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Synergetic Learning Control Paradigm for
Redundant Robot to Enhance Error-Energy Index

Mitsuhiro HayashibeSenior Member,

Abstract—In order to perform energetically efficient motion
as in human control, so-called optimization based approach is
commonly used in both robotics and neuroscience. Such an opti-
mization approach can provide optimal solution when the prior
dynamics information of the manipulator and the environment
is explicitly given. However, the environment where the robot
faces with in a real world rarely has such a situation. The
dynamics conditions change by the contact situation or the hand
load for the manipulation task. Simple computational paradigm
to realize both adaptability and learning is essential to bridge
the gap between learning and control process in redundancy.
We verify a novel synergetic learning control (SyLC) paradigm
in reaching task of redundant manipulator. The performance
in handling different dynamics conditions is evaluated in dual
criteria of error-energy coupling without prior knowledge of
the given environmental dynamics and with model-optimization-
free approach. This paper aims at investigating the ability
of phenomenological optimization with the proposed human-
inspired learning control paradigm for environmental dynamics
recognition and adaptation, which is different from conventional
model optimization approach. Error-Energy index is introduced
to evaluate not only the tracking performance, but also the error
reduction rate per the energy consumption.

Index Terms—Human Motor Learning, Motor Synergy, Re-
dundancy, Environmental Adaptation, Tacit Learning, Error-
Energy Index.

I. INTRODUCTION
The use of bioinspired approaches [14], [32], [21]

IEEEShingo ShimodaMember, IEEE

The key to fill the gap between human and humanoid
motor control ability is learning and adaptivity, coordination of
multiple (redundant) joints, and optimality principles for motor
execution toward energy efficiency. In human motor learning
control, it has all the above listed capability in seamless and
synchronous manner. In contrast, humanoid study tends to use
separated component to deal with each feature. For instance,
using an explicit dynamics model, some researchers have been
dealing with redundancy by applying mathematical optimiza-
tion. Often, there is no learning feature in such optimization or
it is dealt with separated components between the optimization
and the motor action. Humans also have a capability to use
new tools without the prior-knowledge as if they are part of the
human bodies, known as tool-body assimilation through trial
and experience [15], [26]. This fact indicates the importance
of model-free learning controller for environmental dynamics
recognition and adaptation.

In addition, our skeletal system has more degrees of free-
dom (DOF) than the number of dimensions in our task
space. Taking an advantage of dexterity from redundancy,
humans can learn new skills and with dynamic adaptivity
while keeping certain motion accuracy but also finding easier
motor coordination considering our physical biomechanical
conditions. Found motor solutions are energetically efficient

taking into account our articulated body dynamics [16]. Thus,

h - ‘ - - the human motion is not always so precise. It means when we
rather appealing in controlling articulated robots with re

ask the subject to draw straight line in front of his body in

dundancy. Even after recent progressive development of tykinting task, that line is often not completely straight since

manoid robots, the performance of advanced humanoid,jis tend to move in a comfortable way,
still_highly limited especially for the case under new angd ’

which is dynamically
nergy efficient to drive our multi-linked chains. There are

unknown dynamic environment. When the given dynamics cafy, "accuracy limitation issues in biological neuromuscular

be written with explicit equations both for the environment, o1y such as signal-dependent noise and delayed sensory
and the robot manipulator itself, and if it is especially fofgeqnack. We need to make the joint stiff to cancel those
predefined tasks, the humanoid motor performance can \f6)oqical effects, for accurate motor control. Energies need to

higher than the human skills. Such capability is benefittggl,

added to make more accurate motions. This phenomenon

from the model-based control and the knowledge of detail%d a proof of multi-criteria on Error and Energy in human

dynamics and high-speed actuators differently from fatigabig,tor control. In addition, the human control can change the
and slow-response muscle actuators embedded in the hurgap,pination of criteria depending on the way of instruction
system [20]. Whether or not we can have a prior knowledg@,y their motivation. We have an ability to increase the

of the dynamics information brings significant difference iRy ecision of the straight line if the instructor indicates the task

humanoids performance.

strictly. Basically, making a precise motion is more energy-
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so precise, we can find a good compromise naturally
ween the motion accuracy and the energy efficiency. These
criteria are often evaluated separately, however we would need
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a new index to evaluate the coupled measure regardingc@nposed of primitive motions was well adapted to the
motor control capability on the trade-off between accuracy aetivironment in terms of walking efficiency [33]. Based on
energy. In this paper, we propose a computational "Synergetiie tacit learning concept, we reformulated the paradigm as
Learning Control” as a mean to solve the degrees of freed@msupervised learning structure, especially to be used for
problem considering error and energy coupling as well as leamentional motion generation. It is applied to cyclic reach-
to account for varying dynamics. ing tasks using the feedback motor command error as a
supervising signal. Synergetic motor control paradigm for
optimizing energy efficiency of multijoint reaching is proposed
to systematically induce the motor synergy emergence in
Such general ill-posed problem of DOF was originallyeaching task [13], [6]. It demonstrated to produce energy
formulated by Bernstein [5] as there are infinite solutions igfficiency while finding a way to compensate the interaction
redundant DOFs. Motor synergy is a neural organization oftérques in multijoint reaching, which was only verified in
multi-element system that organizes upper level task amofig computer simulation. Here, we aim at investigating the
a set of elemental controls. It is still an open problem teasibility of Synergetic learning control (SyLC) paradigm to
answer how motor controllers in the central nervous systese first applied for redundant articulated robot with physical
(CNS) solve kinematic redundancy for multi-criteria. In thiglectromechanics in this paper.
scientific problem, so-called cost function based mathematicalseamless learning and control for environmental dynamics
optimization is a state-of-art approach to solve such ill-posegcognition and adaptation is an important aspect, which
problem [8][35] in computational neuroscience. is difficult to be managed with conventional model-based
Several types of optimality model have been proposegptimization in robotics. It is not realistic to apply mathe-
Such model is often defined as 'minimum X', where Xmatical optimization every time the dynamic environment is
can be jerk, torque changes [37], motor command [12] agflanged as it can happen at any time in general environmental
energy consumption [1]. In redundant manipulators, suchjrteraction. Furthermore, the issue of how such exact model
cost function based optimal control was successfully applig@scription is obtained for time-variant physical environment
in [36][11]. In robotics, several methods were studied to dedbuld also limit the application of model-based optimization
with the redundancy [23], [2]. The robotics approach basically g real world.
assume the use of a physical inverse dynamic model [24] or
approximation-based model [28]. The model-based approach
is commonly employed for inducing optimized solution rather
than using learning process. The human skeletal system has complex series of linkages
As for a model-free approach, adaptive feedback contiblat produce coupled dynamics. For instance, when we quickly
is known in control society. However, adaptive control camove our forearm by flexing the elbow joint, the flexion
not be applied to redundant systems without using a-priadrques on the elbow joint accelerate our forearm. However,
optimization. Feedback-error-learning (FEL) is well studiedue to the forearm’s inertia, this acceleration produces torques
to provide computational adaptation paradigms [18]. FEL &so on the shoulder. These interaction torques induce the
proven as a special form of adaptive feedback control [2&lndesired effect of accelerating the upper arm segment. The
Then it does not provide a mechanism that can systematicalynamics of multijoint limbs often causes such complex
improve performance toward optimal solutions under reduterques especially during vertical reaching task due to gravity.
dancy. In human control, the able-bodied subject can easily handle
Final solution likely to be performed by humans can bsuch interaction torques with motor learning and its predictive
obtained with optimization approach. However, mathematicedbntrol [31][4]. In this work, we aim to verify the performance
optimization basically requires the dynamic model of thef redundant manipulator driven by Synergetic learning control
system and involves complex computation. In addition, sucimder vertical reaching as the configuration used in [4].
computational operation requires a global image of the systenin a sagittal plane, 3 Degrees-of-Freedom (DOF) composed
and to know the overall variables at different levels in thef shoulder, elbow, wrist joint was arranged as illustrated
system, which is a quite complex process to be embeddedrninFig.1. The upper arm, forearm and hand segments were
the CNS as a modular configuration [9][34]. Modular compweonnected through each joint. Each joint is actuated using
tational principle which can handle total system optimizatioa DC motor with an encoder and a harmonic drive gearing
is preferred to be considered as an embedded algorithm in fbe backdrivability as depicted in Fig.1(a). 10W motors are
CNS. However, the current mathematical optimization is nosed for Joint 1 (Shoulder) and 2 (Elbow), and 4.5W motor
a module-oriented computational operation. If we could find used for Joint 3 (Wrist). The ratio of the gears is all 1/100.
an alternative modular algorithm which can manage to indu&e motor located below Joint 3 is used to grasp the object
the total system phenomenological optimization, it could beksy the hand. Each motor is current-controlled with servo-
candidate as a computational principle to be likely embeddachplifier drives. Thus, each joint has a local torque control to
in the CNS. generate the specified joint torque by the Synergetic learning
Recently, a novel learning scheme naniktit Learning controller for the robot. The control algorithms are executed
was developed [33] as an unsupervised learning paradigmith the sampling frequency of 500Hz on a master PC with
The experimental results demonstrated that the walking g#ie interface of AD and DA converters from the encoders and

II. MODULAR MODEL-FREEOPTIMIZATION PROCESS

1. M ETHOD -REDUNDANT ROBOT CONFIGURATION
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(b) 3 The proposed Synergetic learning control paradigm shown
& Targettorque . . . .
® [ rloinc 1IN Fig. 2 consists of these separated elements in loop:

1) The intention to follow the target is expressed by a force
vector in the task space, which represents the direction
to the target, and the distance as its intensity, using the
proportional (P) feedback error between the target and

(@

Servo-
Amplifier

TV et current endpoint.
for Joint 2 2) The feedback force error is mapped through the Jacobian
Toint 2 Servo- of the arm into the joint torque space. It can be regarded

2 Amplifier .
: as motor-command error that works as a supervising

signal, as in FEL.
3) Local proportional derivative (PD) control mainly corre-

— Target torque sponds to a local reflex loop as a function of the muscle

- spindles. This part basically contributes to changing the

Amplifier joint angles smoothly.

4) Torque command accumulation part shown as gray box
corresponds to tacit learning. This Integral (I) part
serves as a unique learning process. This motor pattern

Fio 1. 3DOF Manioulator for Exoerimentsa) struct  mot accumulation part starts to learn how to compensate the

Pent: Each Joint consiats of a DG motor wilh an encoder and a Hammonic  INeraction torques, and turns into a predictive torque

Drive gearing.(b) Overview of the 3DOF manipulator with some parameters. patterns for a given repetitive task.

Each joint has the local servo-amplifier to create the targeted joint torque. Specifically, the controllers for PD feedback and SyLC

control can be expressed as follows.

PD feedback:
to the motors, respectively. This manipulator is redundant as

the motor axes are in parallel. Some manipulator parameters () = —J " (0)kAp — AO — BO. @)
are described in Fig.1(b).
We perform the control of this robot only with the proposegy) ¢ control:
learning controller without using the explicit dynamics equa-
tions of the robot. Thus, we have an access only to the control r,(¢) = —J7(8)kAp — A0 — B + C/ndt. %)
of each joint torque and no access to the manipulator dynamics
model in the learning process. It should be noted that this
configuration is in so-called Bernstein’s DOF problem where
we have actuation redundancy since the task is performeddinr, 9,6 € R, Ap € R*, J"(6) € R™*", A, B,C € R™*™
2D with 3DOF manipulator.

Joint 3

where m is the number of the jointsp is the task space
dimension,= denotes the control torque inputs of the joints,
6 denotes the angles of the jointd, denotes the angular
Synergetic learning control (SyLC) scheme for reachingglocities of joints.J7 () is the transpose of the Jacobian of
motion of redundant robotic manipulator is represented asthe arm,k is the gain of the task space proportional feedback,
Fig.2. The control architecture is formulated as a superviségp is the endpoint error vector. The Jacobian transpose term
learning paradigm using the feedback motor command ermrresponds to the neural substrate of force mapping function-
as illustrated in the block diagram. Conceptually, it has ality presumably due to corticospinal control [7]. The Jacobian
approach in common with FEL in how to use feedbackanspose mapping has been populary used in robotics [2] and
errors as supervising signals [18]. However, in FEL, priat is recently proposed as a Passive motion paradigm [22].
optimization is still necessary to achieve optimality for reHowever, the Jacobian has a kinematic information only. This
dundant system [29]. Thus, we aim to provide a primitivenethod itself can not provide a way to alter the multi-joint
mechanism for learning without using a cost function. As imanipulation considering different dynamics conditions.
the mechanism of the cerebellum with regard to long-term A and B are diagonal matrices which consist of the
associative potentiation/depression, simple tacit learning wiphoportional and derivative gains of the PD controllers of local
torque signal accumulation is employed to realize systemajiiint. C is a diagonal matrix which consists of the gains of the
adaptation from feedback-error learning structure and energyque command integration regarding motor-command error
minimization from the torque accumulation seamlessly. Wand local feedback torque. The ter4® is optional, and it can
assume only forward kinematics (FK) information is availablde set if it is necessary to specify the neutral position of the
The multijoint dynamics information is not given to theoint. In this work, this neutral position is specified only for
learning controller, thus this paradigm is to find a way tthe wrist joint, because the wrist tends to return to the central
manage interaction torques through the repetitive interactiopssition when we relax.
with the environment. As for local PD feedback, this part corresponds to a local

IV. SYNERGETIC LEARNING CONTROL
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Task space Joint space (Shoulder, Elbow and Wrist)
Feedback Force Error Motor-Command Error .
Motor Pattern Integration
Target Cycle 1
r) >
P >J(0) vy
+ +
Force to Torque PD —>O0—> JOint

A\ 4

EA“};ijim error Mapping .i ' + oot
9,8 Joint Angle and Angular Velocity
X(f) Endpoint FK

A

Fig. 2. Synergetic learning control (SyLC) scheme for reaching motion of redundant robotic manipulator. The robot has 3 DOFs of the shoulder, the elbow

and the wrist. The task is to track the moving target for 2D ellipsoidal trajectory while holding a load at its hand without the prior knowledge of its dynamics

information. P represents Proportional, D Derivative and | the Integral controller, respectively. The box named joint represents the physical joint of the arm.
The intentional target is expressed by a force vector in the task space, which represents the direction and distance to the target, using the proportional feedbacl
error between the target and current endpoint. The feedback torque command error at each joint space is computed through the Jacobian of the arm by
mapping the feedback force into the joint torque space. Local PD control represents the local reflex loop as a function of a muscle spindle. The motor pattern

accumulation part in gray color corresponds to tacit learning.

reflex loop as a function of the muscle spindles [30]. Whedacobian information, we do not perform inverse kinematic
a muscle is stretched, primary sensory fibers of the mus¢l&) and inverse dynamics (ID) computation explicitly. The
spindle respond to changes in muscle length and velocipgseudo-inverse of Jacobian is not computed in this method,
The reflexivity evoked activity in the alpha motoneurondifferent from the typical methods in the robotics approach.
is then transmitted via their efferent axons to the muscl&hus, the dimension reduction is not explicitly performed.
which generates force and thereby modulates the joint angldse Jacobian itself can be obtained with the knowledge of
smoothly. the FK model. Thus, only FK information is assumed in this
Note that all joints are controlled independently except thmethod, and the IK and ID models are unknown, here how
task space operation, then the control configuration hastcatake the dynamics into account should be learned by the
modular structure. All dynamical parameters, such as segmesyetitive interactions with the environment. Along with the
inertia and mass, and the model itself, are completely blirdiaptivity originating from the FEL architecture, the energetic
to the controller. Differently from a typical optimization ap-optimization manageability is a contribution of this method
proach, our method is to produce such optimization procesghout using explicit model-based structure.
without using cost function, purely with repetitive interactions As for the mechanism on how motor performance can be
with the given dynamic environment. The difference betwee&iptimized over time, Eq.1 is basically for the end-point error
the PD feedback case and SyLC case is only the last termpgihimization purpose. The motor command accumulation part
the command signal accumulation in Eq. 2. Neural integratdrs the added term in Eq.2 serves as an energy feedback
are found in many nervous system including our oculomotebnsidering the task space directional information to the total
system. This term corresponds to a neural integrator in tbgstem. The torque integration can account for the energy
torque level. consumption of the robot arm for the cyclic motion as it is
employed in [33]. In general error feedback control, when
V. PRINCIPLES IN SYNERGETIC LEARNING CONTROL the error is fed back, the systematic error can be minimized.
The difference from a typical FEL configuration is first theSimilarly, the integrated torque command contains an energy
point where the motor-command error is created by the mapeasure since it accumulates the past torque generation history
ping between the task space force and the joint space torquedlming cyclic reaching task. Thus the energy of total system
FEL, the optimized desired trajectory of position and velocitgan be naturally minimized as it is both in a feedback loop
in joint space should be prepared in advance by optimizitigrough the repetitive interactions with the environment. Even
some criteria specifically for the arm with redundant degreése torque accumulation feedback is performed in each individ-
of freedom [29]. Here, the necessary joint position and velocitial joint, the total system receives the all energy consumption
are unknown, and the task to follow the moving target imformation from the associated joints. The modified joint
directly given keeping joint redundancy. Even if we use th®rque is feed to the coupled link dynamics and results in
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the new joint coordination as a total system. in Fig. 3 (c), which shows the transition of endpoint error. The
In human motor control, the usage of feedforward control &serage endpoint error is calculated as the root-mean-square
well known, and it is a key to arrive at energetically efficientRMS) error between the target point and current endpoint
solution. Feedforward movements are made without sensaiyring one cycle.
feedback, which have predictive nature of the given dynamics.Energy consumption in one cycle of reaching was measured
Feedback control, in contrast, involves modification of thas an average power, which is plotted in Fig. 3 (d). The
current movement using information from sensory receptai@get is moved in the ellipsoidal orbit in the frequency 1/4Hz.
and error detection. If we rely on the feedback control aritherefore, the energy consumption during every 4 seconds was
to perform certain accurate motion, local joint feedback gamalculated by summing up each joint energy consumptién
tends to high resulting in a high joint stiffness, which i@and computed as a temporal work rate scale (power). The
a source of increased energy consumption [13]. The phassnsition of energy consumption in learning control can be
shift between feedback control and feedforward control duriripserved as in Fig. 3 (d). In Eq. 2, the torque component of
motor learning is well justified by obtaining the internal moddPD feedback was regarded as feedback (FB) controller, the
in the cerebellum in previous papers [17],[19]. In generahtegration term was regarded as FF controller. Because it is
optimal movement control likely reflects a combination of botimdependent from the feedback signal status and it converges

feedback and feedforward processes [10]. into an open loop cyclic torque pattern for a given task.
The energy consumption by each torque component is also

VI. RESULTS visualized as in Fig. 3 (d). The energy rate is not much

A. Energy and Error Coupling Minimization changed in the course of learning, but we should note that

To evaluate the performance of the proposed SyLC COﬂtIIQP tracking error is being improved. Considering the f_act th_at
in redundant robot, we compare the control results of verticlOre energy 1S naturally necessary tp make the .mot|on W_'th
tracking for 2D ellipsoidal trajectories between (a) PD feeél‘-aSS error _to .the ta_rggt. The Synergetic controller is managing
back controller and (b) SyLC controller. The task of verticgfual conflicting criteria 9f error and energy as a coupling.
reaching is to drive the endpoint of the arm following thgalan_ce of these t_WO C”Fe”a can be potentially _manageable
dynamically moving target while holding a load at its han{P adjust the Iearr_ung gan z_;md t_he _feedback gain. Howe_zver,
under the gravity. The hand load was in two conditions, 45 employeq a f'X?d_ gain in this first robot trial .to verify
and 600g respectively. These loads were given as an unkn&wﬁ systematic feasibility of the proposed method in the real

object, as this controller doen't have the dynamics informatiofPPOt: 1N addition, it was possible to observe the contribution
The cycle frequency to draw an ellipse is given with /T ratio was switched between FB and FF controllers. Initially

whereT is the time to draw one ellipse. FB was mainly_used, _and _W_ith_ Iearning progress, _the_ene_rgy

The moving target-(t) is given as follows: c_ons_qmpnon_ with FB is minimized, while FF contribution is

significantly increased.
Pe = [ 0.0 —04 ]T7 Next, motor control result to track the moving target in
P T an ellipsoildal orbit in 1/4 Hz with 0.6kg load at hand is

r(t) =pe+ [ ~01bsin(2nft) —0.075cos(2nft) | . (3) summarized in Fig. 4. The hand weight is increased by

At the beginning, the arm is stopped with extended postu8@ percent. The added moment of inertia in respect to the
to the gravity direction with zero joint angle for all the jointshand weight concerning the shoulder joint should have been
as in Fig.1(b). increased by 33 percent. This test is to verify the control

Fig. 3(a) represents a control result for endpoint transitigrerformance in different dynamic conditions. As the proposed
only with feedback control. The target was moving in amethod does not use the prior plant dynamics information, the
ellipsoildal orbit in 1/4 Hz with 0.45kg load at hand. Fig. 3(bexactly same controller is rerun including the control gains and
is the endpoint with SyLC controller. The feedback contrdéarning gain. We have only changed the weight from 4509 to
gains are kept same for the both type of controllers. TI#®O0g in a real world.
time sequential transition is illustrated using color map which We can observe in Fig. 4 (a)(b) that endpoint only with
changes depending on the time progress. A cool color mégedback control is affected more by larger inertial effect
is used for (a) PD feedback control, a jet color map is usedused by the added hand weight, in contrast the endpoint
for (b) SyLC. This colormap configuration is used also in thim Synergetic learning control is converged in similar way
other following figures. to the case of 450g toward tracking the ellipsoidal target

Fig. 3(a) shows that PD control is largely affected by thky compensating the gravity and the interaction torques. The
gravity and the interaction torques. The fact that the contr8Slynergetic control case converged to very close endpoint error
gain is set low, can be also observed. There is no learnimich is only the difference of 3mm compared to the case of
effect then the endpoint loop is unchanged after the initidbOg as observed in Fig.4 (c). It successfully deals with the
dynamic transition from the stopped straight arm configuratiatifferent dynamic condition. Keeping average endpoint error
to the dynamic motion phase. On the contrary, we can fifidr different loads with exactly same controller is already
that the trajectory is being corrected in time in the case obt trivial in conventional robotics, when the joints of the
Synergetic learning control minimizing the effect of the gravitarm have high compliance. The fact of high compliance of
and interaction torque. Initially the trajectory was similar to ththe manipulator can be confirmed from the feedback case
one of (a), but improves the tracking performance as indicatpdrformance of Fig. 4 (a). As the feedback gain is low, the
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(b) Synergetic Learning Control (0.45 kg hand load)

y (m) (a) PD Feedback Control (0.45 kg hand load) y (m)
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Fig. 3. Motor control result to track the moving target in ellipsoildal orbit in 1/4 Hz (0.45kg load at hand). (a) Endpoint transition only with feedback control
and (b) with SyLC control. (c) The transition of endpoint error and (d) the energy consumption in each ellipsoidal cycle of reaching as an average power. Not
only improving the target tracking accuracy, but Synergetic learning solutions result in efficient total energy consumption in respect to the tracking accuracy.
In addition, it was possible to observe the contribution ratio was switched between FB and FF controllers. Initially FB was mainly used, and with learning
progress, the energy consumption with FB is minimized, while FF contribution is increased.

arm is largely influenced by the environment, it indicates thather as it is significantly influenced by the inertial effect
the feedback gain which is employed in this experiment is lovariation due to the motion speed and the hand load changes.
then the.Jom.t Is highly compllan.t. The energy consumption in It is interesting to see the phase form is similar for different
each ellipsoidal cycle of reaching as an average power was o . ; . o
e . N . oad conditions in Synergetic learning. The phase portrait is
similar transition to the case of 450g, while increasing the . . . . . o
: . a.rg)lot without time dimension, thus it can be an optimized
absolute power scale corresponding to 600g hand weight as | . .
: joint synergetic usage regardless of the motion speed for a
Fig. 4 (d). X ) ' .
target trajectory under the given dynamic environment. Then,
the unchanged joint space usage is somehow reasonable. As
the joint combination usage is common for different dynamic
conditions, we can expect that it should be robust also for
Fig. 5 indicates a phase portrait between the shoulder aihe case where the robot needs to change the motion speed
the elbow joint angles in different dynamic conditions (apr hand weight in the course of the motor control. Since it
0.45kg, 1/4Hz, (b) 0.6kg, 1/4Hz, (c) 0.6kg, 1/3Hz, and both i3 necessary to change just slightly the joint usage space for
only feedback control and in SyLC. The task trajectory itsetfynamical condition changes, this situation helps a lot also
was same, the difference were the hand load and the cyfde the adaptivity to the time-variant unknown environmental
speed. dynamics. If we carefully check Fig. 5, we can also find that
The line in the cool color map indicates the joint usage resulte very initial phase portrait of learning case is very close
with only feedback control, and the line in the jet color mafo the one of feedback case as it is initially fully driven by
is that for Synergetic learning. We see the phase in Synergdéedback component of the controller. In the course of the
learning converges into the consistent joint angle combinatiolesrning, the similar Synergetic combination between neigh-
regardless of different dynamic conditions. In contrast, tH#ring joints was found under different dynamic conditions. It
joint space usage in only feedback control are different eaishinteresting to see such consistent and reasonable solution is

B. Synergetic Joint Usage
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Fig. 4. Motor control result to track the moving target in ellipsoidal orbit in 1/4 Hz (0.6kg load at hand). (a) Endpoint transition only with feedback control
and (b) with SyLC control. (c) The transition of endpoint error and (d) the energy consumption in each ellipsoidal cycle of reaching as an average power. By
added load, larger tracking error is observed in feedback control case caused by larger inertial effect in this dynamic motion. In contrast, Synergetic control
converged to endpoint error which is only the difference of 3mm compared to the case of 450g. It successfully deals with the different dynamic condition.

gradually found even with the dynamics-model-free and costecuracy rate per energy consumption. 1/Error means the

function-free approach. accuracy of the tracking, the hyperbolic measure is used to
evaluate less error situation as a priority. Zero error situation
C. Error-Energy index won’t happen in moving object following task. ThénF; =

As it is previously stated, human motor control employ&/ Error/Energy represents normalized accuracy rate per
multiple criteria. If it is an industrial robot, only thinking €nergy. Here, we use power (W) as a unit energy. As the
about the endpoint accuracy may be enough. However, hunfAPosed controller is not with cost optimization process, this
motor control takes into account also the energy eﬁicien&’}dex itself is not used during the control process, it was used
[16]. Thus, if we look into only the endpoint accuracy oPnly for a posterior e\{aluation of the performance generated
human motor control, it is not necessarily with high precisio®y the proposed learning controller.

For instance, the casual hand move from right to left in front of The endpoint error and the energy consumption transition
our body is not that straight, a little curved around the shouldalong with the time progress is summarized in Table | for
with the compromised choice of motor command which is ea&vo hand load conditions. In PD feedback control, there is no
ily taken from the given body dynamics. We can not evaluatéiprovement for both error and energy. The variation in the
only with motion accuracy, as it might associate with highdfitial phase is due to the fact that the robot changes from
energy usage. So as for only energy consumption measureSt@pped status to the dynamic motion status. This effect can
it depends on how the task is accurately performed. A nd¥¢ seen also in the initial phase of SyLC. Differently from
measure is required to correctly evaluate the rate of motigimulation, the real robot has friction in the joint, then some
accuracy per the energetic effort. minor value fluctuation can be also observed after the steady-

Therefore, we propose here a simple criterion to evalugitate status.
the coupled index over both error and energy for a moving We can notice that the energy consumption in SyLC is
object following task. We name it as Error-Energy (E-Ehot necessarily decreased, however the endpoint error is mini-
index, which is 1/Error/Energy. It is simply the trackingmized to improve the target tracking accuracy during learning
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(a) with 450 g hand load in 1/4 Hz cycle (b) with 600 g hand load in 1/4 Hz cycle
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Fig. 5. Phase portrait between the shoulder and the elbow joint angle in different dynamic conditions (a) 0.45kg,1/4Hz, (b) 0.6kg,1/4Hz, (c) 0.6kg,1/3Hz,
and both in only feedback and in Synergetic learning control. The line in the cool color map indicates the joint usage result with only feedback control, and
the line in the jet color map is that for SyLC. We see the phase in SyLC converges into the consistent joint angle combination space regardless of different
dynamic conditions. In contrast, the joint space usage in only feedback is different each other as it is significantly influenced by the inertial effect variation.

control while keeping the energy consumption. If we 100 E; = ae? + Bu?, a+ 8 = 1,a,8 > 0 [27], [36]. The

the table result closely, from 32s to 200s, the energy increasght side term is to account for the energetic effort, then we
is only 3% increase in 4509, while the error is significantlyeplaced here with the energy measure= 0.7,5 = 0.3 is
minimized with 25%. The error minimization rate was 24% asmployed, to put priority for the object tracking not to have
well for 600g case, while there is no energy increase. This fabe situation where no motion case is better. This secondary
supports well the efficiency of SyLC in the tracking accuradyndex (E E,) is more for being minimized. Differently from the
rate per energy. The energy consumption ratio by FF controlkecuracy rate, it evaluates the total cost function over the error
is being augmented while the one of FB controller is beingnd the energy. The transition of this secondary index {}* £
decreased. The figures in parentheses in Table | indicate shewed very similar tendency to the 1st index (B Bxcept
cycle-to-cycle variability to evaluate the convergence of tadite directional variations£'E; is increased with convergence
learning. We can confirm that the error, the energy and théile FE5 is decreased during the learning process.
contributions of FF and FB are all converged in the course of

the learning process in SyLC. To_ take into a_lccoun_t the Errgy Adaptivity for different motion speed

Energy balance, the above mentioned E-E index is computed . .
as in the right column of Table . The left side of Error-Energy Atlast, we demonstrate the adaptive nature of the Synergetic
index represents the first index (E)eas an accuracy rate earning controller.. Differently from the previous tests, we
per energy. In this index, we can observe the clear advant%@ngeoI the moving target speed suddenly in the course of
of SyLC over sole feedback control. From 16s, all the E-E\€ robot control. _

indexes are larger than the case of feedback control, it wenf 19- 6 shows the motor control result with 0.6kg load at

into nearly 3. Then, it can measure the motion accuracy fgnd: with task speed changes in the order of 1/4Hz, 1/3Hz

the cost of the energy consumption. In the case of 0.6kg, &1d 1/2.5Hz. The change is made in a step manner. Simply,

E index was converged even into double of the one in sdfé€ / in Eq. 3 is modified at a time instant. Fig. 6 (a) is
feedback control. endpoint transition with Synergetic learning control. From (a),

we can confirm that Synergetic learning control manages well

The first Error-Energy index as an accuracy rate per energytrack moving target even when the target moves suddenly

is newly proposed in this paper. We have verified this Errofaster. The slight endpoint trajectory change can be observed.
Energy coupling aspect also with other exisiting measure Bgy. 6 (b) plots elbow joint angle-angular velocity phase
a secondary index, as a reference. It has been shown in ngortrait, different elbow angular velocity realization can be
roscience studies that humans interact with the environmeuainfirmed by keeping the same elbow joint angle space. Fig.
by minimizing error (e) and effort (u) in the normalized scal& (c) is the transition of endpoint error, we observe slight
which can be modelled as the minimization of the cost functiend-point error changes with 2.8mm increase from 1/4Hz to
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TABLE |
ENDPOINT RMS ERROR(M) AND ENERGY CONSUMPTION(W) IN EACH CYCLE OF ELLIPSOIDAL TRACKING TASK, ALONG WITH E-E INDEX
PD Feedback Control Synergetic learning control
Time Error Energy EE-EFE, Error Energy FF FB FEFE{-EFE,
0.45kg

8s 0078 80  1.60-0.756 0.075 (0.0069)  7.91 (2.20) 0.385 (0.682) 7.78 (2.36) 1.69-0.712
16s 0.074 7.73  1.75-0.693 0.051 (0.0025)  9.40 (1.01) 2.04 (0.974) 8.41 (0.30) 2.09-0.468
32s  0.075 805 1.66-0.715 0.039 (0.0015)  10.7 (0.16)  5.44 (0.614) 7.36 (0.707)  2.40-0.40
64s 0.073 80 1.71-0.686  0.032 (0.00052) 10.98 (0.30) 8.98 (0.335) 6.26 (0.20) 2.85-0.360
120s 0.073 8.05 1.70-0.688  0.032 (0.00064) 10.81 (0.28) 10.05 (0.108) 5.95 (0.166) 2.89-0.356
200s - - - 0.029 (0.00021) 11.02 (0.07) 10.16 (0.13) 5.77 (0.091) 3.13-0.344

0.6kg
8s 0.087 9.73 1.18-0.935 0.084 (0.0147) 10.1 (4.10) 0.417 (0.896) 9.94 (4.20) 1.18-0.897
16s 0.086 9.73 1.20-0.919 0.065 (0.0087) 12.6 (0.90) 2.65(1.22) 10.5 (0.975) 1.22-0.696
32s 0.085 9.85 1.19-0.906 0.042 (0.0041) 12.3(0.21) 6.21 (0.724) 8.06 (0.465) 1.94-0.461
64s 0.086 9.81 1.19-0.921 0.034 (0.00034) 12.3 (0.24) 9.54 (0.307) 6.44 (0.05) 2.39-0.404
120s 0.085 9.73 1.21-0.904 0.033 (0.00055) 12.5(0.10) 11.1 (0.050) 6.18 (0.231) 2.42-0.403
200s - - - 0.032 (0.00025) 12.4 (0.14) 11.4 (0.25) 6.10 (0.045) 2.52-0.395
*The figures in parentheses indicate the cycle-to-cycle variability o evaluate the convergence of SyLC control.
Between PD feedback and SyLC control, the same gaifi the task space propotional feedback is used as well as local joint
PD gains.

1/3Hz, with 2.9mm increase from 1/3Hz to 1/2.5Hz. Especiallyalanced between the error performance and the energy mini-
in 1/2.5Hz, the robot has to manage to follow in a fashization. Another difference is that iterative learning modifies
speed for an ellipsoid in average speed of 144deg/s whilee motor command with the next trial, based on previous
holding 0.6kg weight. In Fig. 6 (d), energy consumptiofrial result. The proposed method has more continuous and
rate can be confirmed. It increases steadily according to theamless adaptation capability. There is no need to separate the
increased motion speed. The contribution ratio between F&arning process with the trial by trial. Fig.6 results show well
and FF controllers is maintained to follow a moving targahe new aspect on this feature. After the first learning phase
in higher speed. Thanks to this nature, motor commands &bet computation and control are always online), suddenly
quickly found for new dynamic condition. It is demonstratinghe moving object to track became faster. As it is similar

adaptivity nature of the Synergetic learning controller. type of motion, even for the faster speed case, the controller
found the nice solution instantly, almost without FF/FB ratio
VII. DISCUSSION changes, which means the learning process is not much used.

We have applied a human-inspired motor learning contrGi€re: only the task is suddenly changed. There is no need
paradigm to the control of redundant robotic manipulatof have relearning process for faster motion. We would say
as a first report. First, it is challenging to manage boﬂt]‘e. obtamed mot'or synergy can be usepl for the fastgr motion.
adaptability and optimizing functionality without using model!n itérative learning, it could be complicated when it needs
based approaches and without prior knowledge of the givih manage the faster motion with a sudden request in a
dynamics. In fact, the current robotics approach has a sefgntinuous manner.
rated configuration on motor control and optimization. After This article demonstrated a way to bridge the gap between
model-optimization, the motor actions are normally taketearning and control, applied in robot control, inspired by
In addition, the dynamics model is normally required anseamless learning control nature of human motor control.
the redundancy management is performed through the mottela real robot, even if it has backdrivability, there are
optimization. Thus, this study has clearly different approaghint frictions and the internal gear inertia. Then, it is more
as it manages redundancy without dynamics knowledge of ttieallenging to apply the learning controller in a real system.
system and without mathmatical optimization. In contrast, there was completely no joint friction and gear

We need to point out that there is a common concept rgertia in simulation as previously reported in [13]. After
garding its iterative operation with so-called iterative learnintpe learning, FB component ratio against the total energy
scheme [3]. However, the conventional iterative learning &onsumption was less than 20 percent in simulation. However,
basically to make the motion tracking error into zero. TheFB component ratio in the real robot is stayed still around
solution is looking only for the best tracking performanc&0 percent against total energy as we can see it in at the
case. It doesn't address the energetically efficient choice riafht bottom of Figs. 3, 4 and 6. It is advantageous if the
the motor command. Efficient choice could make it worse fatependency on FB could be further decreased in terms of
the tracking performance in general. In contrast, while thenergy minimization, but we think that the geared joint inertia
proposed learning goes, it converges to the solution whichdged friction covered the environmental dynamics information
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(a) Synergetic Learning Control (0.6 kg hand load,

Motion cycle frequency 1/4 Hz - 1/3 Hz - 1/2.5 Hz) (b) Elbow joint angle-angular velocity
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Fig. 6. Motor control result to track the moving target in ellipsoidal orbit with 0.6kg load at hand, with task speed changes in the order of 1/4Hz, 1/3Hz
and 1/2.5Hz. (a) Endpoint transition with Synergetic learning control and (b) Elbow joint angle-angular velocity phase portrait. (c) The transition of endpoint
error and (d) the energy consumption in each ellipsoidal cycle of reaching as an average power. From (a), we can confirm that Synergetic learning control
manages well to track moving target with slight end-point error changes seen in (c). Especially in 1/2.5Hz, the robot has to manage to follow in a fast speed
for an ellipsoid in average speed of 144deg/s while holding 0.6kg weight. From (b), different elbow angular velocity realization can be confirmed. In (d), the
contribution ratio between FB and FF controllers is maintained for higher speed tracking. Thanks to this nature, motor commands are quickly found for new
dynamic condition.

for the learning process. Thus, the unknown friction dynamit¢sen this term can still continue to send predictive motor
in the robot had to be dealt with FB component. The gearedmmand even if we stop the feedback information. This is
joint is served as a noise in the motor learning. It impliethe reason why this term can be regarded as FF controller.
high backdrivability in the manipulator helps to correcthyburing the learning, the contribution from FF was increased
perceive the environmental information, which is useful faand the torque from FF was converged into certain pattern.
motor learning. Regardless of this disadvantageous effect, fitds effect matches well the neurological learning process.
results in real robot demonstrated a promising performanéée could have this human-like learning phenomenon in real
for learning control of reaching under the redundancy towarddundant robot control with the proposed Synergetic learning
improved Error-Energy performance. control scheme. The obtained result also gives us an insight

Motor learning is a process which develops Feed Forwalo understanding the human motor cqntrol, and the FB and
(FF) controller minimizing the contributions from FeedbackF components can not be measured in humans, but the role
controller. The motor pattern integration term in SyLC cafif themin relat|onsh|p to energy efficiency could be quantified
be considered as FF controller which anticipates the envirdf@m the robot experiment as in Table |.
mental interactions during reaching. We should note that everDual task of tracking improvement and energy reduction is a
when the integration term is represented as | in the diagrawell coupled issue, which is conflicting each other. To evaluate
this control structure is totally different from so-called PIthe control performance in the dual criteria: endpoint error
structure where the joint reference error is normally integrateglinimization and energy minimization, we have introduced
Instead, in SyLC, the mapped motor field comprising eaeh new index: Error-Energy index which can measure the
joint motor pattern is being integrated in a modular configur@rror reduction rate in the cost of unit energy. Sometimes
tion. This integrated motor pattern has cyclic torque signatuirmprovement in energy consumption measure was not that
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obvious as in the Table I. However, if we employ Error- VIIl. CONCLUSION
Energy index for the motor performance evaluation, we could |, yhis paper, we have verified a novel computational control

observe very clear improvement as in Table I. It SUggests 4qigm "Synergetic Learning Control” in redundant manip-
that the proposed learning control method is well managingaior. “From the control result, we claim that the proposed
dual criteria of improving error performance while minimi;ingmethod is valid for acquiring synergetic motor usage in the
energy consumption. Along with the newly proposed indey stem with actuation redundancy. It is verified with Error-
of BE,, the existing cost function4E,) also supported the ooy index development in different dynamic conditions.
advantage of the proposed learning control on the efficiengyg jndex is newly proposed in this article, which could take
on error-energy relationship. Evaluating the motion accuragts account the error tracking performance per the energy
rate in the cost of unit energy with the proposed E-E index [Q,,s;mption. We should highlight that the SyLC brings com-
human reaching study should be also an interesting topic {Qfiational adaptability and learning for unknown environmen-
future. _ o tal dynamics with dynamic model-free and cost-function-free
The vertical reaching task under the gravity involves mucly, o oach differently from previous studies. Energy efficient
complex interaction torques. When the conflicting torqueg, tions could be obtained by the emergence of motor synergy
between coupled joint dynamics could be minimized, it Caf the redundant actuation space. Increasing the contribution of
result in energy effective mot|on._ To reduce the. (fonﬂ'CtTEF controller matches well the nature of computational motor
naturally joints should be syne.rgetlcally used. The joint angf@arning in human being as an infant can improve his motor
acceleration in the shoulder involves all the arm segmeni§, ol ability by repetitions without thinking of something
from upper arm, forearm to the hand. The elbow is nice {g,nhiex However, there is no function yet to memorize the
be synchronously drived then the forearm is well acceleratgq]erged torque pattern in the current study, which will be
by the shoulder. The component of forearm_ecc_eleration. d8Ived in our future study.
be made by the elbow, will be naturally minimized. This tnq resyit demonstrated in this paper is also concerning

phenomenon is well observed in Fig. 5. The shoulder-elbqy e Bernstein's DOF problem. Bernstein problem is an

phase portrait turned into similar circular form for di1‘feren;Ssue regarding how Central Nervous System (CNS) finds the

dynamic task conditions in synergetic learning. As the jOifimar solution in the actuation redundancy. The usage of
combination usage is common to different dynamic conditiong, o, synergy was pointed out by Bernstein, but a fundamen-
we can expect that it should be robust also for the case Wheteqtor control principal which can generate motor synergy

the robot needs to change the motion speed or hand weighf iy 1ot vet been reported in neuroscience except so-called
the course of the motor control. Indeed, our method demoglsiinization approach. In this article, it is a simplest situation

strated the great adaptive nature for the different task spegdyq 4ctyation redundancy but the proposed SyLC paradigm
condition as in Fig.6. As it is similar task except the mOt'o'ﬂrstIy managed to generate dual aspects of adaptivity and

speed, the robot already knows the effective synergetic jojgbming by a modular computational principle for redundant
usage for the given task then the necessary motor commal ot

are quickly found almost without the learning process for a
new dynamic condition. Please note that the robot is holding
600g weight, which induces certain amount of inertia. The
endpoint accuracy is degraded only slightly. It is demonstrating] R M Alexander. A minimum energy cost hypothesis for human arm

i ; i trajectories.Biological Cybernetics76(2):97-105, 1997.
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