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Abstract

Background: As the cost of DNA sequencing decreases, high-throughput
sequencing technologies become increasingly accessible to many laboratories.
Consequently, new issues emerge that require new algorithms, including tools for
indexing and compressing hundred to thousands of complete genomes.
Results: This paper presents RedOak, a reference-free and alignment-free software
package that allows for the indexing of a large collection of similar genomes.
RedOak can also be applied to reads from unassembled genomes, and it provides a
nucleotide sequence query function. This software is based on a k-mer approach
and has been developed to be heavily parallelized and distributed on several nodes
of a cluster. The source code of our RedOak algorithm is available at
https://gitlab.info-ufr.univ-montp2.fr/DoccY/RedOak.
Conclusions: RedOak may be really useful for biologists and bioinformaticians
expecting to extract information from large sequence datasets.
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1 Background
Context. Complete genomes, or at least a set of sequences representing whole

genomes, i.e.., draft genomes, are becoming increasingly easy to obtain through the

intensive use of high-throughput sequencing. A new genomic era is coming, therein

not only being focused on the analyses of specific genes and sequences regulating

them but moving toward studies using from ten to several thousands of complete

genomes per species. Such a collection is usually called a pan-genome [1, 2]. Within

pan-genomes, large portions of genomes are shared between individuals. This feature

could be exploited to reduce the storage cost of the genomes.

Based on this idea, this paper introduces an efficient data structure to index a

collection of similar genomes in a reference- and alignment-free manner. A reference-

free and alignment-free approach avoids the loss of information about genetic

variation not found in the direct mapping of short sequence reads onto a reference

genome [1]. Furthermore, the method presented in this paper can be applied to

next-generation sequencing (NGS) reads of unassembled genomes. The method

enables the easy and fast exploration of the presence-absence variation (PAV) of

genes among individuals without needing the time-consuming step of de novo genome

assembly nor the step of mapping to a reference sequence.
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Related work. One of the most commonly used data structures for genome index-

ing is the FM-index [3]. This compressed structure exploits the Burrows-Wheeler

Transform (BWT) data reorganization properties [4] and its link with the suffix

array data structure (SA) [5], which enables the construction of a genome index in

linear time and space according to the genome size. To index a collection of similar

genomes, J. Sirén [6] proposed creating as many BWT indexes as genomes and

merging them. However, in this approach, updating the whole index seems to be a

crippling obstacle because it requires merging again.

Deorowicz et al. [7] proposed an efficient method to store large collections of

genomes. Their method uses a reference sequence and a table containing the variations

of each genome from the reference, assuming that many variations are shared across

the set of genomes. The data structure is then compressed, enabling the efficient

storage of a set of very close genomic sequences. Their structure cannot be queried,

and retrieving a genome consists of decompressing the data and applying the indexed

variations to the reference sequence.

New methods have emerged for both the storage and analysis of pan-genomes.

These methods usually use the same approach, which consists of storing a reference

sequence and information on each genome variation compared to the reference.

This implies that such tools require prior information on genomic variations. This

information must have been previously computed, for example, by performing a

multiple-genome alignment. Some of these methods, such as SplitMEM [8] and

TwoPaCo [9], use graphs or combine graphs with a generalized compressed suffix

array (GCSA) [10, 11, 12]. Other methods use a custom data structure based on

sequence alignment methods [13, 14]. MuGI [15] stores the reference in compact

form (4 bits to encode a single char), a variant database (one bit vector for each

variant), and an array retaining information about each k-mer.

Few methods aim to store a pan-genome without prior knowledge, and even fewer

methods allow direct query on pan-genomes. CHICO [16] program uses a hybrid

index that combines Lempel-Ziv compression techniques with the Burrows-Wheeler

transform but fails to index our data (see Section 3). Bloom filter trie (BFT) [17]

method allows to index genome collections with a k-mer-based approach. k-mers

are stored in a color-oriented graph, where each represents a set of potential k-mers.

Furthermore, to each k-mer is associated a binary vector encoding its colors. These

colors represent the genomes from which the k-mer is issued. AllSome sequence

bloom trees (SBT) is an orthogonal approach to the BFT. SBT complexity scales

up with the number of data sets [18].

Our contribution. This paper provides a theoretical and practical contribution to

the problem of finding a way to efficiently index large collections of similar genomes,

assembled or not, without using information on variations from a multiple-genome

alignment or a reference sequence. The data structure and the construction algorithm

are described in Section 2. The time and space complexity are discussed in Section 2.

Finally, the benchmark results of the current implementation of this algorithm,

called RedOak, are provided in Section 3, followed by a discussion.
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2 Results
The problem of indexing both assembled and unassembled genomes is equivalent to

indexing a very large set of texts. This makes the problem related to the indexable

dictionary problem, which consists of storing a set of words such that they can be

efficiently retrieved [19]. A k-mer is a word of length k (a fragment of k consecutive

nucleotides) of a read (sequence that came from high-throughput sequencing) or an

assembled sequence (contig, scaffold, genome, or transcriptome). k-mers are words

based on a simple alphabet Σ = {A,C,G, T}.
Before describing the way k-mers are indexed, we introduce some notation used in

this paper. Given a set of n genomes G = {G1, · · · , Gn}, the core k-mers correspond

to the subset, denoted K+(G), of the k-mers shared by all the genomes; the shell

k-mers correspond to the subset, denoted K−(G), of the k-mers shared by at least one

of the genomes but not by all. The set of all k-mers present in one or more genomes

is denoted K(G) and is such that K(G) = K+(G) ∪ K−(G). Given a prefix pref (of

length k1 ≤ k), the subset of the core k-mers whose prefix is pref is denoted by

K+
pref (G), the subset of the shell k-mers whose prefix is pref is denoted by K−pref (G),

and the subset of all k-mers whose prefix is pref is denoted by Kpref (G). Given a

k-mer w, we denote by BGw the Boolean array such that BGw[i] is true if and only if

w occurs in the ith indexed genome (a.k.a., Gi). In the remainder of the paper, the

notation is shortened to K+, K−, K, K+
pref , K−pref , Kpref , and Bw.

There is a trivial bijection between the k-mers and their lexicographic rank.

Because the alphabet is of size 4, only two bits (log2(4)) are required to represent

each symbol. Let us assume that A is encoded by 00, C is encoded by 01, G is encoded

by 10 and T is encoded by 11; any sequence of symbols of fixed length has a unique

encoding scheme, which converts it into an unsigned integer that also represents its

lexicographic rank among all the sequences of the same size.

To efficiently store and query the k-mers, each k-mer is split into two parts: its

prefix of size k1 and its suffix of size k2, with k1 + k2 = k. Actually, the k-mers

are clustered by their common prefix, and for each cluster, only the suffixes are

stored. The choice of the value of k1 minimizing memory consumption is guided by

both analytic considerations [20] and empirical estimation, as will be discussed in

Section 3.

As described in Figure 1(a), the 4k1 clusters of k-mers are represented by an array

of 4k1 objects (using their lexicographical order). The ith object corresponds to the

set of k-mers whose prefix of length k1 is ith in the lexicographic order. Since the

k-mers are grouped by common prefixes of length k1, there are 4k1 distinct clusters

(array (1)). For each cluster, there are 4k2 possible suffixes (array (2)), which can be

either absent from any of the indexed genomes (white cells) or present in some of the

genomes shell k-mer (blue cells), present in one and only one genome cloud k-mer

(orange cells) or present in all genomes core k-mer (green cells). When a k-mer is

absent, all bits of its associated vector are set to 0 (array (5)). When a k-mer is

present in all genomes, all bits of its associated vector are set to 1 (array (4)). In the

last case, bits are set according to the presence/absence in each genome (array (3)).

On average, there are |K|
4k1

k-mers in each cluster. Even for small values of k1, this

number is very low compared to the 4k2 possible suffixes. Thus, a bit-vector (even

with a succinct data structure) cannot represent the array (2) (Figure 1(a)). Because
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(a) Abstract representation of the indexed k-mers from n genomes. To each k-mer
can be associated a bit vector of size n to denote the presence (1) or absence (0) in
each genome.

S∗1 S∗2 · · · S∗c−1 S∗c(A)
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0 0 1 0 1
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· · ·
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· · ·
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s−1
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s
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(B)
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S1
1 S1

2 · · · · · · S1
c1

G2

S2
1 S1

2 · · · · · · · · · · · · S1
c2

...

...

GN
SN1 · · · SNcN

(C)

(b) Concrete representation of the indexed core k-mers from n genomes sharing the
same prefix.

Figure 1: Representation of the data structure used to index the k-mers from n genomes.
The (A) The green array represent core k-mers, (B) Blue cells the shell k-mers, and (C)
in orange the cloud k-mers.
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k-mers not present in any genome (white cells in Figure 1(a)) are predominant and

because they can be easily deduced from the other k-mers, they do not need to

be explicitly stored. Moreover, a distinction is made between core k-mers (green

cells in Figure 1(a)) and shell k-mers (orange cells in Figure 1(a)). Indeed, core

k-mers are by definition present in all genomes and thus, it is not necessary to store

information on which genome these k-mers are present.

The concrete representation of the data structure used to store the k-mers having

the same prefix is shown in (Figure 1(b)). The k-mers absent from all genomes are

obviously deduced from present k-mers and thus are not physically represented (and

they all share the same 0-filled bit vector). The k-mers present in all genomes (core

k-mers) are simply represented by a sorted vector where each suffix is encoded by

its lexicographic rank (array (A)). These k-mers share the same 1-filled bit vector.

The other k-mers (shell k-mers) are represented by an unsorted vector where each

suffix is encoded by its lexicographic rank (array (C)). To each suffix is associated

its presence/absence bit vector (array (3)). The order relationship between the

suffixes is stored in a separate vector (array (B)). The core k-mers having the same

prefix are stored in their lexicographic order (by construction) using 2 k2 bits, where

k2 = k − k1 (array (A) of the Figure 1(b)). The shell k-mers are stored using 2 k

bits as well; however, their lexicographic order is not preserved (array (C) of the

Figure 1(b)). Thus, this order relationship is maintained separately in another array,

denoted O−pref (array (B) of the Figure 1(b)). Moreover, for each represented shell

k-mer w, a bit vector is associated with storing its presence/absence in the genomes

(Figure 1(b), array (3), which represents Bw).

In the RedOak implementation, both the core and shell k-mer suffixes are stored

using d2 k2e8 bytes each. The remaining unused bits are set to 0. This choice greatly

improves the comparison time between k-mers suffixes. Moreover, because the

presence/absence bit vectors are all of size n (the number of genomes), RedOak

provides its own implementation for that structure, which removes the need to store

the size of each vector. This implementation also emulates the 0-filled and 1-filled

bit vector (arrays (4) and (5) of the Figure 1(a)).

The choice of this data structure was guided by the desire to allow genome addition

without having to rebuild the whole structure from scratch. Indeed, indexing a new

genome can be represented by some basic operations on sets as described in Listing 1.

First, it is obvious that the only case where the set of core k-mers expands is when

the first genome is added (line 11). The other updates of the core k-mers occur on

lines 15 and 16 and only lead to the removal of some k-mers from this set.

Now, let us suppose that the set of k-mers of the new genome is lexicographic

ordered (line 9). Then, the core k-mers are initially represented as a sorted (in

lexicographical order) array, and it is easy to intersect these sorted core k-mers with

the sorted k-mers from the new genome. During this step, there is no difficulty in

producing, on the fly, both the subset of k-mers moving from the core to the shell

(required at line 22) and the subset of k-mers from g that were not found in the core

k-mers (required at line 24). Merging the elements coming from the core k-mers

with the shell k-mers is equivalent to a concatenation of the two vectors (because

no k-mer can be both core and shell); moreover, for each type, their associated

presence/absence vector is 1-filled, except for the newly indexed genome. Merging
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Figure 2: Illustration of the evolution of k-mers indexed by RedOak as the genomes
are added.
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Listing 1: High level algorithm to incrementally update the index�
1 Input :
2 K∗ %The co r e k−mers o f G = {G1, · · · , GN}%
3 K+ %The s h e l l k−mers o f G = {G1, · · · , GN}%
4 K− =

⊎N
i=1 K

i %The c l oud k−mers o f G = {G1, · · · , GN}%
5 g %A new genome to add%
6 Output :

7 〈K∗,K+,K− =
⊎N+1

i=1 K
i〉 %The updated i ndex o f G ∪ {g} = {G1, · · · , GN+1}%

8 Begin
9 K ← {w|w is a k-mer of g}

10 I f N = 0 Then
11 K∗ ← K %A l l k−mers a r e i n co r e%
12 K+ ← ∅ %There i s no s h e l l k−mers%
13 K1 ← ∅ %There i s no c l oud k−mers%
14 Else
15 K′ ← K∗ \K %Those k−mers a r e not i n co r e anymore%
16 K∗ ← K∗ \K′ %Only co r e k−mers tha t a r e i n g r ema ins i n co r e%
17 K ← K \ K∗ %Removing co r e k−mers from K%
18 I f N = 1 Then
19 K1 ← K′ %Move o l d co r e k−mers to c l oud k−mers o f G1%
20 Else
21 K ← K \ K+ %The s h e l l k−mers tha t a r e i n g r ema ins s h e l l%
22 K+ ← K+ ]K′ %Moving o l d co r e k−mers to s h e l l k−mers%
23 For i i n {1, · · · , n}
24 K′ ← Ki ∩K %Those k−mers a r e both i n Gi and g%
25 Ki ← Ki \K′ %So they a r e removed from the c l oud o f Gi%
26 K ← K \K′ %And from the c l oud o f g%
27 K+ ← K+ ]K′ %F i n a l l y they a r e added to the s h e l l k−mers%
28 End For
29 End I f
30 KN+1 ← K %Add rema in i ng k−mers from g to i t s c l oud k−mers%
31 End I f

32 Return 〈K∗,K+,K− =
⊎N+1

i=1 K
i〉

33 End 	�
the k-mers coming from the new genome requires that one first check if each ”new”

k-mer has already been indexed in the shell. In such case, the associated bit vector

must be updated with the new indexed genome; otherwise, the new k-mer must be

appended at the end of the shell k-mers with an associated 0-filled bit vector, except

for the newly added genome. It does not matter which set of k-mers is appended; in

both scenarios, the appended k-mers are sorted. Because the order relationship is

stored for the old shell k-mers, it is easy to update the order relationship associated

with the new shell k-mers by applying a trivial ordered set merging algorithm. This

extra payload in memory enables faster processing than directly merging the k-mer

suffixes and their bit vectors. Indeed, this auxiliary vector (array (B) of Figure 1(b))

uses 16-bit words (instead of 32 or 64 bits for pointers) to store the indices of the

suffixes stored in K−pref and the merging of the two orders.

Because the data structure partitions the set of indexed k-mers according to their

common prefix of size k1, it is easy to parallelize the algorithm presented in Listing 1.

Thanks to the Open-MPI specification [21], each instance of the RedOak program
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only processes a portion of the k-mers. This allows us to run RedOak on a cluster,

on a multi-core architecture or on a combination of them. This feature has two major

advantages: the required memory is split across the running instances, allowing

scaling of the method to a very large collection of genomes, and the wall-clock time

is drastically reduced (see Section 3).

Finally, the algorithm requires a strategy to output (in lexicographic or-

der) all k-mers of each genome. The RedOak implementation is based on the

libGkArrays-MPI (in prep.) library, which provides this feature.

The data structure presented in this section also has an interesting application: it

enables easy and efficient queries. Querying for some sequence s consists of reporting,

for all its k-mers, in which genome those k-mers appear. From that report, one can

compute the number of k-mers of the query sequence that belong to each genome

or the number of bases covered by the k-mers of the genomes (see Section 3). To

query the data structure for a k-mer, the algorithm selects the k-mer prefix pref

and then looks up (by dichotomy) its suffix in K (specifically, in K+
pref or K−pref ).

The time complexity is discussed in the next section.

In this part, we present the time and space complexity of the algorithm, using the

notations below:



N Total number of distinct k-mers (= |K|)
N ∗ Total number of core k-mers (= |K∗|)
N+ Total number of shell k-mers (= |K+|)
N− Total number of cloud k-mers (= |K−|)
n Number of instances running in parallel

µ Size in bits of a memory word

Theorem 1 The space needed for indexing n genomes is equal to

2 k2N +N+ (N + µ) +O
(
4k1 N

)
bits.

If k1 is defined as k1 = logN−log logN+O(1)
2 ,then the memory space required by

RedOak to index the k-mers of N genomes is increased by

N (2 k2 +N) + o (N N ) bits.

Proof The structure associated with a k-mer prefix is identical to that described

in Figure 1(b). Storing the suffixes of the core (resp., shell and resp., core) k-mers

requires 2 bits per nucleotide, leading to 2 k2Npref bits. In addition, a binary vector

of size N and a memory word is associated with each suffix of shell k-mers, i.e.

N+
pref (N + µ) bits.

For a given prefix pref , the structure need 2 k2Npref +N+
pref (N + µ) bits.

To this must be added the data structures allowing to encapsulate information, thus

representing O (N) octets.

Finally, a unique binary vector of size N is associated with core k-mers, just as a

unique binary vector of size N is associated with k-mers absent from the structure
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as well as a unique binary vector of size N is associated with cloud k-mers of each

genome Gi (1 ≤ i ≤ N), totaling (N + 2) N +O(1) bits.

The memory space required by RedOak to index the k-mers of N genomes is therefore

2 k2N +N+ (N + µ) +O
(
4k1 N

)
bits.

If k1 = logN−log logN+O(1)
2 , then 4k1 = O

(
N

logN

)
= o (N ).

It is also possible to notice thatN+ (µ+N) ≤ N N + o (N N ). Thus, the memory

space required by RedOak to index the k-mers of N genomes is therefore increased

by N (2 k2 +N) + o (N N ) bits.

To this, we must add a space by node in O (1). However, it seems reasonable to

consider that n = o (N N ).

Like the libGkArraysMPI library, for time performance reasons, we have chosen

to use binary words of type uint_fast8_t for storing suffix information as well as

binary arrays. Noting µ′ the number of bits of an integer of type uint_fast8_t,

the space used for this storage is µ′
⌈
2 k2
µ′

⌉
bits per suffix and µ′

⌈
NmN
µ′

⌉
per binary

array.

Theorem 2 The time needed for indexing the Ndistinct k-mers of n genomes is

O (nN k) .

Proof To study the data structure construction time, let us focus on the time

required to add the set of k-mers sharing a common prefix pref (coming from

a new genome Gn+1) into an existing index of n genomes. Denote this set by

Kpref and its size as Mpref . Assume that this set is already in lexicographical

order. Computing the intersection between K+
pref (sorted by construction) and

Kpref requires O
(
N+
pref +Mpref

)
suffix comparisons. Suffix comparison requires

O
(⌈

k2
µ

⌉)
operations. Each time a suffix from Kpref is found in K+

pref , it is removed

(the next suffixes to be retained will be shifted back in the array by as many removed

suffixes). Each time a suffix from K+
pref is not found, it is moved into a new temporary

array (the next suffixes from K+
pref will be shifted back in the current array by as

many removed suffixes as well). Shifting a suffix requires O
(⌈

k2
µ

⌉)
operations. Thus,

for this step, the overall time complexity is O
((
N+
pref +Mpref

) ⌈
k2
µ

⌉)
. For speed

optimization, the RedOak implementation pre-allocates an array for the suffixes to

move from K+
pref to K−pref of length N+

pref , which is on average N
+

4k1
.

Let K ′pref be the k-mer suffixes not found in K+
pref , and let M ′pref be the number

of such k-mers. Computing the union of K−pref with K ′pref is not significantly more

difficult. First, all bit vectors must be extended, which could be costly; however,

the capacity of the bit vectors can be allocated beforehand, leading to a constant

operation for this extension. The RedOak implementation computes the total number

of genomes before indexing them. Therefore, by default, any k-mers in K− should be

absent in the new genome being currently added. It follows that each suffix suff from

K ′pref is searched in K−pref . If it is found, then the last bit of Bpref ·suff is set to 1 and

is removed from K ′pref . Since the order relationship of K−pref is retained separately

in a specific array O−pref , this step requires O
(
N−pref +M ′pref

)
suffix comparisons.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.19.423583doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.19.423583


Agret et al. Page 10 of 17

The remaining suffixes from K ′pref (say, M ′′pref ) are then appended to the end of

the array storing K−pref . For each suffix, its bit vector is added. This step requires

O
(
M ′′pref

⌈
n+1
µ

⌉)
operations. Furthermore, the order array O−pref is extended to

consider the newly added suffixes, and the reordering requires O
(
N−pref +M ′′pref

)
operations. Ultimately, since this operation is performed for every prefix, the overall

time complexity of adding an ordered set of M k-mers to the current index is

O
(

(N +M)
⌈
k2
µ

⌉
+M ′′

⌈
n+1
µ

⌉)
.

To this complexity, the time for producing the ordered set of k-mers grouped by

suffix should be added. RedOak uses the libGkArrays-MPI implementation, which,

assuming that k1 = logN−log logN
2 +O(1), runs in O (kM log logM). It is obvious

that the number of distinct k-mers is bounded by the size of the added genome.

Assuming that both k < N , M log logM < N , the total running time for adding n

genomes of size m is bounded by O (nN k).

Theorem 3 Assuming that the number of genomes per indexed k-mer follows

a Poisson distribution of parameter λ (where λ is the average number of genome

sharing a k-mer), the size of N is

O
(nm
λ

)
.

Proof Since the run time clearly depends on the number of indexed k-mers, let us

use a simple model to approximate the time complexity. Suppose that each genome

has m distinct k-mers and that each k-mer has a fixed probability pi to be shared

exactly by i genomes out of n. The total number of indexed k-mers is then

N = n

n∑
i=1

pim

i
= nm

n∑
i=1

pi
i

.

In the worst case, each k-mer is specific to each genome (p1 = 1), which leads

to N = nm. In contrast, the best case occurs when all k-mers are core. In such a

situation, N = m. If all pi = p = 1
n , since

∑n
i=1

1
i = Θ(log n), then N = O(m log n).

Now refine the model and denote by λ the average number of genomes sharing the

indexed k-mers (1 ≤ λ ≤ n). The probabilities pi then follows a Poisson law of

parameter λ (pi = λi

i! e
−λ). Thus,

N = nm
n∑
i=1

λi e−λ

i i!
.

Let us recall 1/ that the exponential integral Ei(x) =
∫ x
−∞

et

t dt is such that

Ei(x) = γ + ln |x|+
∞∑
k=1

xk

k · k!

(where γ is the Euler-Mascheroni constant) and 2/ that the logarithmic integral

Li(x) =
∫ x
0

dt
ln t (for x 6= 0) is such that

Li(eu) = Ei(u) (for x 6= 1)
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and Li(x) behaves asymptotically for x→∞ to O( x
log x ).

Bounding
∑n
i=1

λi

i i! by Li(eλ)− γ − ln eλ = O
(
eλ

λ

)
gives:

N = nme−λO

(
eλ

λ

)
= O

(nm
λ

)
.

Theorem 4 Given the index of N k-mers from n genomes with k1 = logN−log logN
2 +

O(1), querying the index for all k-mers from a sequence s requires O(|s| log logN k2
µ )

operations.

Proof Extracting the first k-mer of the query s (and computing its prefix pref of

size k1) requires O(k) operations. Extracting the other k-mers (and computing their

prefix) can be performed in O(1) operations for each. Thus extracting all the k-mers

of the query sequence requires O(|s|). As already stated above, for each k-mer, there

are on average N
4k1

suffixes associated with its prefix; thus, performing a dichotomic

lookup requires, on average, log N
4k1

= logN − 2 k1 comparisons between suffixes. By

choosing an appropriate value of k1 = logN−log logN
2 +O(1), the number of lookups

become O(log logN ).

Theoretical predictions:

Index class+(Genomes class+Files name)×n+(4k1)×(Extended suffix class)×np

+ 2× (8 +
n

8
) + (N+)× (

k − k1

4
) + (N−)× (

k − k1

4
+ 8 +

n

8
) (1)

Simplified theoretical cost:

λ× n+ (4k1)× 208× np+ 2× (8 +
n

8
)

+ (N+)× (
k − k1

4
) + (N−)× (

k − k1

4
+ 8 +

n

8
) (2)

Estimated cost: For 67 genomes with 40 instances, k = 27, k1 = 12 with 10% of

core k-mers, and 90% of dispensable k-mers:

= 21592 + (412)× 8320 + 32.75 + (N+)× 3.75 + (N−)× 20.125 (3)

= 21592 + 1.39e11 + 32.75 + 0.375 + 18.11 (4)

Estimated cost per nucleotide:

=
21592 + 1.39× 1011 + 32.75 + 0.375 + 18.11

300000000× 67
(5)

= 7 bytes (6)

= 56 bits (7)
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In (4), λ is the Index class size, (152) bytes, plus the Genome class size, (320)

bytes, times the number of genomes. Theoretically (according to (7)), we only need

56 bits; however, in practice, we use 35 bits per nucleotide for 67 assembled genomes

indexed.

3 Discussion
Implementation. RedOak is implemented in C/C++ and its construction relies

on parallelized data processing. A preliminary step, before indexing genomes, is

performing an analysis of the composition in k-mers of the different genomes. During

this step, k-mer counting tools could be involved and their performance is crucial in

the whole process [22]. We looked for a library allowing us to handle a large collection

of genomes or reads, zipped or not, working in RAM memory, and providing a sorted

output. Indeed, RedOak uses libGkArrays-MPI [1] which is based on the Gk Arrays

library [23]. The Gk array library and libGkArrays-MPI are available under CeCILL

licence (GPL compliant). The libGkArrays-MPI library is highly parallelized with

both Open MPI and OpenMP.

To manipulate k-mers, the closest method is Jellyfish [24]. This approach is not

based on disk but uses memory and allows the addition of genomes to an existing

index. However, we did not use it because in the output, k-mers are in ”fairly

pseudo-random” order and ”no guarantee is made about the actual randomness of

this order”[2].

Value of k and k1. In most of the k-mer based studies, the k-mer size varies between

25 (with reference genome) and 40 (without reference genome). The value of this

parameter can be statistically estimated as stated in [25].

The k1 prefix length in our experiments has been defined on the basis of analytic

considerations presented in [20] but can be arbitrarily fixed to some value between

10 and 16, which respectively leads to an initial memory allocation from 8MiB to

32GiB, equally split across the running instances of RedOak. Setting a higher value

is not necessary; otherwise, it may allocate unused memory.

Benchmark. The experiments were performed on a SGE computer cluster running

Debian. The cluster (SGE 8.1.8) has two queues. The ”normal” queue has 23 nodes,

having 196 GiB of RAM and 48 cores[3] each. This queue represents 4.4 TiB of

memory and 1104 cores. The ”bigmem” queue possesses 1 node, having 2 TiB

of RAM and 96 cores[4]. The benchmark was performed on both ”bigmem” and

”normal” queues. Our dataset of 67 uncompressed rice genomes is equal to 25 Gib.

which represent 26194967769 nucleotides.

Comparison of RedOak, Jellyfish and BFT for the index build step. We compared

RedOak to two other methods, namely Jellyfish [24] and Bloom Filter Trie (BFT)

[17]. The comparison was performed on the 67 de novo assembled rice genomes

[1]Private communication, Mancheron et al..
[2]Documentation of JellyFish.
[3]Intel® Xeon® CPU E5-2680 v3 processor clocked at 2.50GHz.
[4]Intel® Xeon® CPU E7-4830 v3 processor clocked at 2.10GHz.
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from Zhao et al. [26] by comparing the time used for the index build phase and the

maximum memory consumption. The size of the data set was successively set to 10,

20, 30, 40, 50, 60 and 67 genomes out of the original data set.

Jellyfish builds an index for each genome, and then these indexes were merged to

produce a matrix where the counts for each k-mer in each genome are stored (small

modification of the merge tool implementation of Jellyfish). For JellyFish, we also

created a program that simulates a parallelization of jobs.

BFT needs ASCII dumps to build its index. These dumps were produced using

Jellyfish. For Jellyfish and BFT the reported values are the total time taken for

both the counting and merging steps. For all experiments, the k-mer size was set to

k = 27, since BFT requires k to be a multiple of 9. For RedOak, the prefix length

was set to 12 (default setting), which gives a table of prefixes of very reasonable

total size i.e., 412 = 128 MiB. Each prefix index of each running instance represents

3.2 MiB i.e., 32 MiB by node. This drastically reduces the risk of saturation during

the experiments.

For each subset, we used RedOak in parallel on 10 ”normal” nodes of the cluster

and on each node we reserved 4 cores. For each subset, we also used JellyFish

(jellyfish count -m 27 -s 500 M -t 10) on 40 genomes in parallel using 40 nodes. BFT

does not allow merging the indexes created and does not propose parallelization.

Therefore, we ran each instance of BFT in parallel using one ”bigmem” node for

each subset.

The results are summarized in Table 1 and in Figure 3. BFT was not able to

index datasets in the runs with 40 or more genomes. Overall, RedOak showed

better performance compared to JellyFish. RedOak used 2GiB per instance, and

because it is parallelized on 40 instances, it used 80GiB for all the subsets and for

the 67 assembled genomes. The index construction time in second was constant at

approximately 1467.8 sec per ten genomes and took a total time of 8092.8 sec for

the 67 genomes.

Memory RAM (GiB) Time (sec)
G RedOak JellyFish BFT RedOak JellyFish BFT
10 4× 10× 2 10× 10.8 42 1467.8 6617 748371.2
20 4× 10× 2 20× 10.8 65 2657.4 6638 854223.3
30 4× 10× 2 30× 10.8 91 3865.2 6637 1023657.2
40 4× 10× 2 40× 10.8 N/A 4952.3 6617 N/A
50 4× 10× 2 40× 10.8 N/A 6281.0 7074 N/A
60 4× 10× 2 40× 10.8 N/A 7609.6 6638 N/A
67 4× 10× 2 40× 10.8 N/A 8092.8 8591 N/A

Table 1: Performance comparison between RedOak, Jellyfish and BFT for the index build
step. The size of the input was successively set to 10, 20, 30, 40, 50, 60 and 67 assembled
genomes. RAM usage is in GiB. Times shown are wall-clock run times in sec.

Query performance We also assessed the performance of RedOak for querying

with sequences of different lengths the index of the 67 assembled rice genomes. We

compared RedOak and JellyFish using random query sequences of length varying

from the size of 10 times the size of k to 1000 times the size of k. The results are

presented in Table 2, showing the maximum RAM usage and wall-clock run time

required to match the 67 assembled rice genomes with a randomly created sequence.
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Figure 3: Performance comparison between RedOak, Jellyfish and BFT for the
index build step. The size of the data set was successively set to 10, 20, 30, 40, 50, 60
and 67 genomes out of the original data set (x-axis). A dot represents the wall-clock
run time (y-axis) or the RAM usage (y2-axis) required to build the index.
The colors represent the softwares used: RedOak, Jellyfish or BFT.
For BFT, we divided the construction time by 100 to fit our figure.

To evaluate the query time of JellyFish, we had to request each file individually.

The Table 2 shows, for JellyFish, the max RAM memory (including the writing

time of all k-mers), the time of the longest query, and the total time (sum of all

times which gives us the average time: 4403.7 sec per file). The results showed that

RedOak has better performance than JellyFish for querying this dataset.

Example of PAV analysis. Analysis of presence–absence variation (PAV) of genes

among different genomes is a classical output of pan-genomic approaches [1], [27], [26].

RedOak has a nucleotide sequence query function (including reverse complements)

that can be used to quickly analyze the PAV of a specific gene among a large

collection of genomes. Indeed, we can query, using all k-mers contained in a given

gene sequence, the index of genomes. For each genome, if the k-mer is present in

any direction we increment the score by 1. If the k-mer is absent but the preceding

k-mer (overlapping on the first k − 1 nucleotides) is present, we note that there is

an overlap, but RedOak does not increase the score. If the score divided by the size

of the query sequence is greater than some given threshold, then we admit that the

query is present in the genome.

As an example, we indexed the 67 rice genomes from Zhao et al. [26] with RedOak

using k = 30, and we accessed the PAV of all the genes from Nipponbare and one

gene from A. Thaliana using a threshold of 0.9.
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the gene Pstol, which controls phosphorus-deficiency tolerance [28]. For a specific

genome (GP104), we were able to detect the gene presence of the gene Pstol, whereas

this presence has not been found in Zhao et al. [26].

We need to keep in mind that this score under-estimates the percentage of identity.

Indeed, let us suppose that the query sequence (of length `) can be aligned with

some indexed genome with only one mismatch, then all the k-mers (of the query)

overlapping this mismatch may not be indexed for this genome. This implies that

only one mismatch can reduce the final score by `−k
` , whereas the percentage of

identity is `−1
` . Said differently, in this experiment, a query having a score ≥ 0.9

can potentially be aligned with a percentage of identity greater than 97%

Indexing a collection of unassembled genomes. We accessed CHICO [16] on a set of

FASTQ files extracted for only 10 genomes from the 3000 rice genomes project [29]

and ran out of memory. Using the reads from zipped FASTQ files, RedOak was able

to index a subset of 110 randomly chosen, unassembled genomes from the 3000 rice

genomes project. It ran 140 parallelized instances on 14 nodes, each using 10 cores.

It used a total of 47254459 sec and 683.337 GiB of RAM memory. Per instance, it

used 337531.85 sec (4 days) and 4.881 GiB.

Memory RAM (GiB) and Query Time (s)
Query length RedOak-RAM RedOak-Query JellyFish-RAM JellyFish-Query JellyFish-Query-Total

270 7 1.179 16 6360 257926
540 7 3.325 16 7919 301113
810 7 2.703 16 11586 374489

1080 7 6.847 16 12996 368945
1350 7 3.839 16 12280 351517
2700 7 9.006 16 12880 391060
5400 7 19.634 16 13397 337673
8100 7 24.976 16 11701 349188

10800 7 34.939 16 10668 262252
13500 7 43.997 16 9779 263889
27000 7 60.389 16 9569 295048

Table 2: Comparison of performance between RedOak and JellyFish for querying with
simulated sequences of different length (from 10k to 1000k) an index of 67 assembled
genomes. Maximum RAM usage are in GiB. Times shown are wall-clock run times in sec.

4 Conclusion
We have designed and developed a data structure dedicated to the indexation of a

large number of genomes, assembled or not. The parallelization of the data structure

construction allows, through the use of networking resources, to efficiently index

and query those genomes.

Several perspectives can be considered. Through intensive tests and scalability

proofs, we aim to guarantee the robustness of our approach and extend the usability

of our tool, for instance, by proposing a graphical interface.

We also can explore methods inspired by Bloom Filter Trie [17], using a probabilistic

approach. At each vector level, there are possibilities to introduce such a model. A

theoretical study must be performed to estimate the possible gains and losses of

such a model.

We also have in mind other uses of the matrices of k-mers to extend the applications

of our data structure. For instance, beyond genomes comparison, we could also

consider using them for analyses of variant detection, genome assembly improvement,

and phylogeny.
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\definecolor{CoreKmer}{RGB}{15,160,80} 
\definecolor{ShellKmer}{RGB}{30,120,240} 
\colorlet{CloudKmer}{orange!80} 
 
\begin{tikzpicture}[% 
  box/.style={% 
    rectangle, 
    draw=black, 
    thick, 
    minimum size=1cm,% 
    fill=#1 
  }, 
  box/.default={white} 
  ] 
 
  % Suffixes 
  \draw[|-|] (0.4, 1.5) -- node[above] {\huge{$4^{k_2}$}} +(10.2, 0); 
  %\draw (0,0) grid (10,1); 
 
  \foreach \t [count=\n] in {% 
    
white,ShellKmer,white,CoreKmer,ShellKmer,ShellKmer,white,CloudKmer,CoreKm
er,white% 
  }{ 
    \node[box=\t] (kmer \n) at (\n,0.5){}; 
  } 
 
  \node[] (Label) at (11,0.5){$(2)$}; 
 
  % Prefixes 
  \draw[|-|] (-2.5,-0.9) -- node[left] {\huge{$4^{k_1}$}} +(0,-9.2); 
  \draw (-2,-1) grid +(1,-9); 
  \node[box] (P) at (-1.5,-2.5){}; 
 
  \node (Label) at (-1.5,-10.5){$(1)$}; 
 
 
  %% Bit Arrays 
  \draw[|-|] (1.5,-1.9) -- node[left] {\huge{$N$}} +(0,-5.2); 
 
  % Core 
  \draw[](2,-2) grid +(1,-5); 
  \foreach \n in {1,...,5}{ 
    \node[box] (core \n) at (2.5,-\n-1.5){1}; 
  } 
  \node (Label) at (2.5,-7.5){$(3)$}; 
 
  % Shell 
  \draw[](4,-2) grid +(1,-5); 
  \foreach \v [count=\n] in {0,1,1,0,1}{ 
    \node[box] (shell \n) at (4.5,-\n-1.5){\v}; 
  } 
  \node (Label) at (4.5,-7.5){$(4)$}; 
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  % Cloud 
  \draw[](6,-2) grid +(1,-5); 
  \foreach \v [count=\n] in {0,0,0,1,0}{ 
    \node[box] (cloud \n) at ((6.5,-\n-1.5){\v}; 
  } 
  \node (Label) at (6.5,-7.5){$(5)$}; 
 
  % Empty 
  \draw[](8,-2) grid +(1,-5); 
  \foreach \n in {1,...,5}{ 
    \node[box] (empty \n) at ((8.5,-\n-1.5){0}; 
  } 
  \node (Label) at (8.5,-7.5){$(6)$}; 
 
  % arrows 
  \path[->] (kmer 4) edge [out=-90, in=90] (core 1); 
  \path[->] (kmer 6) edge [out=-90, in=90] (shell 1); 
  \path[->] (kmer 8) edge [out=-90, in=90] (cloud 1); 
  \path[->] (kmer 10) edge [out=-90, in=90] (empty 1); 
  \path[->] (P) edge [out=90, in=180] (kmer 1); 
 
\end{tikzpicture} 
 
\endinput 
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\definecolor{CoreKmer}{RGB}{15,160,80} 
\definecolor{ShellKmer}{RGB}{30,120,240} 
\colorlet{CloudKmer}{orange!80} 
\pgfmathsetseed{2} 
\begin{tikzpicture}[% 
  box/.style={% 
    rectangle, 
    draw=#1, 
    text=#1, 
    thick, 
    minimum size=1cm% 
  }, 
  box/.default={black} 
  ] 
 
  % Core vector 
  \foreach \t [count=\n] in { 
    $S_1^*$,$S_2^*$,$\cdots$,$S_{c-1}^*$,$S_{c}^*$ 
  }{ 
    \node[box=CoreKmer] (core \n) at (\n-0.5,-4){\t}; 
  } 
  \node at (-0.5, -4) {(A)}; 
 
  % Shell vectors 
  \foreach \t [count=\n] in { 
    $S_1^+$,$S_2^+$,$\cdots$,$\cdots$,$\cdots$,$S_{s-1}^+$,$S_{s}^+$ 
  }{ 
    \node[box=ShellKmer] (shell \n) at (6+\n-0.5,0){\t}; 
    \foreach \x in {1,...,5}{ 
      \node[box=ShellKmer] (bitvector \n-\x) at (9.25+\x+0.5*\n,-
9.25+\n*1.2) {\pgfmathparse{random(0,1)}\pgfmathresult}; 
    } 
    \path[->,ShellKmer] (shell \n) edge [out=-90, in=180] (bitvector \n-
1); 
  } 
  \draw[|-|] (13.15,0) -- +(5.2, 0) node [midway,above] {$N$};  
  \node at (5.5, 0) {(B)}; 
 
  % Cloud vectors 
  \foreach \g/\v [count=\x] in {% 
    $G_1$/{$S_1^1$,$S_2^1$,$\cdots$,$\cdots$,$S_{c_1}^1$},% 
    
$G_2$/{$S_1^2$,$S_2^1$,$\cdots$,$\cdots$,$\cdots$,$\cdots$,$S_{c_2}^1$},% 
    $\vdots$/{},% 
    $\vdots$/{},% 
    $G_N$/{$S_1^N$,$\cdots$,$S_{c_N}^N$}% 
  }{ 
    \node[box=CloudKmer] (cloud \x) at (1.75,-8.75-\x) {\g}; 
    \foreach \t [count=\n] in \v { 
      \node[box=CloudKmer] (cloud \x-\n) at (\n+3.75,-8-\x*1.2){\t}; 
      \ifnum\n=1 
        \path[->,CloudKmer] (cloud \x) edge [in=180,out=0] (cloud \x-1); 
      \fi 
    } 
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  } 
  \node at (0.75, -11.75) {(C)}; 
 
\end{tikzpicture} 
\endinput 
 
\definecolor{Green}{RGB}{15,160,80} 
 
\begin{tikzpicture}[box/.style={minimum size=1cm},] 
\tikzstyle{dispensable}=[rectangle,draw=orange,fill=orange!25,text=orange
!25] 
\tikzstyle{core}=[rectangle,draw=Green,fill=Green!25,text=Green!25] 
\tikzstyle{svec}=[rectangle,draw=black,fill=black,text=black] 
 
%Core vector 
\draw[core] (0,0) grid (5,1); 
 
\node[box,] () at (0.5,0.5){\textcolor{Green!80}{$S_1$}}; 
\node[box,] () at (1.5,0.5){\textcolor{Green!80}{$S_2$}}; 
\node[box,] () at (2.5,0.5){\textcolor{Green!80}{$...$}}; 
\node[box,] () at (3.5,0.5){\textcolor{Green!80}{$S_{n-1}$}}; 
\node[box,] () at (4.5,0.5){\textcolor{Green!80}{$S_n$}}; 
 
\node[] (CORE) at (-1,0.5){$(A)$}; 
 
%Sorted vector 
\draw[svec] (0,-1) grid (7,-2); 
 
\node[box,] (c27) at (0.5,-1.5) {$27$}; 
\node[box,] (c3) at (1.5,-1.5) {$3$}; 
\node[box,] (c1) at (2.5,-1.5) {$1$}; 
\node[box,] () at (3.5,-1.5) {$...$}; 
\node[box,] () at (4.5,-1.5) {$...$}; 
\node[box,] (cn) at (5.5,-1.5) {$\lambda$}; 
\node[box,] () at (6.5,-1.5) {$...$}; 
 
\node[] (Sorted) at (-1,-1.5) {$(B)$}; 
 
%Dispensable 
\draw[dispensable] (0,-4) grid (7,-5); 
 
\node[box,] (S1) at (0.5,-4.5) {\textcolor{orange!80}{$S^{'}_3$}}; 
\node[box,] (S2) at (1.5,-4.5) {\textcolor{orange!80}{$S^{'}_{18}$}}; 
\node[box,] (S3) at (2.5,-4.5) {\textcolor{orange!80}{$S^{'}_2$}}; 
\node[box,] () at (3.5,-4.5) {\textcolor{orange!80}{$...$}}; 
\node[box,] (Sx) at (4.5,-4.5) {\textcolor{orange!80}{$S^{'}_1$}}; 
\node[box,] () at (5.5,-4.5) {\textcolor{orange!80}{$...$}}; 
\node[box,] () at (6.5,-4.5) {\textcolor{orange!80}{$...$}}; 
\node[box,] (Slambda) at (6.5,-4.5) 
{\textcolor{orange!80}{$S^{'}_{\lambda}$}}; 
 
\node[] (Dispensable) at (-1,-4.5) {$(C)$}; 
 
%Exdispensable 
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\draw[] (4,-6) grid (5,-11); 
 
\node[box,] (Ex) at (4.5,-6.5) {$0$}; 
\node[box,] () at (4.5,-7.5) {$1$}; 
\node[box,] () at (4.5,-8.5) {$...$}; 
\node[box,] () at (4.5,-9.5) {$1$}; 
\node[box,] () at (4.5,-10.5) {$0$}; 
\node[box,] () at (4.5,-11.5) {$(3)$}; 
 
%arrows 
\path[->] (Sx) edge [out=-90, in=90] (Ex); 
\path[->] (c27) edge [out=-90, in=90] (Sx); 
\path[->] (c3) edge [out=-90, in=90] (S3); 
\path[->] (c1) edge [out=-90, in=90] (S1); 
\path[->] (cn) edge [out=-90, in=90] (Slambda); 
 
 
\end{tikzpicture} 
\endinput 
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\providecommand{\mK}{\mathcal{K}} 
\providecommand{\mG}{\mathcal{G}} 
\definecolor{CoreKmer}{RGB}{15,160,80} 
\definecolor{ShellKmer}{RGB}{30,120,240} 
\colorlet{CloudKmer}{orange!80} 
 
 
%%%%%%%%%%%%%%%%%% 
%% Hidden stuff %% 
%%%%%%%%%%%%%%%%%% 
\makeatletter 
\def\redoakalgo@circleradius{1.5} 
\def\redoakalgo@circledistance{0.8} 
\def\redoakalgo@vfactor{1} 
\def\redoakalgo@hfactor{1} 
\def\redoakalgo@showsetlabels{true} 
 
\def\redoakalgo@tikz for N=#1 at (#2,#3){% 
  \pgfmathparse{int(#1)} 
  \let\ra@n\pgfmathresult 
  \pgfmathparse{(#2)*1cm} 
  \let\ra@x\pgfmathresult 
  \pgfmathparse{(#3)*1cm} 
  \let\ra@y\pgfmathresult 
  \pgfmathparse{(\redoakalgo@hfactor)*1pt} 
  \let\ra@hf\pgfmathresult 
  \pgfmathparse{(\redoakalgo@vfactor)*1pt} 
  \let\ra@vf\pgfmathresult 
  \expandafter\let\expandafter\if@redoakalgo@showlabels\csname 
if\redoakalgo@showsetlabels\endcsname 
  \begin{scope}[% 
    xshift=\ra@x,% 
    yshift=\ra@y,% 
    yscale=-1,% 
    thick,% 
    ] 
    \let\ra@r\redoakalgo@circleradius 
    \let\ra@d\redoakalgo@circledistance 
 
    \node[anchor=west] at (-5*\ra@r*\ra@hf, -1.5*\ra@r*\ra@vf) {% 
      $\mG_{\ra@n} = \{\ifnum\ra@n>0\foreach \ra@i 
in{1,...,\ra@n}{\ifnum\ra@i>1, \fi G_{\ra@i}}\fi\}$% 
    }; 
    \def\ra@ang{-90+\ra@a} 
    \ifnum\ra@n=0 
    \else 
      \ifnum\ra@n=1 
        \fill[fill=CoreKmer,draw=black] (0, 0) circle (\ra@r); 
        \if@redoakalgo@showlabels 
          \node[above] at (0, -\ra@r) {$G_1$}; 
        \fi 
      \else 
        %% Angle between two circle center in polar coordinate 
        \pgfmathparse{360/\ra@n} 
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        \let\ra@a\pgfmathresult 
        %% Distance to the origin of a circle center in polar coordinate 
        \pgfmathparse{\ra@d/sqrt(2*(1-cos(\ra@a)))} 
        \let\ra@l\pgfmathresult 
        %% Height from origin of the triangle OAB, where A and B are the 
centers of 
        %% two consecutive circles 
        \pgfmathparse{sqrt((\ra@l-\ra@d/2)*(\ra@l+\ra@d/2))} 
        \let\ra@dl\pgfmathresult 
        %% Height from intersection of two consecutive circles to the 
middle of 
        %% their centers 
        \pgfmathparse{sqrt((\ra@r-\ra@d/2)*(\ra@r+\ra@d/2))} 
        \let\ra@dr\pgfmathresult 
 
\foreach \ra@i in {1,...,\ra@n}{ 
          \coordinate (c\ra@i/\ra@n) at (\ra@ang-\ra@a*\ra@i:\ra@l); 
          \fill[fill=CloudKmer,draw=black] (c\ra@i/\ra@n) circle (\ra@r); 
          \if@redoakalgo@showlabels 
            \node at (\ra@ang-\ra@a*\ra@i:{(\ra@l+\ra@r)*1cm+0.6em}) 
{$G_{\ra@i}$}; 
          \fi 
        } 
        \foreach \ra@i [remember=\ra@i as \ra@j (initially \ra@n)] in 
{1,...,\ra@n}{ 
          \begin{scope}% 
            \clip (c\ra@i/\ra@n) circle (\ra@r); 
            \fill[ShellKmer] (c\ra@j/\ra@n) circle (\ra@r); 
          \end{scope}% 
        } 
        \begin{scope}% 
          \foreach \ra@i in {1,...,\ra@n}{ 
            \clip (c\ra@i/\ra@n) circle (\ra@r); 
          } 
          \fill[CoreKmer] (c1/\ra@n) circle (\ra@r); 
        \end{scope}% 
        \foreach \ra@i in {1,...,\ra@n}{ 
          \coordinate (cloud \ra@i/\ra@n) at (\ra@ang-
\ra@a*\ra@i:\ra@dr+\ra@dl);; 
          \coordinate (shell \ra@i/\ra@n) at (\ra@ang-\ra@a*\ra@i-
\ra@a/2:\ra@dr); 
          \draw[thin,darkgray] (c\ra@i/\ra@n) circle (\ra@r); 
        } 
      \fi 
    \fi 
    \coordinate (core \ra@n) at (0, 0); 
 
    \ifnum\ra@n=0 
      \def\ra@yshift{-\ra@r*0.5cm} 
    \else 
      \def\ra@yshift{0cm} 
    \fi 
    \begin{scope}[every node/.style={anchor=west},xshift=-
1.5cm,yshift=\ra@yshift] 
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      \node[CoreKmer] (label core \ra@n) at (-2*\ra@r*\ra@hf, 0) 
{$\mK^*$}; 
      \node[CloudKmer] (label cloud \ra@n) at (-2*\ra@r*\ra@hf, 1*\ra@vf) 
{$\mK^-$}; 
      \node[ShellKmer] (label shell \ra@n) at (-2*\ra@r*\ra@hf, -
1*\ra@vf) {$\mK^+$}; 
      \ifnum\ra@n=0 
        \node[CoreKmer] at (-2cm*\ra@r*\ra@hf+1.5em, 0) {$=\emptyset$}; 
      \else 
        \draw[->] (label core \ra@n) edge[in=180,out=0] (core \ra@n); 
      \fi 
      \ifnum\ra@n<2 
        \node[CloudKmer] at (-2cm*\ra@r*\ra@hf+1.5em, \ra@vf) 
{$=\emptyset$}; 
      \else 
        \pgfmathparse{int(round((\ra@n/3)+1.2)} 
        \let\ra@cn\pgfmathresult 
        \draw[->] (label cloud \ra@n) edge[in=180,out=0] (cloud 
\ra@cn/\ra@n); 
      \fi 
      \ifnum\ra@n<3 
        \node[ShellKmer] at (-2cm*\ra@r*\ra@hf+1.5em, -1*\ra@vf) 
{$=\emptyset$}; 
      \else 
        \pgfmathparse{int(max(1,round((\ra@n/6))))} 
        \let\ra@sn\pgfmathresult 
        \draw[->] (label shell \ra@n) edge[in=180,out=0] (shell 
\ra@sn/\ra@n); 
      \fi 
    \end{scope} 
  \end{scope} 
} 
 
%%%%%%%%%%%%%%%%% 
%% Main macros %% 
%%%%%%%%%%%%%%%%% 
\def\redoakalgocircleradius{\def\redoakalgo@circleradius} 
\def\redoakalgocircledistance{\def\redoakalgo@circledistance} 
\def\redoakalgovfactor{\def\redoakalgo@vfactor} 
\def\redoakalgohfactor{\def\redoakalgo@hfactor} 
\def\redoakalgoshowsetlabels{\def\redoakalgo@showsetlabels} 
\def\redoakalgo from #1 to #2{ 
  \begin{tikzpicture} 
    \let\ra@r\redoakalgo@circleradius 
    \let\ra@d\redoakalgo@circledistance 
    \pgfmathparse{int(#1)} 
    \let\ra@a\pgfmathresult 
    \pgfmathparse{int(#2)} 
    \let\ra@b\pgfmathresult 
    \pgfmathparse{(\redoakalgo@hfactor)*1pt} 
    \let\ra@hf\pgfmathresult 
    \pgfmathparse{(\redoakalgo@vfactor)*1pt} 
    \let\ra@vf\pgfmathresult 
    \foreach \ra@n in {\ra@a,...,\ra@b}{ 
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      \begingroup 
      \pgfmathparse{int(\ra@n-1)} 
      \let\ra@na\pgfmathresult 
      \pgfmathparse{int(\ra@n+1)} 
      \let\ra@nb\pgfmathresult 
      \ifnum\ra@a<\ra@nb 
        \ifnum\ra@b>\ra@na 
          % G_\ra@n 
          \redoakalgo@tikz for N={\ra@n} at (0,-8*\ra@n*\ra@vf) 
          \ifnum\ra@a<\ra@n 
            \ifnum\ra@na=0 
              \def\ra@sa{0} 
            \else 
              \ifnum\ra@na=1 
                \pgfmathparse{\ra@r+0.1} 
                \let\ra@sa\pgfmathresult 
              \else 
                \pgfmathparse{\ra@r+\ra@d/sqrt(2*(1-cos(360/\ra@na)))} 
                \let\ra@sa\pgfmathresult 
              \fi 
            \fi 
            \ifnum\ra@n=0 
              \def\ra@sb{0} 
            \else 
              \ifnum\ra@n=1 
                \pgfmathparse{\ra@r+0.1} 
                \let\ra@sb\pgfmathresult 
              \else 
                \pgfmathparse{\ra@r+\ra@d/sqrt(2*(1-cos(360/\ra@n)))} 
                \let\ra@sb\pgfmathresult 
              \fi 
            \fi 
            \coordinate (G\ra@n) at (\ra@hf, {-(8*\ra@n-4)*\ra@vf}); 
            \draw[fill=purple,thick] (G\ra@n) circle (\ra@r) 
node[left=\ra@r cm] {adding $G_{\ra@n}$}; 
            \draw[blue,->,shorten <= \ra@sa cm, shorten >=\ra@sb cm] 
(core \ra@na) to[bend left] (core \ra@n); 
          \fi 
        \fi 
      \fi 
      \endgroup 
    } 
  \end{tikzpicture} 
} 
\makeatother 
 
\endinput 
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