoC, a framework for automatic gener-
ation of customized Network-on-Chip (NoC) topologies, using a
generative adversarial network (GAN). We propose the RWGAN
architecture which is able to generate unique and optimized NoC
topologies according to specific performance criteria. In particu-
lar, we achieve a 37% improvement of the average generated NoC
latency, enabled by RWGAN over WGAN. This is obtained by con-
sidering the number of connections inside a NoC as the specific
objective function. Here, the generated NoCs performance is im-
proved by producing NoC topologies where the number of router
connections is increased by 36% in average. Generated topologies
are irregular and may incur place and route or timing closure diffi-
culties for large networks, however our frameworkmakes it possible
to control such topological features through the definition of a suit-
able objective function. GANNoC opens perspectives of building
an automatic design space exploration (DSE), where the ability to
produce unique NoC topologies under an arbitrary optimization
goal is key.

Perspectives: Future work will consist in expending those re-
sults to a variety of NoC characteristics. For instance, previous
studies on roundabout routers showed the strong impact of their
graph topology on the corresponding NoC performances [8, 9].
GANs could be very helpful when used as generators of candidate
topologies in this context. Among other, the energy consumption
might be the first feature of interest to study next.

REFERENCES
[1] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. http://tensorflow.org/ Software available from tensorflow.org.
[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN.

arXiv:stat.ML/1701.07875
[3] L. Benini and G. De Micheli. 2002. Networks on chips: a new SoC paradigm.

Computer 35, 1 (2002), 70–78. https://doi.org/10.1109/2.976921
[4] Nicola De Cao and Thomas Kipf. 2018. MolGAN: An implicit generative model

for small molecular graphs. arXiv:stat.ML/1805.11973
[5] Vincenzo Catania, Andrea Mineo, Salvatore Monteleone, Maurizio Palesi, and

Davide Patti. 2016. Cycle-Accurate Network on Chip Simulation with Noxim.
ACM Trans. Model. Comput. Simul. 27, 1, Article 4 (Aug. 2016), 25 pages.

[6] François Chollet et al. 2015. Keras. https://keras.io.
[7] William J. Dally and Brian Towles. 2001. Route Packets, Not Wires: On-Chip In-

terconnection Networks. In Proceedings of the 38th Design Automation Conference,
DAC 2001, Las Vegas, NV, USA, June 18-22, 2001. ACM, 684–689.

[8] Charles Effiong, Gilles Sassatelli, and Abdoulaye Gamatié. 2017. Distributed and
Dynamic Shared-Buffer Router for High-Performance Interconnect. In Proc. of
the IEEE/ACM Int’l Symp. on Networks-on-Chip, NOCS 2017. 2:1–2:8.

[9] Charles Effiong, Gilles Sassatelli, and Abdoulaye Gamatié. 2017. Scalable and
Power-Efficient Implementation of an Asynchronous Router with Buffer Sharing.
In Euromicro Conference on Digital System Design, DSD. 171–178.

[10] Aleksandar Bojchevski et al. 2018. NetGAN: Generating Graphs via Random
Walks (Proceedings of Machine Learning Research), Vol. 80. PMLR, 610–619.

[11] Tinghao Guo et al. 2019. Circuit synthesis using generative adversarial networks
(Gans). In AIAA Scitech 2019 Forum. https://doi.org/10.2514/6.2019-2350

[12] Shuangfei Fan and Bert Huang. 2019. Labeled Graph Generative Adversarial
Networks. arXiv:cs.LG/1906.03220

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. arXiv:stat.ML/1406.2661

[14] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron
Courville. 2017. Improved Training ofWasserstein GANs. arXiv:cs.LG/1704.00028

[15] Jan Moritz Joseph et al. 2020. Ratatoskr: An open-source framework for in-depth
power, performance and area analysis in 3D NoCs. arXiv:cs.AR/1912.05670

[16] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progres-
sive Growing of GANs for Improved Quality, Stability, and Variation. CoRR
abs/1710.10196 (2017). arXiv:1710.10196 http://arxiv.org/abs/1710.10196

[17] Diederik P. Kingma and Max Welling. 2019. An Introduction to Variational Au-
toencoders. Foundations and Trends® in Machine Learning 12, 4 (2019), 307–392.

[18] Minhyeok Lee and Junhee Seok. 2019. Controllable Generative Adversarial
Network. arXiv:cs.LG/1708.00598

[19] Minhyeok Lee and Junhee Seok. 2020. Score-Guided Generative Adversarial
Networks. arXiv:cs.LG/2004.04396

[20] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial
Nets. arXiv:cs.LG/1411.1784

[21] E. Ofori-Attah and M. O. Agyeman. 2017. A survey of recent contributions on
low power NoC architectures. In 2017 Computing Conference. 1086–1090.

[22] N. Rao, A. Ramachandran, and A. Shah. 2018. MLNoC: AMachine Learning Based
Approach to NoC Design. In 2018 30th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). 1–8.

[23] M. F. Reza, T. T. Le, B. De, M. Bayoumi, and D. Zhao. 2018. Neuro-NoC: Energy
Optimization in Heterogeneous Many-Core NoC using Neural Networks in Dark
Silicon Era. In 2018 IEEE Int’l Symp. on Circuits and Systems (ISCAS). 1–5.

[24] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. 2016. Improved Techniques for Training GANs.
arXiv:cs.LG/1606.03498

[25] José Carlos Sancho, Antonio Robles, and José Duato. 2000. A New Methodology
to Compute Deadlock-Free Routing Tables for Irregular Networks. In Network-
Based Parallel Computing. Communication, Architecture, and Applications, Babak
Falsafi and Mario Lauria (Eds.). Springer Berlin Heidelberg, 45–60.

[26] Nripendra Kumar Singh and Khalid Raza. 2020. Medical Image Generation using
Generative Adversarial Networks. arXiv:eess.IV/2005.10687

[27] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models.
arXiv:cs.LG/1802.08773

http://tensorflow.org/
http://arxiv.org/abs/stat.ML/1701.07875
https://doi.org/10.1109/2.976921
http://arxiv.org/abs/stat.ML/1805.11973
https://keras.io
https://doi.org/10.2514/6.2019-2350
http://arxiv.org/abs/cs.LG/1906.03220
http://arxiv.org/abs/stat.ML/1406.2661
http://arxiv.org/abs/cs.LG/1704.00028
http://arxiv.org/abs/cs.AR/1912.05670
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/cs.LG/1708.00598
http://arxiv.org/abs/cs.LG/2004.04396
http://arxiv.org/abs/cs.LG/1411.1784
http://arxiv.org/abs/cs.LG/1606.03498
http://arxiv.org/abs/eess.IV/2005.10687
http://arxiv.org/abs/cs.LG/1802.08773

	Abstract
	1 Introduction
	2 Background notions
	2.1 NoC Features and Performances
	2.2 NoCs as Graphs
	2.3 Generative Adversarial Network

	3 The GANNoC Framework
	3.1 Overview
	3.2 Implemented GAN

	4 Experimental results
	4.1 The Ratatoskr Simulator
	4.2 Datasets
	4.3 Results

	5 Related Work
	6 Conclusion
	References

