
HAL Id: lirmm-03113211
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03113211

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Low for Speed Oracles
Laurent Bienvenu, Rodney Graham Downey

To cite this version:
Laurent Bienvenu, Rodney Graham Downey. On Low for Speed Oracles. 35th Symposium on
Theoretical Aspects of Computer Science (STACS 2018), Feb 2018, Caen, France. pp.15:1-15:13,
�10.4230/LIPIcs.STACS.2018.15�. �lirmm-03113211�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03113211
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On Low for Speed Oracles
Laurent Bienvenu
LIRMM, CNRS & Université de Montpellier, Montpellier, France
laurent.bienvenu@computability.fr

Rodney Downey
School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New
Zealand
rod.downey@vuw.ac.nz

Abstract
Relativizing computations of Turing machines to an oracle is a central concept in the theory
of computation, both in complexity theory and in computability theory(!). Inspired by lowness
notions from computability theory, Allender introduced the concept of “low for speed” oracles. An
oracle A is low for speed if relativizing to A has essentially no effect on computational complexity,
meaning that if a decidable language can be decided in time f(n) with access to oracle A, then
it can be decided in time poly(f(n)) without any oracle. The existence of non-computable such
A’s was later proven by Bayer and Slaman, who even constructed a computably enumerable one,
and exhibited a number of properties of these oracles as well as interesting connections with
computability theory. In this paper, we pursue this line of research, answering the questions left
by Bayer and Slaman and give further evidence that the structure of the class of low for speed
oracles is a very rich one.

2012 ACM Subject Classification Theory of computation → Turing machines, Theory of com-
putation → Complexity classes

Keywords and phrases Lowness for Speed, Oracle Computations, Turing Degrees

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.15

Related Version A full version of the paper is available at https://arxiv.org/abs/1712.
09710.

Funding Bienvenu acknowledges support of ANR-15- CE40-0016-01 RaCAF grant, Downey
thanks the Marsden Fund of New Zealand, and the LIRMM (University of Montpellier) where
this research was undertaken.

Acknowledgements We would like to thank three anonymous referees for their helpful comments
and suggestions.

1 Introduction

The subject of this paper is oracle computation, more specifically the effect of oracles on the
speed of computation. There are many notable results about oracles in classical complexity,
beginning with the Baker-Gill-Solovay result [3] which asserts that there are oracles A such
that PA = NPA, but that there are also oracles B such that PB 6= NPB (thus demonstrating
that methods that relativize will not suffice to solve basic questions like P vs NP). An
underlying question is whether oracle results can say things about complexity questions in
the unrelativized world. Eric Allender and his co-authors [1, 2] showed that oracle access to
the sets of random strings could give insight into basic complexity questions. For example,

© Laurent Bienvenu and Rodney Downey;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:laurent.bienvenu@computability.fr
mailto:rod.downey@vuw.ac.nz
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.15
https://arxiv.org/abs/1712.09710
https://arxiv.org/abs/1712.09710
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 On Low for Speed Oracles

in [2], Allender et. al. showed that ∩UPRKU ∩ COMP ⊆ PSPACE where RKU
denotes the

strings whose prefix-free Kolmogorov complexity (relative to universal machine U) is at least
their length, and COMP denotes the collection of computable sets. Later the “∩COMP” was
removed by Cai et. al. [7]. Thus we conclude that reductions to very complex sets like the
random strings somehow gives insight into very simple things like computable sets.

Inspired by lowness notions in computability theory, Allender asked whether there were
non-trivial sets which were “low for speed” in that, as oracles, they did not accelerate running
times of computations by more than a polynomial amount. Of course, as stated this makes
little sense since using any X as oracle, we can decide membership in X in linear time, while
without oracle X may not even be computable at all! Thus, what we are really interested in
is the set of oracles which do not speed-up the computation of computable sets by more than
a polynomial amount. More precisely, an oracle X is low for speed if for any computable
language L, if some Turing machineM with access to oracle X decides L in time f , then there
is a Turing machine M ′ without oracle and polynomial p such that M ′ decides L in time p◦f .
(Here computation time of oracle computation is counted in the usual complexity-theoretic
fashion: we have a “query tape” on which we can write strings, and once a string x is written
on this tape, we get to ask the oracle whether x belongs to it in time O(1)).

There are trivial examples of such sets, namely oracles that belong to P, because any
query to such an oracle can be replaced by a polynomial-time computation. Allender’s precise
question was therefore:

Is there an oracle X /∈ P which is low for speed?

Such an X, if it exists, has to be non-computable, for the same reason as above (if X is
computable and low for speed, then X is decidable in linear time using oracle X, thus – by
lowness – decidable in polynomial time without oracle, i.e., X ∈ P).

A partial answer was given by Lance Fortnow (unpublished), who observed the following.

I Theorem 1 (Fortnow). If X is a hypersimple and computably enumerable oracle, then X
is low for polynomial time, in that if L ∈ PX , then L ∈ P.

Allender’s question was finally solved by Bayer and Slaman, who showed the following.

I Theorem 2 (Bayer-Slaman [4]). There are non-computable, computably enumerable, sets X
which are low for speed.

Once their existence is established, it is natural to wonder what kind of sets might be
low for speed. A precise characterization seems currently out of reach, but it is interesting
to see how lowness for speed interacts with other computability-theoretic properties. One
needs however to keep in mind that lowness for speed is not closed under Turing equivalence:
we saw above that in the 0 degree (computable sets) some members are low for speed and
others that are not (on the other hand it is easy to see that if A is polynomial-time reducible
to B and B is low for speed, then A is also low for speed).

In his PhD thesis, Bayer showed that if X is computably enumerable and of promptly
simple Turing degree, then X is not low for speed, but also proved that this did not
characterize the computable enumerable oracles that are low for speed. Bayer also studied
the size of the set of low for speed oracles, where ‘size’ is understood in terms of Baire
category. Surprisingly, whether the set of low for speed oracles is meager or co-meager
depends on the answer of the famous P =?NP question.

In this paper, we continue Bayer and Slaman’s investigation on the set of low for speed
oracles. In the next section, we give an easier proof of the existence of non-computable low

L. Bienvenu and R. Downey 15:3

for speed oracles which does not require the full Bayer-Slaman machinery (but the oracle
we construct is not computably enumerable). In Section 3, we focus on the computably
enumerable low for speed oracles, and prove that – quite surprisingly – they cannot be low
in the computability-theoretic sense, but can however be low2. Finally, we pursue Bayer and
Slaman’s idea to study how large the set of low for speed oracles is, in terms of measure and
category. In particular, we solve a question they left open by showing that the set of low
for speed oracles has measure 0 and obtain some interesting connections with algorithmic
randomness. Finally, though lowness for speed is not closed under Turing equivalence, it is
nonetheless natural to ask which Turing degrees contain a low for speed member, which is
what Section 5 is about.

Throughout this paper, we will denote by {0, 1}∗ the set of finite strings. In our setting,
an oracle is a language, i.e., a subset of {0, 1}∗; however, as is typical in computability theory,
it is more convenient in some of the results we present below to view oracles as infinite binary
sequences (whose set we denote by {0, 1}ω), by first identifying finite strings with integers (the
(n+ 1)-th string in the length-lexicographic order being identified with n) making the oracle
a subset of N and then identifying the oracle with its characteristic sequence (the (n+ 1)-th
bit is 1 if n belongs to the oracle, 0 otherwise). When building oracles X with certain
computability-theoretic properties, viewed as infinite binary sequences, we will often need
to refer to prefixes of X, which are themselves binary strings. To avoid confusion between
members and prefixes of oracles, we will use latin letters x, y, z, . . . to denote members of
oracles, and greek letters σ, τ, . . . for prefixes of oracles. Two strings σ and τ are incompatible
if for some i < min(|σ|, |τ |), σ(i) 6= τ(i). We denote this by σ⊥ τ . The join X ⊕ Y of two
infinite binary sequences X,Y is the sequence X(0)Y (0)X(1)Y (1) Finally X � n is the
prefix of X of length n.

Our paper requires some knowledge of computability theory and algorithmic randomness.
One can consult the book [8] for the results and concepts we allude to below. Our notation
is mostly standard. We fix a computable bijection 〈., .〉 from pairs of strings/integers to
strings/integers. We also fix an effective list (Φe) of all oracle Turing functionals (or machines:
ΦAe is the Turing machine of index e with oracle A, which for a fixed A is a partial function
from {0, 1}∗ to {0, 1}). For a given functional Φe and oracle A, time(ΦA

e , x) denotes the
running time of Φe on input x with oracle A (counting time according to the model of
computation described above) and time(ΦAe) is the function x 7→ time(ΦAe , x). We let (Ri)
be an effective enumeration of all partial computable functions from {0, 1}∗ to {0, 1}. We
denote the set of low for speed oracles by LFS, and the subset of LFS consisting of its
non-computable elements by LFS∗.

Due to space restrictions some proofs are omitted. They can be found in the extended
version of the paper, available at https://arxiv.org/abs/1712.09710.

2 Existence of non-computable low for speed sets

In this section we will present a simple proof of the existence of a non-computable low for
speed oracle. Define the set S of strings by S = {02n | n ∈ N} and – identifying S with a set
of integers as discussed above – let S be the set of ‘sparse’ infinite binary sequences (viewed
as sets of integers) that only contain elements from S, that is, S = {X ∈ {0, 1}ω | X ⊆ S}.

By extension, we say that a string σ is in S if it is a prefix of some element of S. The
interest of the set S is that there are only O(n) strings in S of length n. Thus, given a Turing
machine Φ, it is possible to simulate in time poly(t) the behaviour of ΦX during t steps of
computation on all X ∈ S (an idea that is already present in the Bayer-Slaman argument
presented in the next section).

STACS 2018

https://arxiv.org/abs/1712.09710

15:4 On Low for Speed Oracles

I Theorem 3. There exists a non-computable X which is low for speed.

Proof. We want X to satisfy all requirements R(e,i), defined as follows:

R(e,i): either Ri is partial, or ΦXe 6= Ri, or ΦXe = Ri but the computation of Ri via ΦXe
can be simulated by a functional Ψ running in time polynomial in time(ΦXe).

We build our oracle X by finite extension. Let σ0 be the empty string. At stage
s+ 1 = 〈e, i〉, do the following.
(a) If there is an n and a τ ∈ S extending σs such that Φτe (n) and Ri(n) both converge and

have different values, then let σs+1 be the first (say in length-lexicographic order) such
string τ .

(b) If there is no such string τ , then take σs+1 = σs0

Finally let X be the unique infinite sequence extending all σs. We claim that X is as
wanted. Let us first prove that X must be incomputable. Suppose X = Ri for a total Ri.
Let e be an index such that Φe is the identity functional. By construction, when choosing
the prefix τ of X at stage s+ 1 = 〈e, i〉, we must be in case (a), and thus τ is precisely chosen
to ensure X 6= Ri, a contradiction. Let us now prove that X is low for speed. Fix a pair
(e, i) let s + 1 = 〈e, i〉, and let us see how σs+1 was constructed. If we were in case (a) at
that stage, we have ensured Φσs+1

e ⊥Ri and thus ΦX
e ⊥Ri, thereby satisfying R(e,i). If we

were in case (b), there are three subcases:
Either Ri is partial, then the requirement R(e,i) is satisfied.
Or there is an n such that Φτe (n) ↑ for any extension τ of σs, in which case ΦXe (n) ↑ and
thus ΦXe 6= Ri should Ri be total.
Or, if we are in neither of the two above cases, for every n there is an extension τ

of σs such that Φτ
e (n) ↓, and for any such τ , we have Φτ

e (n) = Ri(n). In this case,
we can build a functional Ψ which computes Ri as follows. On input n, at stage t, it
computes Φτe (n) during t steps of computation for all τ ∈ S of length t extending σs. If
a τ is found such that Φτ

e (n) ↓, then we set Ψ(n) = Φτ
e (n). As we already mentioned,

there are only O(t) strings of length t in S and it is obvious that they can be listed in
polynomial time. Hence, simulating all computations Φτe (n) during t steps can be done
in time p(t) for some polynomial t. This shows that for any Y ∈ S extending σs, if
ΦY
e (n) returns (the value of Ri(n)) in time t, this is found out by the procedure Ψ at

stage t, which corresponds to
∑
s≤t p(s) +O(1) steps of computation for Ψ, which is also

polynomial in t. This being true for any Y ∈ S extending σs, we have in particular that
time(Ψ) = poly(time(ΦXe)). J

One should note that the case disjunction in this proof is a Σ1/Π1 dichotomy, and
therefore one can carry out the construction below 0′, therefore establishing the existence
of a 0′-computable set that is low for speed. This is weaker than the Bayer-Slaman result
presented in the next section, which asserts the existence of a c.e. such set. However, this
proof is both simpler and, as we will see in the remainder of the paper, has further useful
corollaries.

3 Computably enumerable low for speed sets

We now restrict ourselves to the computably enumerable (c.e.) sets, and study which of
these can be low for speed. For the sake of completeness, we present the main ideas of the
proof of Bayer and Slaman [4] that there are indeed c.e. sets in LFS∗.

L. Bienvenu and R. Downey 15:5

I Theorem 4 (Bayer-Slaman Theorem). There exist c.e. non-computable sets that are low
for speed.

Proof sketch. The proof uses a tree-of-strategies argument. We need to satisfy

Pe : A 6= We,

and

Le,i : If ΦAe = Ri total, then some Ψ computes Ri in time polynomial in time(ΦAe).

The Pe-strategy is a standard Friedberg-Muchnik strategy on a tree. A node ρ devoted to
this requirement picks a fresh follower x, waits for x ∈ We[s] and if this happens puts x
into A.

The basic strategy for Le,i is the following. First, throughout the whole construction
of A, we will promise that if we add an element x to A at stage t, then we must immediately
also add all y ∈ [x, t] (this is often referred to as a dump construction). This way, at any
stage s, there will only be at most s strings α of length s that can potentially be a prefix
of (the final) A. And thus – just like in the previous section – at stage s, it is possible to
emulate all computations Φαe (x)[s] for all such α’s and x ≤ s in time poly(s).

When the strategy is eligible to act at stage s, for every x ≤ s on which Ψ is not defined
yet, it computes all Φαe (x)[s] for all potential prefixes α of A, and should one of them converge,
defines Ψ(x) to be the value of Φα

e (x) for the α that has the fastest convergence. If no
Φαe (x)[s] converges, Ψ(x) remains undefined until the strategy is eligible to act again.

Now, if at some later stage we find a value x such that Ri(x) ↓ and Ψ(x) 6= Ri(x), then
we find the α such that Ψ(x) = Φαe and add elements into A so that α becomes a prefix of A.
This ensures ΦAe 6= Ri and terminates the strategy. All strategies of lower priorities are then
injured and must be reset. If we never find such an x, this means that either ΦAe is partial,
or Ri is, or Ψ = ΦA

e = Ri and by construction the running time of Ψ is polynomial in the
running time of ΦAe .1

This is enough to ensure the success of the strategy in isolation. The difficulty comes
from the interaction with lower-priority strategies which might want to add elements into A.
The final key to the Bayer-Slaman proof is the following. Suppose that at some stage s a
strategy of lower priority wants to add an interval [y, s] of elements into A. The problem is
that the computations on this configuration might be slow. Perhaps for some x of length
≤ s we have not as yet seen ΦAs∪[y,s]

e (x) ↓. Even more importantly, we don’t even know that
the value of this will agree with the value Ψ(x) we have already defined.

The idea is the following. Ri has to confirm the computations, that is, we wait until
Ri(x) converges on all x where Ψ has already been defined. When (and if) this happens, we
must have Ψ(x) = Ri(x) for all such x otherwise we would be in the above case where we
can ensure ΦA

e 6= Ri and satisfy the requirement. If this never happens, our requirement
will be satisfied because Ri would be partial. And if it does happen, then we can safely add
[y, s] to A because if this causes ΦAe (x) to change, it will yield ΦAe (x) 6= Ri(x) which satisfies
the requirement. But there is one last problem: while waiting for this confirmation, the
construction of Ψ cannot wait as we need it to be as fast as ΦAe . The crucial trick is, from
the point of view of our strategy, to carry on as if [y, s] had already been enumerated into A.

1 Actually, there is a subtlety here: one must ensure that the strategy for Le,i is eligible to act often
enough, i.e., allowed to act for the n-th time before stage q(n) for some polynomial q, but this can
easily be ensured.

STACS 2018

15:6 On Low for Speed Oracles

Indeed, if the confirmation ever happens, the elements of [y, s] will be truly enumerated
into A which Ψ will have correctly assumed ahead of time, and if the confirmation never
happens, Ψ might be wrong (i.e., Ψ 6= ΦAe) but this will not matter because in this case Ri
will be either partial or different from ΦA

e . Of course, in the case where the confirmation
never occurs the strategy of lower priority never gets to enumerate into A the elements it
wants. This is where we make use of a standard tree construction where strategies of lower
priorities guess the outcome of strategies of higher priority. We refer the reader to [4] for
details. J

Within the c.e. sets, one would expect that a low for speed c.e. set would be one with little
computational power, in the same way that sets low for 1-randomness are all (super-)low
(see Nies [14]). The next theorem is therefore quite surprising.

I Theorem 5. If A is non-computable, c.e., and of low Turing degree (i.e. A′ ≡T ∅′), then
A is not low for speed.

Proof. Assume that A is not computable, is c.e., and is low. Let (Φe, pe) be an enumeration
of pairs of one functional and one polynomial with coefficients in N. We will build a Turing
functional Ψ and a computable set R such that ΨA = R. This is our global requirement and
we make the following global commitment: if a value R(n) gets defined at some stage, ΨX(n)
is immediately defined to be equal to R(n) for all X’s on which ΨX(n) is still undefined. We
want to satisfy, for each e:

(Re) : Φe does not compute R in time pe(time(ΨA))

thus proving that A is not low for speed. We give a strategy for a single requirement (Re)
(the strategies for different requirements interact to the extent that each one needs to know
the actions of the others in order to pick fresh witnesses, but the construction is injury-free).
Throughout the construction, we build a ‘verifier’, i.e., a partial computable S such that
S(e, .) is the attempt by the (Re)-strategy to guess A. We also define an auxiliary functional
Θ common to all strategies whose index we know in advance, and use the lowness of A to
obtain a computable 0-1 valued function h(., .) such that limt h(e, t) exists for all e, and
equals 1 when ΘA(e) ↓, 0 otherwise. (Informally, ΘX(e) ↓ means that a prefix of X is
believed to be a prefix of A at some stage of the strategy for (Re), and this will cause the
strategy to enter Case 3 as described below.)

At the initial stage s1, S is empty and we pick a first fresh witness w1 larger than any
integer mentioned so far in the construction and define ΨAs1�1(w1) = 0. Let t1 be the time
this computation takes. Now, check whether Φe(w1) returns in pe(t1) steps. We distinguish
three cases:
Case 1: Φe(w1) returns 1 in ≤ pe(t1) steps. In this case, we set R(w1) = 0 and R(n) = 0

for all n ≤ w1 on which R is still undefined, and commit to having ΨA(w1) = 0 even
after potential future A-changes. This way we ensure Φe 6= R = ΨA, thus immediately
satisfying (Re), and we stop the strategy for this requirement.

Case 2: Φe(w1) returns 0 in ≤ pe(t1) steps. In this case, we do not define R(w1) just yet.
Instead, we set S(e, 1) = As1 � 1. We then create a second witness w2 at stage s2 and
proceed as above for this new witness (with As2 � 2 in place of As1 � 1). And so on: for
further occurrences of this case, the procedure will extend S and create a witness w3 at
stage s3 looking at prefixes of length l = 3, etc (and if Case 2 then causes a reset, we stay
at the same level l, that is, keep the same l, when resetting). Meanwhile, we continue to
monitor A. Again, there are two subcases for a given l:

L. Bienvenu and R. Downey 15:7

(a) At some point we discover that Asl
� l is not in fact an initial segment of A, we are

then free to set R(wl) = 1 (which will guarantee ΨA(wl) = 1 = R(wl) 6= Φe(wl) since
we only committed to Ψσ(wl) = 0 for σ’s that are not prefixes of A), and this way we
have satisfied (Re). We then stop the strategy.

(b) Asl
� l is a true initial segment of A, in which case nothing further will happen regarding

witness wl. What is gained is that S(e, l) will be defined to be Asl
� l = A � l, thus

progress was made towards computing A.
Case 3: Φe(w1) is still undefined after pe(t1) steps. In this case, we set ΘAs1�1(e) ↓ (which

should be interpreted as signalling that we are currently in Case 3). Observe that if As1 � 1
is a true prefix of A, this implies ΘA(e) ↓ and therefore we would have lim h(e, t) = 1.
We distinguish two subcases.

(a) The current value h(e, s) is 0. Then we wait for a stage t > s such that either h(e, t) = 1
or At � 1 6= As � 1 (one of the two must happen as we explained above). If the former
happens first we move to subcase (b) below. If the latter happens first, we restart the
procedure, resetting s1 to the current stage t and keeping the same w1.

(b) The current value h(e, s) is 1. We then set R(w1) = 0, set R(n) = 0 for all n ≤ w1 on
which R is still undefined and terminate the strategy for now. However, if at a later
time t > s, we see that h(e, t) = 0 and At � 1 6= As1 � 1, then we resurrect the strategy
and start over at the level l where we left off.

We claim that this strategy satisfies the requirement (Re). If Case 1 happens for any
witness wl, the requirement is satisfied. Case 3a can only happen finitely many times at a
given level since as Asl

� l can only change finitely many times. Case 3b can only happen
finitely many times across all levels as each passage through this case causes a flip of h(e, .),
and we know h(e, .) converges. Case 2b can also happen only finitely often, because each
time we go through this case and do not get to diagonalize, S(e, .) computes a longer initial
segment of A, but A is incomputable so S(e, l) would eventually have to be wrong.

Thus we either eventually end up in Case 1 (and immediately succeed) or Case 2a (and
immediately succeed) or a terminal Case 3b, i.e., the strategy enters Case 3b and stays there
forever. It remains to check this last scenario. Suppose the terminal Case 3b happens for
some Asl

� l which is not a prefix of A, this means that ΨA(wl) has not been defined yet and
thus, should nothing else happen, we would have limt h(e, t) = 0 and would see a change in
A � l, thus leaving this occurrence of Case 3b, a contradiction. So Asl

� l is indeed a prefix
of A and by construction ΨA(wl) returns 0 = R(i) in a number of steps t while Φe(wl) does
not return in less than pe(t) steps, thus the requirement is satisfied. It is now straightforward
to satisfy all requirements by ordering them in order of priority, noticing that each strategy
only makes finitely many changes to R before achieving its goal and R is total as every time
R(w) becomes defined, so do the R(n) for n ≤ w that were previously undefined. J

It is important to note that Theorem 5 fails to hold outside of the c.e. setting.

I Theorem 6. There exists a low, non-computable set X which is low for speed.

Proof. See Section 5. J

One can also show that Theorem 5 does not extend to other levels of the ‘low’ hierarchy
within c.e. sets.

I Theorem 7. There is a low2 c.e. set that is low for speed.

STACS 2018

15:8 On Low for Speed Oracles

We can also combine the the same ideas (dump construction together with awaiting
for certification) with the standard proof that there exists an incomplete c.e. set A of high
Turing degree (i.e., A′ ≡T ∅′′) to get the following.

I Theorem 8. There is a high c.e. set A which is low for speed.

4 How big is LFS?

Bayer and Slaman showed that whether LFS is meager or not... depends on the answer to
P vs NP question! More precisely, if P = NP, then LFS is co-meager (even more precisely,
every 2-generic is low for speed, see [8, Section 2.24] for a discussion of the various notions of
genericity), while if P 6= NP, then LFS is meager (more precisely, every recursively generic
is not low for speed). They left as an open question whether LFS has measure (Lebesgue)
0 or 1 (by Kolmogorov’s 0/1-law, it has to be one or the other). One might expect that,
just like the meagerness of LFS depends on the P vs NP question, its measure depends on
complexity-theoretic assumptions, such as the ‘P vs BPP’ question. This is not the case: we
show that LFS is – unconditionally – a nullset.

I Theorem 9. The set LFS has measure 0.

We postpone the proof of this theorem to the next section as it builds upon the proof of
Theorem 15.

On the other hand, we will see in the next section that LFS is large in the set-theoretic
sense, namely that it has the size of the continuum.

Finally, there is one last notion of size for subsets of {0, 1}ω that is dear to computability
theorists, namely, a set is ‘large’ if it contains a Turing upper cone and is ‘small’ if it disjoint
from a Turing upper cone. Martin’s Turing determinacy theorem tells us that any Borel set
which is closed under Turing equivalence must be either large or small on this account. The
set LFS is indeed Borel (this is easy to see from the definition), but it is not closed under
Turing equivalence, so Martin’s theorem does not apply. In the next section, we will use a
classical result from complexity theory to show that LFS is in fact disjoint from a Turing
upper cone (Theorem 15).

5 Lowness for speed and Turing degrees

While lowness for speed is not closed under Turing equivalence, the following question is
nonetheless interesting:

Which sets are Turing equivalent to some low for speed X? Which sets compute some
non-computable low for speed X?

We denote by LFS and LFS∗ the set of Turing degrees that contain a low for speed set
and a non-computable low for speed set, respectively. One of the main results of Bayer [4]
is that not all degrees are in LFS. Indeed, there exists a c.e. degree a /∈ LFS. The main
question left open by Bayer regarding LFS is whether it is downward closed under ≤T or
closed under join. We give a negative answer to both questions. To show that it is not
downward closed, we need the following extension of Theorem 5 to degrees.

I Theorem 10. For any low c.e. degree a > 0, we have a /∈ LFS.

L. Bienvenu and R. Downey 15:9

I Corollary 11. LFS is not downward closed under ≤T , even within c.e. degrees.

Proof. Let a > 0 be a c.e. degree in LFS whose existence was explained in Section 3.
By Sacks’s splitting theorem [15], there is a low c.e. degree 0 < b < a. By Theorem 10,
b /∈ LFS. J

The next theorem will show that while not every c.e. degree contains a low for speed
member, every non-zero c.e. degree a bounds a degree b ∈ LFS. Recall Bayer’s result that
whether 2-generics are low for speed or not depends on the ‘P vs NP’ question. When it
comes to the degree of generics, we have that every 1-generic is Turing-equivalent to a set
that is low for speed, independently of complexity-theoretic assumptions.

I Theorem 12. Every 1-generic degree g belongs to LFS∗.

Proof. We get this result by refining the proof of Theorem 3. In that proof, we built an X
low for speed by finite extension, and ensuring that X was a subset of S = {02n | n ∈ N}.
For G ⊆ N, let SG = {02n | n ∈ G}. We claim that when G is 1-generic, SG = {02n | n ∈ G}
is low for speed (and clearly SG ≡T G). In the proof of Theorem 3, if we let Ue,i be the
effectively open set of those Z such that for some n, ΦSZ

e (n) and Ri(n) both converge to
different values, we know that G, being 1-generic, is either in Ue,i (hence satisfying the
requirement Re,i as per case (a)), or in the interior of the complement of Ue,i, which precisely
corresponds to case (b), hence the requirement is also satisfied in this case. J

We can derive a number of useful corollaries from this theorem. First of all, we see
that LFS has the size of the continuum since G 7→ SG is one-to-one, and there are continuum
many 1-generic G. We also get an immediate proof of Theorem 6 that asserts the existence
of a set of low degree that is low for speed.

Proof of Theorem 6. Take a ∆0
2 1-generic G; the corresponding set SG is low for speed

and is low because it is both ∆0
2 and GL1 (Indeed a result of Jockusch [10] states that

every 1-generic degree G is GL1, that is, G′ ≡T G⊕ ∅′; when G ≤T ∅′, this is equivalent to
G′ ≡T ∅′). J

A similar idea allows us to show that LFS contains a non-trivial interval in the Turing
degrees.

I Corollary 13. There is a degree a > 0 such that every 0 ≤ b ≤ a is in LFS.

Proof. By a result of Haught [9], if a is a ∆0
2 1-generic degree, every b > 0 below a is of

1-generic degree. Then the result follows immediately from Theorem 12. J

Another interesting corollary is that every non-computable c.e. set bounds a non-
computable low for speed set. Likewise almost every set, in the measure-theoretic sense,
bounds a non-computable low for speed set.

I Corollary 14. Every non-zero c.e. degree bounds a member LFS∗, every 2-random degree
bounds a member of LFS∗.

Proof. This is simply because every non-zero c.e. degree and every 2-random degree bounds
a 1-generic degree [13, 11]. J

We now show that LFS avoids a cone, namely all degrees above 0′.

I Theorem 15. If a ≥ 0′, then a /∈ LFS.

STACS 2018

15:10 On Low for Speed Oracles

Proof. The proof of this theorem relies on the proof of a classical computational complexity
theorem, namely Blum’s speed-up theorem [6] (see also [12, Theorem 32.2]), which asserts
that for every sufficiently fast growing computable function f , there exists a computable set
R which admits no fastest algorithm in that for every i such that Φi = R, there is a j such
that Φj = R and f(time(Φj , x)) ≤ time(Φi, x) for almost every x.

Blum’s theorem is proven as follows. We build R by diagonalization against all Φi, where
for all x in order we try to find an ‘active’ i ≤ |x| such that Φi(x) converges in less than
f |x|−i(|x|) steps, and if such an i is found, we set R(x) = 1− Φi(x) for the smallest such i,
and declare i inactive from that point on (since we have already ensured Φi 6= R, we no
longer need to deal with Φi). If no such i is found, set R(x) = 0. By construction, R
is computable, and any Φi computing it must satisfy time(Φi, x) ≥ f |x|−i(|x|) for almost
all |x| ≥ i (otherwise, Φi would be diagonalized at some point, because for any x such that
time(Φi, x) < f |x|−i(|x|), the only way Φi can escape diagonalization is when some other
Φj with j < i is diagonalized in priority, but this situation can happen at most i times).
Now, suppose Φe is a functional that computes R. We need to show that there is another
functional which computes R much faster than Φe. Fix an integer k and assume we are given
as ‘advice’ the finite list σk of indices i < k such that Φi eventually gets diagonalized against
(and therefore i becomes inactive) in the construction of R. Now, we can compute R via the
following procedure. In a first phase, simply follow the construction of R as described above,
until we reach a point where all i ∈ σk have become inactive. At this point, we know (only
because we know σk!) that none of the {Φi | i < k} are relevant for the construction of R
on future x. Thus, we enter a second phase where to compute each R(x), we only need to
simulate, for k ≤ j ≤ |x|, Φj(x) during f |x|−j(|x|) steps of computation. By dovetailing, this
can be done in poly(|x| · f |x|−k(|x|)) (the polynomial being independent of k) which, if f is
fast growing enough and k large enough compared to e, is < f

(
f |x|−e(|x|)

)
, which in turn is

< f(time(Φe, x)) for almost all x (note that such a k can be computed uniformly given e).
Now, suppose we are given A ≥T ∅′. Let f(n) = 2n and R the corresponding set in

Blum’s theorem. Note that in the above, determining whether a given i will eventually
become inactive can be done uniformly relative to ∅′, and thus the list σk can be computed
uniformly in k relative to ∅′. Thus, using A as oracle, we can consider the procedure
ΨA which for each pair (Φe, pe) of a functional and a polynomial sequentially, finds the
k and σk above, checks whether e ∈ σk, in which case there is nothing to do as Φe 6= R

by definition, and if not, use the above 2-phase method to compute R, until a large x is
found such that f(time(ΨA, x)) < time(Φe, x), which for x sufficiently large guarantees
pe(time(ΨA, x)) < time(Φe, x), and we can then move on to the next index e+ 1. J

I Theorem 16. There are a,b ∈ LFS such that a ∨ b /∈ LFS

Proof. Let G0 be 2-generic, i.e., 1-generic relative to ∅′. Consider G1 = G0∆∅′ where ∆
is the symmetric difference. It is easy to check that G1 is also 2-generic. Thus SG0 and
SG1 (defined as in the proof of Theorem 12) are both low for speed (Theorem 12) but
SG0 ⊕ SG1 ≥T G0 ⊕ G1 ≥T G0∆G1 = ∅′, so by the previous theorem, deg(SG0 ⊕ SG1) /∈
LFS. J

Using a diagonalization technique like in Blum’s theorem (though with the same time
bound for all functionals), we can prove that LFS has measure 0. In fact, we get a more
precise statement in terms of algorithmic randomness.

I Theorem 17. No Schnorr random sequence A is low for speed.

L. Bienvenu and R. Downey 15:11

Proof. The extra ingredient we need on top of Blum’s theorem is to make the set R sparse:
it will contains at most one string of each length. For each n, we compute Φi(x) during
f(|x|) = 2|x| of computation for all x of length n and all active i ≤ n (here we don’t need to
have different time bounds for different functionals; all we need is for f to be computable
and sufficiently fast-growing). If for any of these strings we see that Φi(x) converges, we
take the smallest such i and then the smallest x for which we see convergence, and set
R(x) = 1− Φi(x), as well as R(y) = 0 for all y 6= x of length n, and then declare i inactive.
This way we do ensure sparseness of R, and like in the previous proof, that for all i, if Φi

computes R, time(Φi, x) > 2|x| for almost all x. On the other hand, consider the following
procedure Ψ. Given oracle Z and input x, ΨZ(x) first splits Z (viewed as a binary sequence)
as Z = ζ1ζ2 . . . with |ζi| = i and ΨZ(x) returns 0 if x = ζ|x| (thus the resulting computation
is polynomial in |x|), and ΨZ(x) = R(x) otherwise, using a fixed procedure to compute R.
So there is a polynomial p such that for any Z, time(ΨZ , x) ≤ p(|x|) for infinitely many x’s.
Furthermore, we can only have ΨZ(x) 6= R(x) if x = ζ|x| and ζ|x| happens to be the only
string of its length in R. This has probability at most 2−|x| (‘at most’ because R can also
have no string of length |x| at all) if Z is chosen at random. This means that, by setting
Cn = {Z | (∃x) |x| = n ∧ ΨZ(x) 6= R(x)}, we have λ(Cn) ≤ 2−n.

The Cn’s are uniformly computable clopen subsets of {0, 1}ω because Ψ is a truth-table
functional. Thus, a Schnorr random A can only belong to finitely many Cn’s (see for
example [5, Lemma 1.5.9]), meaning that ΨA(x) = R(x) for almost all x. Thus there is a
finite variation Ψ̂ of Ψ such that Ψ̂A = R, and Ψ̂A(x) is computed in polynomial time for
infinitely many x while time(Φi, x) > 2|x| for any Φi computing R and almost all x. This
shows that A is not low for speed. J

Theorem 17 shows that LFS is a nullset, but it leaves open the possibility that almost
all X are Turing-equivalent to a low for speed set. This would be similar to the category
situation where – under the reasonable assumption P 6= NP – the set LFS is meager (as proven
by Bayer and Slaman) but the set of A’s whose degree is in LFS is co-meager (Theorem 12).
It turns out that LFS behaves quite differently in the measure setting:

I Theorem 18. The set {A ∈ {0, 1}ω | deg(A) ∈ LFS} has measure 0.

At this point, we know that the set of X’s which compute a member of LFS∗ is very
large: it has measure 1 and is co-meager, it contains every c.e. set, etc. We might even start
thinking that every non-computable X computes a member of LFS∗. This is not the case
however, as shown by the following theorem (which contrasts Corollary 13).

I Theorem 19. There is a degree a > 0 such that no 0 < b ≤ a is in LFS. Indeed, a can
be chosen to be a minimal Turing degree.

The classical construction of a minimal degree is done by forcing over total computable
function trees (here we follow the terminology of [16]). A function tree is a partial function
T : {0, 1}∗ → {0, 1}∗ such that if either T (σ0) or T (σ1) is defined, then all of T (σ), T (σ0)
and T (σ1) are, and T (σ0) and T (σ1) are strict extensions of T (σ) such that T (σ0)⊥T (σ1)
(we say that T (σ0) and T (σ1) split T (σ)). We say that σ is a node of T if σ ∈ rng(T).
A tree S is a sub-f-tree of T , which we denote by S 4 T when every node of S is a node
of T . An infinite binary sequence Z is a path on an f-tree T if infinitely many prefixes of
Z are nodes of T . The set of paths of T is denoted by [T]. An f-tree naturally extends
to a functional from {0, 1}ω to {0, 1}∗ ∪ {0, 1}ω by setting T (X) =

⋃
σ4X T (σ) When an

f-tree T is total, this extension is an homeomorphism from {0, 1}ω to {0, 1}ω, and if T is
furthermore computable, its inverse T−1 is also computable. Given a functional Φe, we say

STACS 2018

15:12 On Low for Speed Oracles

that T is e-consistent if for any two nodes σ and τ on T and any n, if Φσe (n) and Φτe (n) are
both defined, then they are equal; in this case, for any path X of T , ΦXe is either partial or
computable. We say that T is e-splitting if T is total and for any σ, ΦT (σ0)

e and ΦT (σ1)
e are

incomparable; in this case, the restriction of Φe to [T] is total, one-to-one, and its inverse is
computable.

The key lemma in the construction of a minimal degree states that for any total computable
f-tree T and every e, there is a total computable sub-f-tree S of T which is either e-consistent
or e-splitting. Then an X ∈ {0, 1}ω of minimal degree is obtained by taking a sufficiently
generic filter G over the set of total computable f-trees ordered by 4, and take the intersection
of their sets of paths (the non-computability of X can be further ensured by remarking that
for any σ, the set of computable f-trees whose nodes are all incomparable with σ is a dense
set for the order 4, thus one can choose X to avoid any fixed subset of {0, 1}ω, such as its
computable elements).

We are going to prove Theorem 19 by showing that taking a sufficiently generic filter for
the order 4 ensures lowness for speed as well. For this, we will make use of the following
lemma.

I Lemma 20. Let T be a total computable f-tree. There exists a total computable f-subtree
S 4 T none of whose paths is low for speed.

Proof. The functional T−1 : [T]→ {0, 1}ω is total on its domain, which is a Π0
1 class, and

thus is a tt-reduction by effective compactness. Let f be a computable time bound for
the running time of T−1, that is, for any Y ∈ [T], whether x ∈ T−1(Y) can be decided
in time f(|x|) with access to oracle Y . Now, let L be a computable set that cannot be
computed in time 2f(n+1). Let S be the sub-f-tree of T defined by S(σ) = T (σ ⊕ L) (where
σ ⊕ L = σ(0)L(0) . . . σ(k − 1)L(k − 1) when k = |σ|). The paths of S are exactly the sets of
the form T (X ⊕ L) for some X. Each of them computes L in time f(n+ 1) by definition
of f , which is exponentially faster than any procedure computing L without oracle by our
assumption on L. J

Proof of Theorem 19. Let T be a total computable f-tree and Φe a functional. As we
explained earlier, the usual construction of a minimal degree shows that there is S 4 T

which is either e-consistent or e-splitting. In the case S is e-consistent, we are satisfied (this
guarantees ΦAe to be either partial or computable). If it is e-splitting, we further refine S as
follows. Since S is e-splitting, we consider the total computable f-tree S′ corresponding to the
image of S by Φe: S′(σ) = ΦS(σ)

e (this is indeed an f-tree precisely because S is e-splitting).
By the previous lemma, there is a total computable S′′ 4 S′ none of whose paths is low for
speed. Now the pullback T ′ = Φ−1

e (S′′) is a total computable f-subtree of T , which forces
ΦAe to not be low for speed.

Thus we can force for all e that ΦAe is partial or not low for speed, and force A to be of
minimal degree and be non-computable as usual. J

Our last theorem shows that the analogue of the low basis theorem (which asserts that
every non-empty Π0

1 class contains a member of low Turing degree) for lowness for speed
fails.

I Theorem 21. If a is a PA-degree, a /∈ LFS. Thus there is a non-empty Π0
1 class such

that no member has a low for speed degree.

Note that this is in fact a stronger statement than Theorem 15 since 0′ is a PA-degree.

L. Bienvenu and R. Downey 15:13

References
1 Eric Allender, Harry Buhrman, and Michal Koucký. What can be efficiently reduced to

the Kolmogorov-random strings? Annals of Pure and Applied Logic, 138:2–19, 2006.
2 Eric Allender, Luke Friedman, and William I. Gasarch. Limits on the computational power

of random strings. Information and Computation, 222:80–92, 2013.
3 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP question.

SIAM Journal on Computing, 4(4):431–442, 1975.
4 Robertson Bayer. Lowness For Computational Speed. PhD thesis, University of California

Berkeley, 2012.
5 Laurent Bienvenu. Game-theoretic characterizations of randomness: unpredictability and

stochasticity. PhD thesis, Université de Provence, 2008. https://tel.archives-ouvertes.fr/tel-
00332425v2.

6 Manuel Blum. On effective procedures for speeding up algorithms. Journal of the ACM,
18(290-305), 1971.

7 Mingzhong Cai, Rodney Downey, Rachel Epstein, Steffen Lempp, and Joseph Miller. Ran-
dom strings and tt-degrees of Turing complete c.e. sets. Logical Methods in Computer
Science, 10(3), 2014.

8 Rodney Downey and Denis Hirschfeldt. Algorithmic randomness and complexity. Theory
and Applications of Computability. Springer, 2010.

9 Christine A. Haught. The degrees below a 1-generic degree < 0′. Journal of Symbolic Logic,
51, 1986.

10 Carl Jockusch. Degrees of generic sets. In Frank Drake and Stanley S. Wainer, editors,
Recursion theory: its generalizations and applications, number 45 in London Mathematical
Society Lecture Note Series, pages 110–139. Cambridge Unversity Press, 1980.

11 Steven M. Kautz. Degrees of random sets. PhD thesis, Cornell University, 1991.
12 Dexter Kozen. Theory of Computation. Springer, New York, 2006.
13 Stuart Kurtz. Randomness and genericity in the degrees of unsolvability. PhD dissertation,

University of Illinois at Urbana, 1981.
14 André Nies. Computability and randomness. Oxford Logic Guides. Oxford University Press,

2009.
15 Gerald Sacks. On the degrees less than 0’. Annals of Mathematics, 77:211–231, 1963.
16 Robert Soare. Turing Computability: Theory and Applications. Theory and Applications

of Computability. Springer, 2016.

STACS 2018

	Introduction
	Existence of non-computable low for speed sets
	Computably enumerable low for speed sets
	How big is LFS?
	Lowness for speed and Turing degrees

