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Biologie Computationnelle (IBC), Université de Montpellier, Montpellier, France
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Abstract

Dengue is a prevalent disease in Colombia and all dengue virus serotypes (DENV-1 to -4)

co-circulate in the country since 2001. However, the relative impact of gene flow and local

diversification on epidemic dynamics is unknown due to heterogeneous sampling and lack

of sufficient genetic data. The region of Santander is one of the areas with the highest inci-

dence of dengue in Colombia. To provide a better understanding of the epidemiology of den-

gue, we inferred DENV population dynamics using samples collected between 1998 and

2015. We used Bayesian phylogenetic analysis and included 143 new envelope gene

sequences from Colombia, mainly from the region of Santander, and 235 published

sequences from representative countries in the Americas. We documented one single

genotype for each serotype but multiple introductions. Whereas the majority of DENV-1,

DENV-2, and DENV-4 strains fell into one single lineage, DENV-3 strains fell into two distinct

lineages that co-circulated. The inferred times to the most recent common ancestors for the

most recent clades of DENV-1, DENV-2, and DENV-4 fell between 1977 and 1987, and for

DENV-3 was around 1995. Demographic reconstructions suggested a gradual increase in

viral diversity over time. A phylogeographical analysis underscored that Colombia mainly

receives viral lineages and a significant diffusion route between Colombia and Venezuela.

Our findings contribute to a better understanding of the viral diversity and dengue epidemiol-

ogy in Colombia.

Introduction

Dengue disease is highly prevalent in tropical countries due to climate, population growth,

unplanned rapid urbanization and increased travel and trade [1,2]. Consequently, the global

burden of dengue disease is high: a total of 58.4 million (23.6 million–121.9 million) apparent
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cases in 2013 and 1.14 million (0.73 million–1.98 million) disability-adjusted life-years [3].

Dengue is caused by four closely related viruses referred to as serotypes (DENV-1, DENV-2,

DENV-3, and DENV-4), which are further subdivided into genotypes [4]. A higher risk of

severe dengue is attributed to the co-circulation of multiple serotypes due to antibody-depen-

dent enhancement of infection [2] and to some particular strains [5]. Therefore, documenting

serotype prevalence and the dynamics of genetic variants help forecast epidemic impact, ensu-

ing epidemic management and preparedness.

Colombia is a tropical country in the northwest of South America with high dengue inci-

dence. For instance, a total of 752,429 cases were reported during 1980–2007 [6–9]: the coun-

try-wide 2001/2002, 2010, and 2013/2014 epidemics had 143,820, 147,257, and 247,075

notified dengue cases, respectively. DENV-2, DENV-1, and DENV-4 were reported for the

first time in the country in 1971, 1977, and 1982, respectively [10]. DENV-3 was reported only

once in 1975 and re-emerged again in 2001 [10,11]; the four DENV serotypes have been fre-

quently documented in Colombia from that year onwards [9,11,12].

A total of six Colombian states (out of 32) accumulate more than half of the cases in the

country: Valle del Cauca (19%), Santander (12%), Antioquia (8%), Norte de Santander (7%),

Huila (6%), and Tolima (6%) [7,9,12]. The region of Santander is located in the northeast of

Colombia and comprises the states of Santander and Norte de Santander. Previous studies

reported changes in the predominance of serotypes over time in this region [11,13–15]. The

argument over whether there is a genetic basis or there are random fluctuations that explain

the temporal distribution of serotypes has not been settled yet.

Previous studies [16–19] that focused on the molecular epidemiology of dengue in Colom-

bia included sequence data collected up to 2008 and did not include DENV-4. Consequently,

many aspects of the local epidemiology remain unclear. In the present study, we obtained 143

new envelope gene sequences from serum samples collected in the region of Santander and six

sequences from serum samples collected in other regions between 1998 and 2015. We provide

insights into the evolution and population dynamics of all four dengue serotypes in the region

of Santander, which help understanding dengue epidemiology in Colombia and might be rele-

vant for future control programs, including vaccination.

Materials and methods

Study sites

Serum samples were collected from the metropolitan area of Bucaramanga in the state of San-

tander and the province of Ocaña in the state of Norte de Santander; these constitute the

region of Santander that is located in the central northern part of Colombia [Fig 1]. Bucara-

manga is the capital city of Santander and together with three nearby municipalities constitutes

the seventh largest metropolitan area of the country (around 1.4 million inhabitants). It has an

average altitude of ~1,200 meters above the sea, an annual mean temperature of 25˚C and an

average amount of annual precipitation of 1,041 mm. The city’s urban mass transportation sys-

tem moves over 100,000 passengers daily and extends to the Metropolitan area [20]. Moreover,

Bucaramanga is a transportation hub for the northeast of Colombia and it has a bus terminal

where 1.4 million passengers commute to diverse regions of the country on a yearly basis [21].

Bucaramanga’s airport has national and international traffic operations, which mobilized

more than 1.2 million people in 2010. At least 94% of dengue cases from Santander were

reported in the metropolitan area of Bucaramanga [7,9], and it was one of the participant cities

in the dengue vaccine CYD-TDV clinical trial [22].

The province of Ocaña is a conurbation of 10 municipalities in an area of 2,065 meters

above the sea in the state of Norte de Santander. Ocaña is its capital and its third largest
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municipality (around 98,229 inhabitants in 2014). This city has an annual mean temperature

of 22˚C and an average amount of annual precipitation of 1,000 mm. Cucuta is the capital city

of Norte de Santander, it is bordered by Venezuela which makes it an important commercial

city. Ocaña is located at a distance of 197 km (122 mi) from Cucuta. Ocaña has a small airport

with only regular flights to Cucuta [23].

Viral strains

DENV strains were obtained from the collection of the Laboratorio de Arbovirus, Centro de

Investigaciones en Enfermedades Tropicales (CINTROP), Universidad Industrial de Santan-

der, Bucaramanga. Viruses were isolated by culturing in C6/36 mosquito cells from patient

sera collected in previous studies [11,14,15,24,25]. Sera were collected either for routine den-

gue laboratory diagnosis at medical institutions—for which an Institutional Ethics Committee

approval was not required—or collected from patients enrolled in cross-sectional clinical trials,

which were approved by the Research Ethics Committee of the Universidad Industrial de San-

tander. In the latter, an informed consent from each patient was obtained. All virus samples

were analyzed anonymously. We selected samples to represent years in which each virus sero-

type was recorded between 1998 and 2015: 137 samples from the region of Santander (60

DENV-1, 33 DENV-2, 39 DENV-3, and 11 DENV-4) and six samples that were available from

the Valle del Cauca, Bolivar, and Cesar states (southwestern and northeastern regions).

Full-length envelope gene (E-gene) sequencing

Viral RNA was extracted directly from supernatants of DENV-infected C6/36 cells using the

QIAamp Viral RNA mini kit (Qiagen). The RNA was transcribed to cDNA using RevertAid

reverse transcriptase (Thermo Scientific, USA) and random hexamer primers (Thermo Scien-

tific). The full E-gene (~1485 pb) was amplified by PCR using DENV serotype specific primers

[S1 Table] and Thermo Scientific Taq DNA Polymerase according to manufacturer

Norte de Santander

Santander

Valle del Cauca

Bolivar

Cesar

Guaviare

Antioquia

BoBoBoBoBoBoBoBBoBoBoBBoBoBoBoBoBoBBoBo

Fig 1. Geographical origin of the samples from Colombia and dengue incidence. The region of Santander

(Santander and Norte de Santander states) is colored in red.

https://doi.org/10.1371/journal.pone.0203090.g001
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instructions. Each reaction of DNA amplification produced overlapping amplicons of 863–

1520 nucleotides in length. Amplicons were sequenced using a Sanger sequencing commercial

service (Macrogen DNA Sequencing Service, Seoul Korea). Sequence assembly was performed

with CLC Genomics Workbench 4.5 (CLC Bio, Denmark) and sequences were deposited in

GenBank [S2 Table].

Data selection

Available full-length E-gene accessions with known location and sampling date were retrieved

from GenBank (last accessed in March 2017). The total dataset (n = 9.669) was aggregated by

serotype (3676 of DENV-1, 2925 of DENV-2, 1746 of DENV-3 and 1322 of DENV-4) and ana-

lyzed separately. Identical sequences from the same country and year were removed using the

UCLUST algorithm in the USEARCH v.10.0.240 software [26]. The filtered datasets (3452 of

DENV-1, 2789 of DENV-2, 1645 of DENV-3 and 1100 of DENV 4 Sequences) were combined

with novel Colombian isolates, aligned using MUSCLE v.3.8 [27] and visualized using Bioedit

v.7.2.5 software [28]. Preliminary phylogenetic analyses were done using Maximum Likeli-

hood (ML) methods with a non-parametric bootstrap using PhyML v.3.1 software [29] in

order to identify genotypes and to focus the analysis in the genotypes that were observed in

Colombia [S2 Fig].

Sequences from the same year were downsampled when they fell within a monophyletic

group by country and were overrepresented. The resulting datasets (DENV-1 = 118, DENV-

2 = 118, DENV-3 = 66 and DENV-4 = 77) had only sequences from the region of the Americas

because the phylogenetic trees showed a single introduction of each genotype into this region

from non-American countries.

A Likelihood Mapping Analysis in TREE-PUZZLE v.5.3 [30] software and a substitution

saturation analysis in DAMBE v.6 [31] showed that there was enough phylogenetic informa-

tion in each dataset [S1 Fig]. All datasets were free of recombination signal following a pairwise

homoplastic index test using SplitsTree v.4.12.6 [32] (pairwise homoplastic index� 0.5 for

each dataset).

Data analysis

Haplotype diversity and nucleotide diversity were calculated using the software DNAsp v.5

[33]. For each dataset, the best-fit model of nucleotide substitution was selected based on

Akaike Information Criterion (AIC) using the APE package v.3.4.2 [34] and the R v.3.3.0 soft-

ware [35]; The Tamura and Nei plus invariant and discrete gamma models were the best-fit

nucleotide substitution models for DENV-1 and -2, and the generalized time reversible plus

invariant and discrete gamma models were the best-fit nucleotide substitution models for

DENV-3 and -4. Regression of root-to-tip genetic distance against sampling time [S3 Table]

using TempEst v 1.5 [36], showed that there was sufficient temporal signal in each dataset to

proceed with phylogenetic molecular clock analyses. The best-fit clock model (strict vs.

relaxed) and the best-fit demographic model (among constant size, exponential growth, sky-
ride and skygrid models), were selected via path sampling (PS) and stepping-stone (SS) meth-

ods (100 steps with 5 million iterations each) [37]. In all cases, the uncorrelated lognormal

(UCLN) relaxed-clock model was preferred. For the model-based demographic inference, the

non-parametric skygrid model was preferred for DENV-1 and DENV-3, and the parametric

Exponential growth model for DENV-2 and DENV-4 [S4 Table].

Viral demographic curves were reconstructed for each serotype using either the isolates

from Colombia (n = 235) sampled between 1982 and 2015 or the isolates from the region of

Evolutionary history and phylogeography of DENV from Colombia
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Santander (n = 160) collected between 1998 and 2015 in order to have a measure of dengue

genetic diversity and its fluctuations over time.

The pattern of DENV spread was identified using a standard continuous-time Markov

chain (CTMC) coupled with the Bayesian stochastic search variable selection (BSSVS) proce-

dure [38]. We assumed that the transition rates between locations were reversible (symmetrical

model). Different schemes of discrete geographical locations were used [S3 Fig] to account for

any sampling bias: in the first scheme, the country of isolation was used. In the second scheme,

neighboring countries were grouped in regions except for Colombia and Venezuela: Andes

(Bolivia, Ecuador and Peru), Central America, Greater Antilles, Lesser Antilles, North America

and Southern Cone (Argentina, Brazil and Paraguay). In the final scheme, the Andean region

and Southern cone regions were merged into one region named South American region. A

Bayes factor test (BF> 9) was used to recognize well-supported diffusion rates using the

SpreaD3 v0.9.6 software [39]; well-supported diffusion routes concerning Colombia were

compared among schemes.

Bayesian approach was implemented in BEAST v1.8.3 software package [40]. For every

analysis, five independent Markov Chain Monte Carlo (MCMC) were used with at least 100

million generations each. Samples were combined and diagnosed using Tracer v1.6 (http://

tree.bio.ed.ac.uk/software/tracer) until the reached effective sample sizes over 200 for all

parameters [41]. Maximum clade credibility trees (MCC) were summarized using TreeAnota-

tor v1.8.1.

Results

DENV genotypes circulating in Colombia

A total of 235 full-length E-gene sequences from Colombia viruses isolated in Colombia were

used in this study: 193 from the region of Santander (160 from the metropolitan area of Buca-

ramanga and 33 from the Province of Ocaña); 31 sequences were from the states of Antioquia

(n = 21), Valle del Cauca (n = 6), Bolivar (n = 2), Guaviare (n = 1), and Cesar (n = 1); and 11

sequences for which the exact state was not available.

The nucleotide diversity (π)—the average number of nucleotide differences per site in pair-

wise comparisons among sequences—for the Colombian strains was similar for DENV-2 and

DENV-4 (0.020) and lower for DENV-3 (0.015), and DENV-1 (0.011). The haplotype diversity

(h)—the probability that two randomly sampled alleles are different—was high and nearly sim-

ilar for all serotypes (DENV-1, 0.98; DENV-2, 1.0; DENV-3, 0.99; DENV-4, 0.99).

Evolutionary history of DENV in Colombia

We documented DENV-1 genotype V, DENV-2 genotype Asian/American, DENV-3 geno-

type III, and DENV-4 genotype II in Colombia [S2 Fig]. The estimated mean rates of nucleo-

tide substitution per site and per year (expressed as the mean and the 95% highest posterior

density interval, HPD) were 6.14 x 10−4 (5.07–7.11), 7.30 x 10−4 (6.11–8.58), 8.80 x 10−4 (6.53–

9.66), and 7.48 x 10−4 (5.96–9.04) for DENV-1 to DENV-4, respectively. These estimates were

in line with those previously reported for the same genotypes circulating in the Americas [42–

46]. For every genotype, we evidenced multiple introductions into Colombia as detailed below.

DENV-1

The MCC tree for DENV-1 included 79 E-gene sequences from Colombia and evidenced sev-

eral introductions intro the country [Fig 2]. Two different virus strains isolated in 1985

(AF425616) and 1996 (AF425617) were related to viruses circulating in the Lesser Antilles and

Evolutionary history and phylogeography of DENV from Colombia
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had an estimated time to the most recent common ancestor (TMRCA) around the early 1970s.

Most of the strains isolated during the 1990s and the majority of the strains isolated during the

2000s (all of them sampled in the region of Santander) grouped in a different clade that inter-

mixed with strains from Venezuela (1994–2008) and had a TMRCA around 1993 (95% HPD

1992–1995). This clade also included strains from other South America regions (Brazil/Para-

guay/Argentina, 2008–2011), Greater Antilles (Dominica/Puerto Rico/Haiti, 2006–2014) and

the United States of America (2013). Venezuela appeared as the most probable ancestral loca-

tion (PP = 1.00) for the latest introductions of DENV-1 into Colombia.

DENV-2

The majority of Colombian strains (38 out of 42) were from the Santander Region, and the

remaining isolates were from the states of Antioquia (2004, n = 1), Guaviare (2005, n = 1) and

1.00
0.32
1972

(1969 - 1973)

1.001.001.001.001.001.001.001.001.001.001.001.001.001.00001.001.001.001.001.001.0000000000000000000000000000000
0.0.0.0.0.0.0.000.0000.0.0.0.00.00.3232323233232223232323233232323232323222223322323222332223232232322333232332323322
1972197219721972197219721972971972972972719729719727972197219721972197219729729722219729779797229729972229979 2999 299

(196(196(196(196(196(196(196(196(196(196(196(196(1(196(196(196(196(196(19699 9 - 9 - 9 - 9 - 9 -9 -9 -9 -9 -9 -9 -9 -9 -99999 - 19731973197319731973197319731973973197319731973197319731973197973999 )))))))))))))))

Fig 2. Maximum clade credibility tree of DENV-1. Branches colored according to the most probable posterior location of their child nodes. Monophyletic

clades from Colombia highlighted in grey. Node posterior probability (bold), ancestral state probability and the mean estimated time to the most recent common

ancestor (tMRCA) with the respective 95% highest posterior density interval (HPD) are indicated for relevant clades. �: virus strains isolated in 1985 (AF425616)

and 1996 (AF425617) available in Genbank.

https://doi.org/10.1371/journal.pone.0203090.g002
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Valle del Cauca (2015, n = 1). The MCC tree evidenced at least five different introductions of

DENV-2 intro the country [Fig 3]. A single Colombian strain isolated in 1993 (location

unknown) grouped with viruses from the Lesser Antilles (Trinidad and Tobago from 1997)

and together they had a TMRCA around 1988 (95% HPD: 1988–1992). Another two strains

isolated Santander (1998) grouped either with a few strains from Venezuela (1990–1996) or

with strains from Central American (1999–2012) and, in each case, they had an estimated

TMRCA around 1988 (95% HPD: 1986–1989 and 1986–1993, respectively). Viral strains sam-

pled in the 1990s and thenceforth, grouped with the remaining strains from Venezuela (1991–

2008) and with one strain from Costa Rica (2003); this group had a TMRCA around 1987

(95% HPD: 1986–1988) and was most likely introduced from the Lesser Antilles (PP = 0.93).

Finally, a single strain isolated in 2007 from unknown locality did not fell in the previous

group and instead clustered with viruses from Central America with a TMRCA around 2000

(95% HPD: 1999–2001); this case represents the most recent DENV-2 documented introduc-

tion into the country and possible a lineage that circulated in low-levels.

Fig 3. Maximum clade credibility tree of DENV-2. Branches colored according to the most probable posterior location of their child nodes.

Monophyletic clades from Colombia highlighted in grey. Node posterior probability (bold), ancestral state probability and the mean estimated time to

the most recent common ancestor (tMRCA) with the respective 95% highest posterior density interval (HPD) are indicated for relevant clades.

https://doi.org/10.1371/journal.pone.0203090.g003
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DENV-3

Our analysis included 89 E-gene sequences from Colombia and we identified two distinct line-

ages that co-circulated [Fig 4]. The first lineage included strains from Santander (2001–2015,

n = 38), Norte of Santander (2005–2006, n = 5) Antioquia (2002–2007, n = 8), and one strain

from Valle del Cauca (2014) that grouped together with strains from Venezuela (2000–2008)

and the Greater Antilles (Puerto Rico, 2006; Cuba, 2001). This lineage was probably intro-

duced from the Greater Antilles (PP = 0.81) and its TMRCA was around 1995 (95% HPD:

1994–1998). The second lineage consisted of the remaining 37 strains from multiple states

from Colombia (Santander (2007–2015, n = 18), Antioquia (2003–2009, n = 12); Valle del

Cauca (2004–2015, n = 3), Bolivar (2006 and 2015), and two strains for which the precise loca-

tion was not available (2007, n = 2)) that grouped together with strains from Puerto Rico

(2004) and Venezuela (2005). This second lineage was probably introduced from Central

America (PP = 0.67) and its TMRCA was around 1999 (95% HPD: 1995–2001).

DENV-4

The MCC tree for DENV-4 included 25 E-gene sequences from Colombia and evidenced at

least two introductions [Fig 5]. The majority (n = 19) of strains were from the Santander

Fig 4. Maximum clade credibility tree of DENV-3. Branches colored according to the most probable posterior location of their child nodes.

Monophyletic clades from Colombia highlighted in grey. Node posterior probability (bold), ancestral state probability and the mean estimated

time to the most recent common ancestor (tMRCA) with the respective 95% highest posterior density interval (HPD) are indicated for relevant

clades.

https://doi.org/10.1371/journal.pone.0203090.g004
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Region, two strains (2015) were from the states of Valle del Cauca and Cesar, and there were

four strains for which the precise location was not available. The two oldest available isolates

from Colombia (KC963424 and GU289913) sampled in 1982 grouped with strains from the

Greater Antilles, North, South and Central America, and had a TMRCA around 1977 (95%

BCI:1976–1977). Most Colombian strains sampled in 2000–2015 (20 out of 25) grouped with

strains from Venezuela (1995–2008), and the majority of strains from other South American

countries (Ecuador, Peru and Brazil, 2006–2013). The inferred TMRCA for this group was

around 1993 (95% BCI: 1990–1995), and it was most likely introduced from Venezuela

(PP = 0.65). The remaining three strains from Colombia, which were isolated in 1996, 1997

and 2006, grouped with one strain from Venezuela (1995), one from Ecuador (2000) and one

from Peru (2000). This small group had a TMRCA around 1990 (95% HPD: 1985–1992). The

strains from the region of Santander and the neighbor state of Cesar were closely related to

strains from Venezuela and Brazil strains, while the single strain from Valle del Cauca (in the

southwest part of Colombia) was closely related to strains from Ecuador and Peru.

Fig 5. Maximum clade credibility tree of DENV-4. Branches colored according to the most probable posterior location of their child

nodes. Monophyletic clades from Colombia highlighted in grey. Node posterior probability (bold), ancestral state probability and the mean

estimated time to the most recent common ancestor (tMRCA) with the respective 95% highest posterior density interval (HPD) are

indicated for relevant clades.

https://doi.org/10.1371/journal.pone.0203090.g005
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Well-supported migration rates concerning Colombia

We estimated the most significant migration routes among geographical locations using a dis-

crete Bayesian phylogeographic analysis. To account for any sampling bias, the reconstructions

were done using three different geographic schemes—detailed in methods. Well-supported

diffusion routes with respect to Colombia were compared among schemes. In all cases, the

recovered phylogeographical pattern underscored a strong link between Colombia and Vene-

zuela in terms of viral diffusion. Likewise, the Caribbean region played an important role in

the diffusion of DENV2—DENV4. Lastly, Central America was relevant for the diffusion of

DENV2, whereas South America was relevant for the diffusion of DENV4.

The most homogenous schema (scheme C) was also analyzed under an asymmetrical

model as a proxy for directionality [Fig 6]. This analysis showed that most DENV lineages

where introduced into Colombia from the other regions. Colombia appeared to be important

for the diffusion of DENV3 into Venezuela and the Greater Antilles and had a significant bidi-

rectional diffusion of DENV-2 lineages with Venezuela and Central America.

DENV serotypes demographic history

The Bayesian demographic reconstructions for Colombia are shown in Fig 7. Overall, we

observed a steady increase in the effective population size (Ne) over time for DENV-2 and

Symmetric model

D1
D2
D3

Asymmetric model

Colombia

Lesser Antilles

Greater Antilles

Central America Central America

Greater Antilles

Lesser Antilles

South America

D4

Venezuela

Colombia

Venezuela

Fig 6. Summary of dengue virus (DENV) lineages spread with respect to Colombia. Colors indicate each serotype. Only routes with Bayes factor support> 9 are

presented.

https://doi.org/10.1371/journal.pone.0203090.g006
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Total of the Region of Santander's sequences

(n = 19)

(n = 36)

(n = 61)

(n = 76)

Fig 7. DENV Population dynamics in Colombia and the state of Santander (1998–2015). Left panels: relative genetic diversity of each serotype in Colombia estimated

using non-parametric Skygrid coalescent analysis. Right panels: relative genetic diversity of each serotype in the state of Santander overlapped with the respective

serotype predominance. National dengue epidemics indicated with triangles. Gray colored areas show the periods that were not sampled. Ne denotes effective population

size in logarithmic scale.

https://doi.org/10.1371/journal.pone.0203090.g007
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DENV–4. There were oscillations in the case of DENV-1 and more pronounced ones in the

case of DENV-3, but the general trend is of increased diversity over time. In the case of

DENV-3, there is an increase in diversity peaking during the period 2001–2005, a sharp drop

after that and a steady increase from 2009 onwards. The demographic reconstruction for the

region of Santander, which accounted for 82% of the Colombian sequence data, followed the

same dynamics as that recovered with the dataset from the Country.

There was an agreement between the increase of Ne of DENV-3 and the re-introduction of

this serotype into the country in 2001 that led to high DENV-3 prevalence in the following

years. The same type of pattern was not observed for DENV-1, which was highly prevalent

during the periods of 1998–1999 and 2007–2008. DENV-2 and DENV-4 are respectively the

most and less prevalent serotypes isolated in the region and although there have been changes

in the prevalence of both of them over time, we did not observe any visible difference in the

growth of Ne.

Discussion

This study is the first large-scale analysis of the spatial and temporal dynamics of DENV in

Colombia during the period 1998–2015 using newly sequenced and curated genetic data

retrieved from GenBank. The novel sequences were sampled in distinct locations of Colombia,

but most of them came from the region of Santander. We documented the frequent introduc-

tion of dengue lineages into Colombia, the ongoing co-circulation of multiple serotypes and

lineages within the country and the local viral population dynamics.

Our phylogenetic analysis confirmed the circulation of one genotype per serotype (DENV-

1: Genotype V, DENV-2: Asian/American Genotype, DENV-3: Genotype III and DENV-4:

Genotype II) and it is consistent with the results of other studies [16–19]. The presence of

DENV-4 genotype I was documented in Brazil in 2013 [47], but we did not find evidence of its

circulation in Colombia. Despite multiple strain introductions of DENV-1, DENV-2 and

DENV-4, our data indicated that only one lineage predominates up to date, suggesting the

turnover of viral lineages over time. With the data at hand we could not address if such turn-

overs are due to stochastic die-off or other factors; however, the re-emergence of DENV-2 in

an dengue-endemic setting from Indonesia was due to the loss or decrease of herd immunity

during a 5-year period where DENV-1 predominated [48]. Similarly, changing serotype preva-

lence has been associated with lineage extinction and lineage replacements in Thailand and

with dengue epidemics in Singapore [49, 50, 51, 52]. Here, we recorded two distinct lineages of

DENV-3 that apparently were introduced at the same time, that had the same level of circula-

tion and that overlapped in time and space. It may be the case that, the complete susceptibility

of the population to this serotype at the time of the introduction allowed two successful inde-

pendent transmission chains. Similarly, the co-circulation of two DENV-3 lineages has been

reported in the metropolitan area of Medellin, Colombia [18] and the co-circulation of differ-

ent lineages has been demonstrated for DENV-1 and DENV-2 in Brazil [53,54].

Our estimated tMRCAs for each serotype preceded (between 5–7 years) the respective offi-

cial epidemiologic reports by the National Institute of Health from Colombia [9,12]. This is

likely the outcome of a preliminary silent circulation of virus (i.e., individuals experiencing

mild to asymptomatic infections) coupled with local passive surveillance for dengue [2]. The

DENV surveillance in Colombia relies on the immediate reporting of fatal cases and the

weekly routine reporting of symptomatic ones by the health care providers [55]. Consequently,

the true burden of dengue might be underestimated once local physicians may fail to report

cases quickly and routinely. Such passive surveillance includes neither a thorough serotyping

nor the genetic characterization of strains owing to financial costs and time constraints. All
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fatal cases are laboratory-confirmed, but only around 10–20% of laboratory confirmations

remain mandatory for the non-fatal ones [55]. Thus, health care providers belonging to the

public health sentinel surveillance system send only a small fraction of collected serum samples

to the National Institute of Health for laboratory confirmation and serotype identification. As

a consequence, an epidemic has often reached or passed its peak before it has been recognized

or before it can be controlled, resulting in a vague idea of the influence of the serotypes behind

it.

The increased regional commerce and travel in dengue hyper-endemic Latin America likely

drive frequent exchanges and importation of DENV through human movement. For instance,

it has been shown an effect of air travel in increased dengue transmission in the Americas and

Asia [43, 53, 56]. Here, We observed frequent viral lineage exchange among Latin American

countries and persistent co-circulation of dengue viral lineages. Human flow in Colombia is

also particularly significant as the country is the largest sending country of migrants in South

America [57,58]. However, the country seems to act as a sink instead of a source for DENV lin-

eages. The strong association with Venezuela probably reflects geographical proximity, con-

nectivity through trade and migratory history (A significant migrant wave occurred in the mid

80’s to Venezuela, primarily motivated by its economic boom and by the economic difficulties

of Colombia at that time). However, we also do not rule out the possibility that this association

could be a result of intense sampling in the northeast of Colombia. For example, the DENV-4

sequence from Valle del Cauca (southwestern Colombia) was related to those from Peru and

Ecuador. Nevertheless, the region of Santander represents a point of transit with the neighbor-

ing country of Venezuela and thus substantial morbidity due to cross-border exchange of den-

gue-infected people is expected to continue.

Given that DENV transmission is similar to other arboviruses, the aforementioned high

levels of viral exchange are consistent with the rapid and recent establishment of chikungunya

(CHIKV) and Zika (ZIKV) in the region [59,60,61]. However, whereas the dynamics of DENV

are complicated by the four serotypes and complex susceptibility profiles of local populations,

recurring CHIKV and ZIKV outbreaks will be functionally related to the turnover rate of sus-

ceptible humans in addition to reintroduction rates [62]. These observations underscore that

arboviral diseases are a recurring public health problem in Colombia and recognizing the

importance of their molecular investigation will strengthen diagnosis and epidemiological

integrated surveillance.

The population dynamics of DENV can be driven by viral introduction events that could

eventually lead to lineage turnovers as have been documented in other settings [43,53,63,64,

65]. For instance, regular stochastic clade replacement led to recurring homotypic dengue out-

breaks in Malaysia [66]. In the same vein, constant DENV introductions and in situ evolution

contribute to viral diversity in Singapore where replacement of a predominant viral clade,

even in the absence of a switch in the predominant serotype, hinted a possible increase in

transmission [52]. In our study, and in particular in the Santander Region, we observed the

consistently co-circulation of the four serotypes over consecutive years. This underscores an

intricate pattern of competition that does not result in complete serotype displacement and

may explain the increase of diversity over time for the four serotypes. We observed much

rapid rise in the Ne of DENV-3 followings its introduction that was also reflected in the pre-

dominance of this serotype in the period 2001–2004. Thus, in the Santander Region, both in
situ evolution and the recurrent introduction of lineages drive local dengue dynamics.

This study had limitations: most of the samples were collected from a single region and this

limits our knowledge on the country-wide viral genetic diversity. Likewise, samples from other

countries and times are quite heterogeneous and this might also hide additional routes and the

relevance of specific regions from the establishment and transmission of dengue in Colombia
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and the Americas. Furthermore, giving scarcity of resources, limited data on serotype preva-

lence restricts the conclusion that could be drawn on the dynamics of DENV. Larger series

with long-term follow-up are needed to confirm the effect that a particular serotype might

have during epidemics. Nonetheless, even with these limitations, we showed that passive labo-

ratory-based disease surveillance studies allowed us to have a general picture of the diversity

and dynamics of DENV.

Conclusion

We characterized the spatial-temporal dynamics of all dengue serotypes in a highly endemic

area of Colombia, documented the co-circulation of a single genotype of each serotype, and

the unapparent circulation of every serotype prior its first detection in the country. This study

also showed that genetic diversity of serotypes circulating in the country continues to grow

due to in-situ evolution and recurring introductions of viral strains from different countries in

the region. Our study advances the countrywide genomic surveillance to lay the groundwork

for the introduction of dengue vaccines and future control initiatives and underscores the con-

tinued need for a sensitive surveillance system aiming to collect reliable baseline data.
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