
HAL Id: lirmm-03124055
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03124055v1

Submitted on 23 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

API library-based identification and documentation of
usage patterns

Hamzeh Eyal-Salman

To cite this version:
Hamzeh Eyal-Salman. API library-based identification and documentation of usage patterns. In-
ternational Journal of Computer Applications in Technology, 2018, 58 (1), pp.63-79. �10.1504/IJ-
CAT.2018.094065�. �lirmm-03124055�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03124055v1
https://hal.archives-ouvertes.fr

Int. J. Computer Applications in Technology, Vol. 58, No. 1, 2018

API library-based identification and documentation
of usage patterns

Hamzeh Eyal Salman
Mutah University,
Karak, Jordan
and
LIRMM, University of Montpellier 2,
Montpellier, France
Email: hamzehmu@mutah.edu.jo
Email: hamzehahu@gmail.com

Abstract: Application programming interfaces (APIs) are important sources for supporting
source code reuse as each API provides a large set of pre-implemented functionalities
that support programmers to achieve their daily work in different contexts. However, APIs
provide huge number of classes and methods that hinder programmers to understand and
use APIs. Numerous client-based approaches have been proposed for facilitating APIs
usage through identifying frequent usage pattern. Although they represent significant efforts for
helping APIs understanding, the client applications are not available for either newly released
APIs libraries or APIs that are not widely used. In this paper, a non-client-based approach for
frequent usage patterns identification and documentation is proposed. The approach incorporates
hierarchical clustering algorithm and API’s source code information. An experimental evaluation
is conducted using four widely used APIs. For all studied APIs, the results show that the
proposed approach is comparable with client-based approaches in terms of usage patterns
cohesion.

Keywords: reuse; frequent usage pattern; API; object-oriented; understanding; documentation.

Reference to this paper should be made as follows: Eyal Salman, H. (2018) ‘API library-based
identification and documentation of usage patterns’, Int. J. Computer Applications in Technology,
Vol. 58, No. 1, pp.63–79.

Biographical notes: Hamzeh Eyal Salman is an Assistant Professor at Mutah University, Jordan.
He obtained his PhD degree from the Laboratoire d’Informatique, de Robotique et de
Microélectronique de Montpellier (LIRMM) at University of Montpellier, France, in 2014. He
got a Master in Computer Science from University of Jordon in 2010. He also has a Bachelor
degree in Computer Information Systems (ranked 1st) from Al-Hussein Bin Talal University,
Jordan, in 2006.

1 Introduction

Application programming interfaces (APIs) are one of the
most important forms for source code reuse as they are
developed only for reuse (Frakes and Kang, 2005). Each
API provides a large set of functionalities (resp. their source
code) that support programmers to achieve their daily work
in different contexts (Kodhai and Kanmani, 2016). These
pre-implemented functionalities are free of errors, and thus
help to produce high quality software applications, reduce
time and effort consumed in programming and testing (Roy
et al., 2011). Moreover, the distinguishing feature in many
frameworks and integrated development environments
(IDEs) is the ability to benefit from existing APIs.

Nowadays, an API is written in object-oriented languages
(such as, standard template libraries in C++ or Java SDK) and

provides a large number of classes and methods. Moreover,
APIs are provided by different companies where each one
follows and writes in different style (Zhong et al., 2009;
Bansal and Malhotra, 2016). Consequently, even experienced
programmers may encounter difficulties when they use new
or not widely used APIs. Furthermore, programmers struggle
with identifying a set of API methods that should be invoked
together to implement a specific task. Such a set is called
frequent usage pattern. In fact, if API of interest is well
documented, it might be not difficult for programmers to
find a set of API methods that implement the task at hand.
However, in most API documentations, the relationships
between API methods (called co-usage relationships) are
often not documented and the documentation is limited
to the functionality implemented by each API method
individually. Some APIs or frameworks (such as, .NET

 H. Eyal Salman

framework) documentation have sample code snippets but
these snippets exhibit only one usage scenario (Zhong et al.,
2009). To overcome the limitations associated with APIs
documentation, programmers can use source code search
engines to learn how to use API’s methods. However, these
search engines usually return a large number of code
snippets which hinder the programmers to locate API’s
methods that are necessary and sufficient to implement their
daily work.

Recently, there is a body of research work has been
proposed for facilitating APIs usage (Robillard et al., 2013).
The proposed approaches support APIs understanding
through identifying sequential (Alur et al., 2005; Mandelin
et al., 2005; Thummalapenta and Xie, 2007) and unordered
usage patterns (Zhong et al., 2009; Saied et al., 2015b) from
a given API source code. These approaches mainly rely on
source code of client applications for API of interest.
Although they represent a significant effort for helping APIs
understanding, the client applications are not available for
both new released APIs libraries and APIs that are not
widely used. Also from the coverage perspective of APIs,
even available client applications may not cover all usage
scenarios of API of interest. As a result, client-based
identification approaches of API usage patterns are only useful
for identifying a subset of API methods that are used frequently
by different client applications.

In this article, a non-client-based frequent usage patterns
identification and documentation of API is proposed
(called Non-Client-Based Usage Pattern Identification and
Documentation, for short NCBUPID). The proposed approach
takes as input source code of API of interest and produces
as output a set of documented frequent usage patterns.
Each usage pattern is documented by a set of terms
describing the purpose of that pattern. NCBUPID is
based on the idea that a set of API methods that always
are called together and thus represent a frequent usage
pattern is supposed to have strong relations. The intuition
behind this idea is that API methods that collaborate and
contribute to implement the same functionality are related.
In this paper, the results of two types of relations between
API methods and their combination are investigated. These
relations are structural and textual similarities. Furthermore,
NCBUPID relies on agglomerative hierarchical clustering
(AHC) to cluster together a set of related API methods
which represent a frequent usage pattern. It is important to
mention that NCBUPID is not an alternative solution for
client-based approaches. It is a solution when client
applications of a given API are not available (for example,
new released API). Moreover, it is expected that it does not
perform better than client-based ones and the goal is to
obtain results close to those achieved by client-based
approaches.

In order to evaluate NCBUPID approach, a comparative
evaluation is performed between NCBUPID and the most
recent client-based approach in the subject called IML-FUP
(Salman, 2017). Experiments have been conducted using
four APIs with 89 client applications from different domains.
These APIs are HttpClient1, Java Security2, Swing3 and AWT4.
In our evaluation, 30 clients were used for AWT and Swing,
17 clients were used for Java Security and 12 clients were used
for HttpClient. The experimental results show that the
identified usage patterns using NCBUPID remain sufficiently
cohesive.

The remainder of this paper is organised as follows:
Section 2 provides motivational examples. Section 3 details
the proposed approach steps. Next, Sections 4 and 5
describe evaluation setting and discuss experimental results,
together with the threats to validity, respectively. Then,
Section 6 discusses the related work. Finally, Section 7
concludes the article and indicates future work.

2 Motivational examples

In this section, two motivational examples are presented to
explain how structural and textual similarities between
source code elements could be information sources for
identifying co-usage relationship between API’s methods.
Structural similarity represents interdependencies between
API’s methods using method calling, parameter passing, etc.
textual similarity refers to textual matching between API’s
methods vocabulary.

2.1 Layout design in swing API

In Swing API (Java swing api, 2016), the class GroupLayout is
a layout manager that hierarchically groups graphical
components in order to position them in a container.5 Each
group may contain any number of elements, where an element
is a Group, Component, or gap. Usually, this class is used by
every client program uses graphical user interface (GUI). Also,
this class consists of 30 methods including constructor. By
analysing a variety of code snippets that use GroupLayout
class, it was found there is a subset of GroupLayout’s
methods that are always called together (Saied et al., 2015a)
(see Figure 1). These methods are: GroupLayout(Container),
setHorizontalGroup(Group) and setVerticalGroup(Group).

The above three mentioned methods have strong structural
and textual similarities. Structurally, both setHorizontalGroup
(Group) and setVerticalGroup(Group) methods use as a
parameter the same object type, called Group. Moreover,
the GroupLayout(Container) method calls directly both
setHorizontalGroup(Group) and setVerticalGroup(Group)
methods (se Figure 1). Textually, these methods share the
following terms (see Figure 2): set, group and host.

 API library-based identification and documentation of usage patterns

Figure 1 Two code snippets of “GroupLayout” returned by Krugle code search engine

Figure 2 Code segment of GroupLayout class

 H. Eyal Salman

2.2 Loading and storing keys in Java security API

In Java security API (2016), a class called KeyStore represents
a storage facility for cryptographic keys and certificates.6
The KeyStore class deals with three different types of
entities: KeyStore.PrivateKeyEntry, KeyStore.SecretKeyEntry
and KeyStore.TrustedCertificateEntry. Before an instance
of KeyStore class can be accessed, it must be loaded using
the methods load(LoadStoreParameter). When this
instance has been loaded, it is possible to load existing
entries from the KeyStore instance, or to store new
entries into the KeyStore instance using the methods
getEntry(String, ProtectionParameter) and setEntry(String,
Entry, ProtectionParameter), respectively.

 load(LoadStoreParameter): loads this keystore object
using the given LoadStoreParameter.6

 getEntry(String, ProtectionParameter): gets a keystore
entry for the specified alias with the specified protection
parameter.6

 setEntry(String, Entry, ProtectionParameter): saves a
keystore entry under the specified alias. The protection
parameter is used to protect the entry.6

The above-mentioned methods are identified as a frequent
usage pattern in Saied et al. (2015a). These methods are
structurally and textually similar. Structurally, both
getEntry() and setEntry() methods use the same object
type (ProtectionParameter) to protect KeyStore entries.
Also, LoadStoreParameter object, which must be passed
to the load() method, is used to set the ProtectionParameter
object. Moreover, both getEntry() and setEntry()
methods read the initialisation value of a field called
initialised defined in KeyStore class (see Figure 3).
This field is initialised by the load() method. Textually,
the load(), getEntry() and setEntry() methods use the
same vocabulary (see Figure 3). For example, these
methods share the following terms: entry, parm, prot and
alias.

Figure 3 Code segment of KeyStore class

 API library-based identification and documentation of usage patterns

3 The proposed approach (NCBUPID)

This section describes how the proposed approach identifies
non-clients-based frequent usage patterns from APIs source
code using hierarchical agglomerative clustering.

3.1 Overview

Figure 4 presents an overview of frequent usage patterns
identification process which defines five steps. The first step
takes as input an API source code which is statically parsed
to identify public methods. In the second step, each public
method is characterised by interdependency and term
vectors which encode structural and textual information
associated with that method, respectively. Then in the third
step, similarities between these public methods (resp. their
vectors) are computed. The proposed process relies on the
following heuristics to compute such similarities:

 Heuristic 1 [structural similarity]: it refers to
interdependencies among public methods (e.g. method
calls, parameters passing, etc.) where methods that depend
on each other are expected to collaborate in order to
implement the same domain task or functionality.

 Heuristic 2 [textual similarity]: it refers to textual
matching between terms derived from identifiers of API’s
public methods. Identifier names record important domain
knowledge which represent functionality(s) implemented
by these code elements (identifiers). Therefore, when two
or more methods share a lot of terms, it is expected these
methods contribute to implement the same domain task
or functionality especially when the developers use the
same vocabulary across source code elements.

 Heuristic 3 [combining structural and textual similarities]:
it refers to the integration between both structural and
textual similarities. The idea behind such integration is that
by combining these sources of information their drawbacks
can be minimised and better results can be achieved.

The fourth step in the proposed process clusters similar
methods together using agglomerative hierarchical clustering
algorithm (AHC) as each FUP is a group of public methods
which are used together. Each resulted cluster represents
a frequent usage pattern. Finally, each identified pattern
is documented automatically by finding keywords describe
the purpose of that pattern. In the following sections, each
process step is detailed.

3.2 Parsing API’s public methods source code

This is the first step in the identification process where
source code of each given API is statically analysed. This
static analysis allows finding public methods of that API and
then identifies interdependencies between these methods and
extract textual information. Such static analysis is performed
using the Eclipse Java Development Tool (JDT).

In object-oriented technology, there are numerous
interdependency relationships between source code elements.
This study investigates the results of a set of these relationships
which are recommended by motivation examples. Such
interdependencies represent structural similarity which
includes:

1 Calling the same method(s): when the same API
method is called by two or more API methods.

2 Accessing the same attribute(s): when the same
attribute(s) is accessed by two or more API methods.

3 Using the same parameter type(s): when the same
parameter type(s) is used by two or more API methods.

4 Returning the same value type: when the returned-value
type is the same for two or more API methods.

To find textual links between API methods, textual source
code information specific to each API method is only
considered in this study. This information includes method
name, parameter names and local variable names.

Figure 4 The proposed approach overview

 H. Eyal Salman

3.3 Encoding API’s public methods information

In this proposed approach, clustering algorithm starts from a
set of points so that each point represents an API public
method. Therefore, source code information (i.e., both
structural and textual information) associated with each public
method should be encoded as a point in clustering algorithm
search space. To do this, two vectors are created for each API
public method: interdependency and term vectors.

The interdependency vector of each API public method
has a constant length that represents the number of all
interdependency relationships existing between API’s public
methods. Figure 5 shows a toy example of API consisting of
four public methods with 15 interdependency relationships.
Therefore, each API method will have interdependency’s
vector of length 15. For a given API method, an entry 1 or 0 in
the i-th position denotes that i-th element (either field, method
or data type) is referenced or not referenced respectively by that
API method.

Similarly to interdependency vector, the term vector of
each API public method has constant length that represents
number of all terms composing public method names,
parameter names and local variable names of a given API.
Figure 6 shows a toy example of term vector representations
of API consisting of four public methods. For each public
method, an entry in the i-th position refers to term frequency
in that public method.

3.4 Computing structural and textual similarities

In order to group and aggregate together similar API public
methods into clusters which represent usage patterns, a

similarity metric is needed. In this study two similarity metrics
are defined: structuralSim and textualSim. The structuralSim is
used to capture interdependencies relationships between API
public methods while the textualSim is used to compute textual
matching between API public methods vocabulary.

The structuralSim between two API public methods is
defined in equation (1) using Jaccard similarity coefficient.
For two given API public methods (mi and mj), the rationale
behind using the Jaccard similarity is that two API methods
are close to each other if they share a large subset of
the called methods, fields, 160 returned data types and
parameter data types in their corresponding interdependency
vectors.

,

i

j

i j
i

j

interdependencyVec m

interdependencyVec m
structuralSim m m

interdependencyVec m

interdependencyVec m

 (1)

where interdependencyVec denotes to interdependency
vector of mi and mj.

The textualSim between two API public methods is
defined in equation (2) using cosine similarity (Saied et al.,
2015a; Marcus and Maletic, 2003; Kayarvizhy et al., 2016).
For two given API public methods, this metric is used to
determine how much relevant textual information is shared
among their corresponding term vectors.

 , i j
i j

i j

m m
textualSim m m

m m

 (2)

Figure 5 An graphical representation of four interdependency vectors consisting of CM (Class.Method), (Class.Field), RDT (returned data
type) and PDT (parameter data type)

Figure 6 An graphical representation of term vector consisting of methods vocabulary

 API library-based identification and documentation of usage patterns

In order to compute the similarity resulted by combining
structural and textual heuristics, the structuralSim and
textualSim are combined in equation (3). For two given API
methods mi and mj, the combined similarity (combinedSim)
is computed as follows:

,

,
,

2

i j

i j

i j

structuralSim m m

textualSim m m
combinedSim m m

 (3)

3.5 Clustering algorithm

To identify groups of public methods which represent usage
patterns, an algorithm should be used. Among the possible
algorithms, a clustering algorithm is opted. This kind of
algorithms is used to group elements using similarity function.
This makes it suitable for the problem addressed in this study
as similarity metrics defined prior will play the role of a
similarity function.

Clustering algorithms are classified into hierarchical
or non-hierarchical. Hierarchical clustering algorithms are
further categorised into agglomerative (AHC for short) and
divisive. In this study, AHC is opted to cluster similar API
public methods into frequent usage patterns. AHC starts
with singleton clusters (i.e. clusters having only one object)
and recursively merges the two most similar clusters in each
stage. These singleton clusters initially consist of individual
API public methods and later of clusters of public methods
formed during the previous stages. Based on this description
of AHC, it can be deduced that AHC computes similarity
among public methods, among clusters, and between
clusters and public methods. In this study, the application of
AHC relies on the following two steps.

3.5.1 Building a hierarchy of clusters

For a given set of API public methods, AHC groups similar
methods into clusters. The basis for such clustering is the
strength of the relationship between them. This relationship
refers to structural similarity, textual similarity and a
combination thereof.

AHC works by creating a tree of nested clusters, called a
dendrogram. A dendrogram is a tree representation frequently
used to illustrate the arrangement of the clusters produced by
hierarchical clustering (Haifeng and Zijie, 2010). AHC is a
adapted to build a dendrogram from a given set of API public
methods according to Algorithm 1. This algorithm relies on a
series of successive binary mergers, initially of individual
methods and later of clusters formed during the previous
stages. In the beginning, it puts each method in its own
cluster. Among all current clusters, the two most similar
clusters (mostSimilarClusters()) are picked. Then, these two
clusters are replaced with a new cluster by merging the two
original ones. The process continues until only one cluster
remains such that at each iteration only one pair of clusters
that have the highest relationship strengths are merged.
This single cluster represents a dendrogram (dendgr) that
contains a set of nested clusters. Merging two clusters mean

aggregation the method vectors of these clusters using the
logical disjunction in one vector (see lines 11–14). Also, it is
important to mention that the function mostSimilarClusters()
represents structural similarity, textual similarity or
their combination depending on the type of similarity to be
investigated.

Figure 7 shows an example of dendrogram tree. At the
lowest level, each method is in its own cluster. At the
highest level, all methods belong to the same cluster. The
internal nodes represent new clusters formed by merging the
clusters that appear as their children in the tree.

Figure 7 An example of a dendrogram tree

3.5.2 Selecting candidate frequent usage patterns

Breaking the generated dendrogram tree based on predefined
criteria allows grouping classes into clusters. Each resulting
cluster can be a candidate frequent usage pattern. Therefore,
the appropriate breaking points should be selected to

70 H. Eyal Salman

obtain frequent usage patterns. This selection is performed
by an algorithm based on a depth-first search (refer to
Algorithm 2). This algorithm takes as input the dendrogarm
tree and returns a set of clusters. These clusters are
interpreted as frequent usage patterns. This algorithm starts
by comparing the similarity value (Sim()) of each node in
the dendrogram (starting from the root) and its sons. If the
similarity value of the focused node is less than the average
of the similarity values of its two sons, then the algorithm
continues to the next son nodes. Otherwise, the focused
node is identified as a frequent usage pattern, added to the
FUPs accumulator and the algorithm computes the next
node in the stack (traversedClusters). In this way, the most
relevant frequent usage patterns will be identified as the
traversal continues.

To visualise how Algorithm 2 selects clusters (i.e., frequent
usage patterns), see Figure 7. The red horizontal line
determines the cutting points. Based on these points, four
clusters can be obtained as follows. A first cluster contains
methods m6, m8 and m2. A second cluster contains
methods m10 and m1 while methods m5, m3, m9 and m7
belong to a third cluster. Finally, only one method m4 forms
a fourth cluster.

3.6 Documenting identified usage patterns

Frequent usage patterns can be efficiently used if their
documentation (e.g., main purpose, name, etc.) is available.
Thus, the need to document the identified usage patterns
is necessary. To achieve this goal, a heuristic is used
to discover the purpose of an identified usage pattern.
In many object-oriented languages, method names are
sequences of terms concatenated using a camel-case
notation (e.g., setLeftComponent(), getHighlightInnerColor()
and closeMenu()). The first term of a method name refers to the
functionality to be performed by that method (set, get and
close). The other terms indicate to objects or input which are
associated with that functionality (LeftComponent, Menu and
HighlightInnerColor). According to these assertions, each
identified usage pattern is documented using the following
steps: decomposing method names, token frequency computing
and constructing the pattern name.

3.6.1 Decomposing method names

For a given frequent usage pattern, method names of that
pattern are split into tokens according to the camel-case
convention. In this convention the uppercase case letters and
underscore are used as delimiters for splitting. For example
setLeftComponent() is split into set, left and component.
However, it is possible to encounter single case method
term (such as, maxvalues), abbreviations and acronyms. To
handle such name compositions, an algorithm proposed by
Warintarawej et al. (2015) is used.

3.6.2 Token frequency computing

In this step, the tokens extracted from method names
of each usage pattern undergo a preprocessing step. A
preprocessing involves normalising the tokens such as stop
word removal. Then, a token frequency is computed and
assigned to each token extracted from a method name. For a
given token, this frequency indicates to the number of times
a token is used for naming API public methods of a given
frequent usage pattern.

3.6.3 Constructing the pattern name

In this step, a usage pattern name is constructed based on
the high frequency tokens. The first word of the pattern
name is the first high frequency token. The second word of
the pattern name is the second high frequency token and so
on. The number of words used in the pattern name is
specified by the user. When many tokens have the same
frequency, all the possible combinations are given to the
user and he can select the appropriate one.

4 Evaluation setting

This section describes the setting of experiments.
Particularly, research questions, studied APIs, a collection
of client applications and used metrics for evaluating the
effectiveness of the proposed approach are defined.

4.1 Research questions and evaluation metrics

The main goal of this study is to evaluate whether the proposed
approach can identify API’s cohesive usage patterns that are
comparable to those identified using clients-based approaches.
Therefore, the following research questions are formulated.

 RQ1 [Pattern Usage Cohesion]: To which extent the
textual and structural heuristics individually and a
combination thereof help identifying API’s methods
that always are invoked together?

 RQ2 [Comparable Usage Pattern]: To which extent the
identified patterns are comparable to those identified by
client-based approaches?

In order to address the first research question (RQ1), the
impact of structural and textual heuristics on identifying usage
pattern is studied. Therefore, results of these heuristics

 API library-based identification and documentation of usage patterns 71

separately and in combination are investigated for identifying
usage patterns from selected APIs. To evaluate the results of
studied heuristics and their combination in terms of the
cohesion of identified patterns, a measure for a pattern usage
cohesion is needed. Such a measure evaluate whether an
identified pattern is cohesive enough to exhibit co-usage
relationships between the API methods from the perspective of
API client applications. For this, Service Interface Usage
Cohesion metric (SIUC) is used (Perepletchikov et al., 2010).
A service in this metric is deemed to be externally cohesive
when all of its service operations are invoked by all the clients
of this service. This definition for service cohesion is similar to
pattern usage cohesion. Therefore SIUC metric was adopted
in Saied et al. (2015b) and Salman (2017) and referred to as
Pattern Usage Cohesion (PUC) and Multi-Level Pattern
Usage Cohesion (MLPUC), respectively. PUC values take a
range in [0…1]. The larger the value of PUC is, the better
the usage cohesion. The ideal usage cohesion occurs when
PUC is equal to 1. This means that all the pattern’s methods
are actually always used together. For a given pattern p,
PUC is defined as follows (Saied et al., 2015b):

client

PMe client

PMe
PUC p

clients p

 (4)

where clients p is the total number of all client methods

of the API’s methods in p. PMe is the number of all API’s

methods in p. PMe client is the number of API’s

methods in p invoked by a client method client.
In order to address the second research question (RQ2),

NCBUPID is compared to the most recent client-based
frequent usage patterns identification approach in the
subject, called IML-FUP (Salman, 2017). To identify API
usage patterns, IML-FUP uses formal concept analysis

(FCA) technique to cluster API’s methods which always or
frequently are used together within a variety of client
applications of the studied API. This comparison is
performed in terms of average PUC, average number and
size of identified patterns. For fair comparison, the proposed
heuristics are evaluated using the same set of API methods
that were used by IML-FUP (i.e., a set of API methods
called by the client applications considered in this study).

4.2 Experimental setup

To assess the first research question (RQ1), NCBUPID is
run three times on each studied API. In the first and second
runs, structural and textual heuristics are considered
separately, respectively. In the third run, the combination of
these heuristics is considered. For each run, API’s public
methods only are used as a data set to be clustered. For each
studied API, identified API usage patterns for three runs are
collected and analysed. It is important to mention that some
of identified patterns by NCBUPID are not covered (called)
by selected client applications – in spite of these clients
represent a large number of applications from different
domains. Therefore for each selected API, only API’s
methods which are covered by client applications can be an
input for NCBUPID.

To assess the second research question (RQ2), all APIs
and their client applications used by IML-FUP are
considered in this study. Tables 1, 2, 3 and 4 show these
APIs and applications. API’s methods which only are called
by these client applications can be clustered by IML-FUP.
Therefore, for fair comparison between NCBUPID and
IML-FUP the set of API’s methods called by client
applications of each API is identified. Then, this set is used
as an input for both NCBUPID and IML-FUP. Then,
identified patterns from these approaches are evaluated
using the evaluation measures (PUC, average number and
size of identified pattern).

Table 1 Client applications corresponding to SWING API

API Client applications Description

swing

LaTeXDraw2.0.8 Is a graphical drawing editor for LaTeX

SweetHome3D-3.4 An interior design application

RapidMiner An integrated environment for machine learning and data mining

Msproject MS-Project import/export plugin for GanttProject

Pert The PERT plugin for GanttProject

Mogwai Java 2D and 3D visual entity relationship design and modelling (ERD,S QL)

G4P (GUI for processing) A library that provides a rich collection of 2D GUI controls

Apache-jmeter-2.11 Java application designed to test and measure performance

Art-of-Illusion A 3D modelling and rendering studio

AtlasCreator An application creates off-line atlases of raster maps for various cell phone applications

Code2uml A tool for constructing UML class diagrams from java .class and .jar files

Davmail A POP/IMAP/SMTP/Caldav/Carddav/LDAP gateway allowing users to use any mail client

EasyFileShare An application to share files from your PC to any other device

Freemind A mind-mapping editor

GanttProject core An application for project management and scheduling

GLIPS A cross-platform SVG graphics editor

72 H. Eyal Salman

Table 1 Client applications corresponding to SWING API (continued)

API Client applications Description

 Java-chat An application for chatting

JEdit A text editor

JHotDraw A Java GUI framework for technical and structured Graphics

Mailcarbon An application for backup emails from one server to another over IMAP

Neuroph A lightweight Java Neural Network Framework

Metawidget A smart widget Building User Interfaces for domain objects

VASSAL-3.2.15 An engine for building and playing human-vs.-human games

Open-so-frontend An application for managing the Stack Overflow family of sites

Swingx Contains extensions to the Swing GUI toolkit

Paros A Java based HTTP/HTTPS proxy for assessing web application vulnerability

PlotDigitizer An application to digitise data points off of scanned plots and scaled drawings

Pmd A source code analyser

RESTEasy A JBoss project that provides various frameworks to build RESTful Web Services

xsmile A Java based XML browser

Table 2 Client applications corresponding to AWT API

API Client applications Description

awt

LaTeXDraw2.0.8 Is a graphical drawing editor for LaTeX

SweetHome3D-3.4 An interior design application

RapidMiner An integrated environment for machine learning and data mining

Msproject MS-Project import/export plugin for GanttProject

Pert The PERT plugin for GanttProject

Mogwai Java 2D and 3D visual entity relationship design and modelling (ERD, SQL)

G4P (GUI for processing) A library that provides a rich collection of 2D GUI controls

Apache-jmeter-2.11 A project that can be used as a load testing and measure performance tool

Art-of-Illusion A 3D modelling and rendering studio

AtlasCreator An application creates off-line atlases of raster maps for various cell phone applications

OpenLaszlo An open source platform for the development and delivery of rich Internet applications

Davmail A POP/IMAP/SMTP/Caldav/Carddav/LDAP gateway allowing users to use any mail client

EasyFileShare An application to share files from your PC to any other device

Freemind A mind-mapping editor

GanttProject core An application for project management and scheduling

GLIPS A cross-platform SVG graphics editor

Java-chat An application for chatting

JEdit A text editor

JHotDraw A Java GUI framework for technical and structured Graphics

Mailcarbon An application for backup emails from one server to another over IMAP

Neuroph A lightweight Java Neural Network Framework

Metawidget A smart widget Building User Interfaces for domain objects

VASSAL-3.2.15 An engine for building and playing human-vs.-human games

Open-so-frontend An application for managing the Stack Overflow family of sites

Swingx Contains extensions to the Swing GUI toolkit

Paros A Java based HTTP/HTTPS proxy for assessing web application vulnerability

Htmlpdf The html and pdf export plugin for GanttProject

Pmd A source code analyser

RESTEasy A JBoss project that provides various frameworks to build RESTful Web Services

xsmile A Java based XML browser

 API library-based identification and documentation of usage patterns 73

Table 3 Client applications corresponding to SECURITY API

API Client applications Description

security

YaHPConverter A Java library that allows you to convert an HTML document into a PDF document

ApacheJackrabbit Is an open source content repository for the Java platform

Apache-jmeter A project that can be used as a load testing and measure performance tool

Davmail A POP/IMAP/SMTP/Caldav/Carddav/LDAP gateway allowing users to use any mail client

Heritrix A web crawler

Hibernate An Object/Relational Mapper tool

HttpclientAuthHelper An application to authenticate Httpclient with services that use NTLM, KERBEROS and
SSL

Lcrypto Bouncy Castle Cryptography

MinaSource An application framework which develop high performance and high scalability network
applications

Mule-3.x A lightweight enterprise service bus (ESB) and integration framework

OpenLaszlo An open source platform for the development and delivery of rich Internet applications

Paros A Java based HTTP/HTTPS proxy for assessing web application vulnerability

RESTEasy A JBoss project that provides various frameworks to build RESTful Web Services

RSSOwl An aggregator for RSS and Atom News feeds

wildfly An application server

Xsmile A Java based XML browser

Xstream An application to serialise objects to XML and back again

Table 4 Client applications corresponding to HTTPCLIENT API

API Client applications Description

httpclient

Davmail A POP/IMAP/SMTP/Caldav/Carddav/LDAP gateway allowing users to use any mail client

Heritrix A web crawler

HttpclientAuthHelper An application to authenticate Httpclient with services that use NTLM, KERBEROS and
SSL

HueMorseCommunicator An application to sends messages through a Philips Hue light using morse code

Javabook-client A Java API for Facebook

Mule-3.x A lightweight enterprise service bus (ESB) and integration framework

OpenLaszlo An open source platform for the development and delivery of rich Internet

Paros A Java based HTTP/HTTPS proxy for assessing web application vulnerability

Rabbitmq-management Java project to handle rabbitmq administration

RSSOwl An aggregator for RSS and Atom News feeds

Sage-gateway An application for data archival, preservation and access for all projects of NSF’s Arctic
Science Program

Weibo4j-oauth2 Sina Mblog openAPI javaSDK

4.3 Data collection

To execute the empirical evaluation of NCBUPID, a large
group of 89 client applications are used. This group is open-
source Java projects from different domains and sizes7 and
they are developed using different Java APIs. Among these
APIs, four widely used API libraries are considered also
for empirical evaluation. These APIs are: httpclient, security,
swing and awt. The httpclient API is used to facilitate
communication over web services. The security API provides
security framework. The awt API help designers to create
interfaces and paint images and graphics. Finally, the swing
API concerns with GUI. Tables 1, 2, 3 and 4 present

descriptive information for clients applications developed
using these APIs.

The client applications and their APIs are used as follows:
30 client applications are chosen for swing and awt APIs, two
groups of 17 and 12 clients are chosen for security and
httpclient APIs, respectively (see Tables 1, 2, 3 and 4).

5 Experimental results analysis

This section presents and discusses experimental results of
NCBUPID and answers of the research questions defined in
section 4.1

74 H. Eyal Salman

Table 5 Statistics on source code of APIs of interest

API Name #classes & Interfaces #Public Methods

swing 2570 18,515

httpclient 871 7290

security 688 5764

awt 491 4778

5.1 Impact of the proposed heuristics (RQ1)

In order to answer the first research question (RQ1), the
usage cohesion of identified patterns is analysed. Figure 8
shows average cohesion values of patterns identified from
each API by applying separately and in combination the
structural and textual heuristics. The results of applying
each heuristic are analysed in the following subsections.

Figure 8 Average cohesion values of patterns identified using
the investigated heuristics

5.1.1 Analysing the structural heuristic results

As shown in Figure 8, it is clear for all studied APIs when
only structural interdependencies between API’s methods
are used, the identified patterns have strong co-usage
relations between the patterns’ methods. In fact, the average
usage cohesion values of these patterns take a range
between 0.70 for security API and 0.76 for awt API.

5.1.2 Analysing the textual heuristic results

As shown in Figure 8, for all APIs when only textual
similarity is used between API methods, the co-usage
relationships between API’s methods of identified patterns
are slightly degraded comparing with structural similarity.
Indeed using this heuristic alone, average cohesion values
are in a range between 0.60 for awt API and 0.73 for swing
API.

5.1.3 Analysing results of combining structural and
textual heuristics

As seen in Figure 8 when a combination of structural and
textual heuristics is applied, usage patterns identified from
APIs that have a large number of clients (such as, awt and
swing) have cohesive usage relationships among their API’s

methods like or better than structural heuristic. Indeed,
average cohesion values of the patterns decrease when
number of clients of API decreases. Average cohesion
values of patterns identified from awt and swing that have
30 client applications are equal to 0.76 while for security
and httpclient that have 17 and 12 client applications are
0.62 and 0.52, respectively.

The results presented in Figure 8 show that structural
heuristic helps to identify usage patterns having strong
co-usage relations between their API’s methods than those
patterns identified using textual heuristic alone for all
studied APIs. This is due to two reasons. On one hand,
structural source code information represents strong links
between source code elements that collaborate to implement
specific functionality or similar functionalities. On the other
hand, textual heuristic mainly depends on vocabulary used by
developers to write source code statements and comments,
and size of textual source code information considered. When
developers use different vocabularies, this leads to slight
degradation in pattern cohesion comparing to structural
information. Moreover, when number of client applications of
API is small (i.e., number of public methods covered in that
API) this may negatively impact pattern cohesion because
there is no enough textual source code information for
matching.

However, when multiple source of information are
combined (i.e., structural and textual heuristics in
combination), often this yields better results than if these
sources are used individually. The sources of information
have their individual benefits and drawbacks, but when they
are combined, those drawbacks can be minimised and better
results can be obtained. It is clear from Figure 8 that average
cohesion value by applying combined heuristic on swing
API is better than applying each heuristic individually. Also
this is true for awt API where the result of combined
heuristic is better than the textual heuristic and equals to
structural heuristic. However, for security and httpclient
APIs the average cohesion values of the combined heuristic
are less than average values resulted by applying each
heuristic individually. This is due to that number of covered
methods in security and httpclient APIs are small where the
numbers of client applications of these APIs are 17 and 12,
respectively. Figure 9 shows the relationship between the
average cohesion values of combined heuristic and number
of covered methods for each studied API.

Figure 9 Relationship between average cohesion of combined
heuristic and number of covered methods of each API

 API library-based identification and documentation of usage patterns

As a summary, the structural heuristic helps to identify co-
usage relationships between the API’s methods with high
precision and always has better contribution than textual
heuristic for identifying cohesive usage patterns across
all studied APIs. On average 70% and up to 76% of API’s
methods in an identified usage pattern using structural
heuristic are always uniformly co-used together. Combining
the structural and textual heuristics perform the best for
identifying co-usage relations between API’s methods in case
of developers use the same vocabulary across source code
elements and also there is enough textual source code
information (i.e., a large number of covered API’s methods).
On average 74% and up to 76% (for swing and awt APIs,
respectively) of API’s methods in an identified usage pattern
using combined heuristic are always uniformly co-used
together.

5.2 Identified patterns from API client applications
perspective (RQ2)

To answer the RQ2, NCBUPID and IML-FUP approaches
are applied for identifying usage patterns from studied APIs.
Then, the obtained results are compared as follows.

5.2.1 Average PUC

Table 6 shows average cohesion values for all identified
usage patterns for each studied API by applying the two
approaches (NCBUPID and IML-FUP). The results shown
in this table reveal that both NCBUPID and IML-FUP
identify patterns that have high usage cohesion values.
This means that such patterns have cohesive co-usage
relationships among their methods. In fact, the average
cohesion values of identified patterns are around 75% for
NCBUPID (namely, for both structural heuristic and a
combination of structural and textual heuristics in swing and
awt APIs) and 100% for IML-FUP. In spite of the results of
NCBUPID are, as expected, slightly less than the results of
IML-FUP, they are higher enough, taking into account the
identification process of NCBUPID does not depend on
client applications. Hence, the performance of NCBUPID
for identifying usage patterns is comparable to IML-FUP.

Table 6 Average cohesion of identified API patterns for
NCBUPID and IML-FUP

API
NCBUPID
(Str. Heu.)

NCBUPID
(Tex. Heu.)

NCBUPID
(Com. Hue.)

IML-FUP*

security 0.70 0.63 0.62 1.0

httpclient 0.70 0.63 0.51 1.0

swing 0.74 0.73 0.76 1.0

awt 0.76 0.60 0.76 1.0

Notes: Str, Tex, Com and Hue abbreviations for
Structural, Textual and Combined heuristics
respectively.

IML-FUP*: Average cohesion values for core patterns
identified by IML-FUP (the best average cohesion values).

5.2.2 Average number of identified patterns

Figure 10 shows the accumulative number of identified
patterns using the three different heuristics. As shown in
this figure, there is an order relation between numbers of
identified patterns using different heuristics. For all APIs of
interest, it can be noticed that structural heuristic helps to
identify the largest number of usage patterns comparing
with the results of applying other heuristic. Here, the
number of identified patterns reached a peak of 146
patterns. In the second place, when textual heuristic is used
alone, the number of identified patterns at the peak is 132
patterns. The lowest number of usage patterns is obtained
when a combination of structural and textual heuristics are
applied where the number of patterns at the peak is 58.

Figure 10 Average number of identified patterns using different
heuristics

5.2.3 Average size of identified patterns

Figure 11 shows the accumulative number of average sizes
of identified patterns using the three different heuristics. As
shown in this figure, the largest usage patterns are identified
when the combined heuristic is applied and size of patterns
identified by applying structural and textual heuristics
individually are much less than the combined heuristic.
Indeed, the size of patterns identified using the combined
heuristic at the peak is 98.16%. This interprets the small
number of identified patterns using this heuristic.

Figure 11 Average size of identified patterns using different
heuristics

Table 7 shows the size and number of usage patterns
identified from all studied APIs using both NCBUPID and
IML-FUP approaches. In this table, the results of structural
similarity only presented as it is better than textual and

76 H. Eyal Salman

combined heuristics in terms of the number and size of
usage patterns. As it is shown in this table, IML-FUP
identifies more patterns than NCBUPID. Also, IML-FUP’s
patterns are slightly larger than NCBUPID ones. This
is because IML-FUP depends on client applications to
identify usage patterns. In fact, these client applications can
be considered as usage scenarios of API methods. Such
scenarios represent valuable information to IML-FUP for
identifying API’s methods that do not use to the same
vocabulary, but they are frequently used together in these
scenarios. The number and size of usage patterns identified
using NCBUPID is comparable to ones identified using
IML-FUP.

Table 7 Statistics for patterns identified from each API using
NCBUPID (namely structural heuristic) and IML-
FUP

API

NCBUPID (Structural Heu.) IML-FUP

 UP’s Size UP’s Size

#UPs Avg. Min Max #UPs Avg. Min Max

security 38 2.45 2 10 37 3.86 2 25

httpclient 16 2.44 2 5 36 2.83 2 9

swing 67 2.67 2 11 100 2.76 2 14

awt 25 3.28 2 19 60 2.61 2 6

5.3 Results summary and discussion

The findings of evaluation show that the structural heuristic
and the combination of structural and textual heuristics help
to identify highly cohesive API usage patterns. For all
studied APIs, structural heuristic performs better than
textual heuristic. However, when the developers use the
same vocabulary to name API source code elements, the
combination of structural and textual heuristics is the best
for identifying good quality API usage patterns. This is
because each heuristic represents a source of information,
and in such combination the information from one source is
used to filter results from another source.

The identified usage patterns using structural and
combined heuristics are enough cohesive patterns to provide
informative co-usage relationships between API’s methods,
where client applications are not available. In fact, the
identified usage patterns retain informative for other clients
and independent of the API usage scenarios. Consequently,
the proposed approach can be used for facilitating the
development tasks when new APIs are used and for
enriching APIs documentation with co-usage relationships.

The proposed approach is compared with IML-FUP which
is the most relevant and recent client-based work in the domain
in terms of size, number and cohesion of identified usage
patterns across four APIs (Salman, 2017). This work identifies
usage patterns that are strongly cohesive and generalisable
across different client applications. The results indicate that the
proposed approach is comparable with IML-FUP in terms of
the previously defined comparison criteria.

To evaluate the efficiency of NCBUPID, it is applied
to four widely used APIs with 89 client applications.
Additionally, the strongest points in the proposed approach as
follows:

1 It follows a fully-automatic process that does not need
any manual intervention during the identification
process.

2 The only input required for the approach is source codes
of APIs which are always available.

3 The approach is designed based on exploiting pre-
proven algorithms, like breadth first search (BFS) and
hierarchical clustering algorithm.

5.4 Threats to validity

As with any empirical evaluation-based work, the proposed
work has internal and external threats to validity. These
threats as follows:

 The identification process by using the combined
heuristic is based on textual similarity between source
code elements of APIs. In some situations, APIs’
developers may use different vocabulary to name the
source code elements which degrade the results and
impact the internal validity.

 The experimental evaluation relies on a limited number
of APIs and client applications, and for a better test a
large number of APIs and their clients are needed.
However, the APIs and their clients used in this
empirical study are enough to generalise the results.

 NCBUPID is validated using only Java code (all APIs
and client applications are written using Java code).
However, it can be applied to any object-oriented APIs.
This is because NCBUPID relies on common object-
oriented elements and relationships.

6 Related work

Recently, a body of research work has been proposed to
deal with APIs usage from different aspects. Robillard et al.
(2013) analyse and study a large number of approaches that
aim to automate the process of inference properties and
knowledge from APIs. These approaches are organised into
different categories based upon the goal they pursue
(Robillard et al., 2013; Saied et al., 2015b): suggesting
usage examples of API, suggesting API Elements, API bug
detection, API usage obstacles detection and mining API
usage patterns.

6.1 Suggesting usage examples of API

Usage examples are important for understanding APIs usage.
Many systems were proposed in this direction. These
systems are classified into two types. Firstly, IDE-based

 API library-based identification and documentation of usage patterns

recommendation systems that suggest usage examples to
developers by exploring the current context used by IDE
(Perepletchikov et al., 2010; Duala-Ekoko and Robillard,
2011). As such examples are context-based examples, they
cannot be used to the purpose of API documentation. Secondly,
JavaDoc-based recommendation systems that can be accessed
via web so they have high reachability and scalability (Holmes
et al., 2006; Wang et al., 2011; Montandon et al., 2013). They
aim to instrument the documentation of a given API with
examples. However, they have lower precision level than
IDE-based recommendation systems.

6.2 Suggesting API elements

Suggesting API elements for programmers or source code
completion is a key feature in integrated development
environments (IDEs). This is because it allows programmers
to access API elements and free them to remember every
detail. Therefore, many techniques are proposed to enhance
current source code completion systems (sccs) to work with
large APIs (Buse and Weimer, 2012; Bruch et al., 2009).
Bruch et al. (2009) propose a system (called ICCS) that
learns from source code repositories. Their work aims to
filter out and evaluate the relevance of every API method
suggested by an source code completion system. Nguyen et
al. (2012) propose a sccs (called GrePacc). The system work
by extracting features from the source code. Then, these
features are exploited to find a ranked list of usage patterns
that relevant to that source code.

6.3 Bugs detection

Bugs detection is an important benefit for pattern
identification. For instance, suppose that API methods
(open() and close()) should be called together in a given
body of a function. Then, missing one of these methods is
an important indicator of a bug. In the literature, there are
many API bugs detection techniques (Hou and Pletcher,
2011; Nguyen et al., 2012). Li and Zhou (2005) propose
PR-Miner tool. This tool is used to detect rules (or patterns)
from source code repositories. Such rules can be exploited
for violations detections. Monperrus et al. (2010) propose a
tool (called DMMC) based on statistical information of
type-usages. Each type-usage represents a list of method
invocations on a variable occurring within a given method
body. Such statistics are exploited to determine client
methods that call the missing method.

6.4 API usage obstacles detection

Nowadays, there are many approaches that are directed to
exploit developers’ questions and inquiries in forums,
newsgroup and Q&A website (such as stackoverflow.com),
to detect usage obstacles of a given API (Li and Zhou,
2005). These approaches aim to help API developers to find
out the obstacles that hinder the programming efforts and
then make the required improvements. Hou and Li (2011)
propose an approach to analyse discussions of 172
programmers. Then, obstacles and probable causes of API
of interest are identified and described in detail. Wang and

Godfrey (2013) propose to analyse developer questions of
Android and iOS. Their work aims to exploit developers’ posts
for discovering usage scenarios of API classes that cause usage
obstacles. However, they discovered a few scenarios.

6.5 API usage patterns identification for
documentation and understanding purposes

The approaches that are relevant to the one proposed in
this paper are those interested in API usage patterns
identification for APIs documenting and understanding
purposes (Nguyen et al., 2009; Michail, 1999; Michail, 2000;
Uddin et al., 2012; Wang et al., 2013).

These approaches identified three categories of API usage
patterns: (1) temporal, (2) sequential and (3) unordered
usage patterns. The identified patterns were assessed using
consistency, cohesion, coverage and succinctness. However,
these approaches do not work without client programs input to
the identification process. Thus, such approaches are limited to
widely used APIs and cannot be applied on newly released
APIs.

In the same vein, namely independence from client
programs, Zhu et al. (2014) proposed an approach to
automatically mining API usage examples from test code.
Their proposal separated multiple test scenarios in test code and
extract code examples. Then, a clustering technique is
employed to assemble examples of the similar API usage for
the recommendation. Like for client programs, test code is not
always available for APIs which are new. Moreover, test code
does not cover all functionalities of APIs that are not yet widely
used.

Recently, Saied et al. (2015a) proposed an approach
called NCBUP-miner to inferring API usage patterns using
API source code, independently of the availability of API
client programs. Their approach is based on a clustering
algorithm called DBSCAN. The main drawback of Saied
et al.’s approach is that their approach depends on an expert
intervention during the inferring process to adjust values
of two important parameters for hierarchical DBSCAN
algorithms called epsilon and epsilonStep. The benefits of
NCBUPID over their approach are as a follows. First,
NCBUPID overcomes the previous mentioned limitation of
NCBUPminer. Second, NCBUPID identifies usage patterns
that are more highly cohesive than the ones identified by
NCBUP-miner. Finally, NCBUPID helps to document the
identified usage patterns by automatically generating their
purpose using some heuristics based on well accepted code
convention.

7 Conclusions

An approach, called NCBUPID, is proposed to understand
and facilitate API usage through identifying unordered
frequent usage patterns. The proposed approach works
independently from available client applications of API of
interest as these clients are not always available for new
released and not widely used 490 APIs. In particular, it
mainly relies on structural and textual information among

 H. Eyal Salman

API methods to identify usage patterns using agglomerative
hierarchical clustering.

An experimental evaluation using four well-known APIs is
conducted. The results obtained are comparable with those
approaches that depend on the availability of client applications
in terms of the cohesive of identified usage patterns.

References

Alur, R., Cerný, P., Madhusudan, P. and Nam, W. (2005)
‘Synthesis of interface specifications for java classes’,
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Vol. 40, No. 1,
pp.98–109. doi:10.1145/1047659.1040314.

Bansal, A.J. and Malhotra, R. (2016) ‘Software change prediction:
a literature review’, International Journal of Computer
Applications in Technology, Vol. 54, No. 4, pp.238–258.
doi:10.1504/ijcat.2016.10001317.

Bruch, M., Monperrus, M. and Mezini, M. (2009) ‘Learning from
examples to improve code completion systems’, Proceedings
of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (ESEC/FSE’09),
ACM, New York, NY, USA, pp.213–222. doi:10.1145/
1595696.1595728.

Buse, R.P.L. and Weimer, W. (2012) ‘Synthesizing api usage
examples’, Proceedings of the 34th International Conference
on Software Engineering (ICSE’12), IEEE Press, Piscataway,
NJ, USA, pp.782–792.

Duala-Ekoko, E. and Robillard, M.P. (2011) ‘Using structure-
based recommendations to facilitate discoverability in apis’,
Proceedings of the 25th European Conference on Object-
oriented Programming (ECOOP’11), Springer-Verlag,
Berlin, Heidelberg, pp.79–104.

Frakes, W.B. and Kang, K. (2005) ‘Software reuse research: status
and future’, IEEE Transaction Software Engineering, Vol. 31,
No. 7, pp.529–536. doi:10.1109/TSE.2005.85.

Haifeng, Z. and Zijie, Q. (2010) ‘Hierarchical agglomerative clustering
with ordering constraints’, 3rd International Conference on
Knowledge Discovery and Data Mining, pp.195–199.

Holmes, R., Walker, R.J. and Murphy, G.C. (2006) ‘Approximate
structural context matching: an approach to recommend
relevant examples’, IEEE Transaction Software Engineering,
Vol. 32, No. 12, pp.952–970. doi:10.1109/TSE.2006.117.

Hou, D. and Li, L. (2011) ‘Obstacles in using frameworks and apis: an
exploratory study of programmers’ newsgroup discussions’,
IEEE 19th International Conference on Program Comprehension
(ICPC’11), pp.91–100. doi:10.1109/ICPC. 2011.21.

Java security api (2016) Available online at: https://docs.oracle.com/
javase/7/docs/api/javax/swing/package-summary.html (accessed
on 26 November 2016).

Java swing api (2016) Available online at: http://docs.oracle.com/
javase/7/docs/api/java/security/package-summary.html (accessed
on 26 November 2016).

Kayarvizhy, N., Kanmani, S. and Uthariaraj, V.R. (2016)
‘Enhancing the fault prediction accuracy of ck metrics using
high precision cohesion metric’, International Journal of
Computer Applications in Technology, Vol. 54, No. 4,
pp.290–296. doi:10.1504/ijcat.2016.080493.

Kodhai, E. and Kanmani, S. (2016) ‘Method-level incremental
code clone detection using hybrid approach’, International
Journal of Computer Applications in Technology, Vol. 54,
No. 4, pp.279–289. doi:10.1504/IJCAT.2016.10001322.

Li, Z. and Zhou, Y. (2005) ‘Pr-miner: automatically extracting
implicit programming rules and detecting violations in large
software code’, Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, Vol. 30, No. 5, pp.306–315.
doi:10.1145/1095430.1081755.

Mandelin, D., Xu, L., Bodík, R. and Kimelman, D. (2005)
‘Jungloid mining: helping to navigate the API jungle’,
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Vol. 40, No. 6,
pp.48–61. doi:10.1145/1064978.1065018.

Marcus, A. and Maletic, J.I. (2003) ‘Recovering documentation-to-
source-code traceability links using latent semantic indexing’,
Proceedings of the 25th International Conference on
Software Engineering (ICSE’03), IEEE Computer Society,
Washington, DC, USA, pp.125–135.

Michail, A. (1999) ‘Data mining library reuse patterns in user-
selected applications’, 14th IEEE International Conference on
Automated Software Engineering (ASE’99), pp.24–33.
doi:10.1109/ASE.1999.802089.

Michail, A. (2000) ‘Data mining library reuse patterns
using generalized association rules’, Proceedings of
the International Conference on Software Engineering,
pp.167–176. doi:10.1145/337180.337200.

Monperrus, M., Bruch, M. and Mezini, M. (2010) ‘Detecting
missing method calls in object-oriented software’,
Proceedings of the 24th European Conference on Object-
oriented Programming (ECOOP’10), Springer-Verlag,
Berlin, Heidelberg, pp.2–25.

Montandon, J.E., Borges, H., Felix, D. and Valente, M.T. (2013)
‘Documenting apis with examples: lessons learned with the
api miner platform’, Proceedings of the 20th Working
Conference on Reverse Engineering (WCRE’13), pp.401–408.
doi:10.1109/WCRE. 2013.6671315.

Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Tamrawi, A.,
Nguyen, H.V., Al-Kofahi, J. and Nguyen, T.N. (2012)
‘Graph-based pattern oriented, context-sensitive source code
completion’, Proceedings of the 34th International
Conference on Software Engineering (ICSE’12), IEEE Press,
Piscataway, NJ, USA, pp.69–79.

Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M. and
Nguyen, T.N. (2009) ‘Graph-based mining of multiple object
usage patterns’, Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE’09), ACM, New York, NY, USA,
pp.383–392. doi:10.1145/1595696.1595767.

Perepletchikov, M., Ryan, C. and Tari, Z. (2010) ‘The impact of
service cohesion on the analyzability of service-oriented
software’, IEEE Transactions on Services Computing, Vol. 3,
No. 2, pp.89–103.

Robillard, M.P., Bodden, E., Kawrykow, D., Mezini, M. and
Ratchford, T. (2013) ‘Automated api property inference
techniques’, IEEE Transaction Software Engineering,
Vol. 39, No. 5, pp.613–637. doi:10.1109/TSE.2012.63.

 API library-based identification and documentation of usage patterns

Roy, C.K., Eishita, F.Z. and Zibran, M.F. (2011) ‘Useful,
but usable? Factors affecting the usability of APIs’, 18th
Working Conference on Reverse Engineering, pp.151–155.
doi:ieeecomputersociety.org/10.1109/WCRE.2011.26.

Saied, M.A., Abdeen, H., Benomar, O. and Sahraoui, H. (2015a)
‘Could we infer unordered api usage patterns only using the
library source code?’, Proceedings of the IEEE 23rd
International Conference on Program Comprehension
(ICPC’15), IEEE Press, Piscataway, NJ, USA, pp.71–81.

Saied, M.A., Benomar, O., Abdeen, H. and Sahraoui, H. (2015b)
‘Mining multi-level API usage patterns’, IEEE 22nd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pp.23–32. doi:10.1109/
SANER.2015.7081812.

Salman, H.E. (2017) ‘Identification multi-level frequent usage
patterns from {APIs}’, Journal of Systems and Software,
Vol. 130, pp.42–56. https://doi.org/10.1016/j.jss.2017.05.039.

Thummalapenta, S. and Xie, T. (2007) ‘Parseweb: a programmer
assistant for reusing open source code on the web’,
Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ACM), New York, NY,
USA, pp.204–213. doi:10.1145/1321631.1321663.

Uddin, G., Dagenais, B. and Robillard, M.P. (2012) ‘Temporal
analysis of api usage concepts’, 34th International
Conference on Software Engineering (ICSE’12), pp.804–814.
doi:10.1109/ICSE.2012.6227138.

Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T. and Zhang, D.
(2013) ‘Mining succinct and high-coverage api usage patterns
from source code’, 10th IEEE Working Conference on Mining
Software Repositories (MSR’13), pp.319–328. doi:10.1109/
MSR.2013.6624045.

Wang, L., Fang, L., Wang, L., Li, G., Xie, B. and Yang, F (2011)
‘Api example: an effective web search based usage example
recommendation system for java apis’, Proceedings of the
26th IEEE/ACM International Conference on Automated
Software Engineering (ASE’11), pp.592–595. doi:10.1109/
ASE.2011.6100133.

Wang, W. and Godfrey, M.W. (2013) ‘Detecting api
usage obstacles: a study of ios and android developer
questions’, 10th IEEE Working Conference on Mining
Software Repositories (MSR’13), pp.61–64. doi:10.1109/
MSR.2013.6624006.

Warintarawej, P., Huchard, M., Lafourcade, M., Laurent, A. and
Pompidor, P. (2015) ‘Software understanding: automatic
classification of software identifiers’, Intelligent Data
Analysis, Vol. 198, No. 64, pp.761–768.

Zhong, H., Xie, T., Zhang, L., Pei, J. and Mei, H. (2009) ‘Mapo:
mining and recommending API usage patterns’, Proceedings
of the 23rd European Conference on (ECOOP’09) – Object-
Oriented Programming, Genoa, Italy, Springer-Verlag,
Berlin, Heidelberg, pp.318–343. doi:10.1007/978-3-642-
03013-0_15.

Zhu, Z., Zou, Y., Xie, B., Jin, Y., Lin, Z. and Zhang, L. (2014)
‘Mining api usage examples from test code’, Proceedings of
the 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME’14), IEEE Computer
Society, Washington, DC, USA, pp.301–310. doi:10.1109/
ICSME.2014.52.

Notes

1 http://hc.apache.org/httpclient-3.x/

2 http://docs.oracle.com/javase/7/docs/api/java/security/
package-summary.html

3 http://docs.oracle.com/javase/7/docs/technotes/guides/swing/

4 http://docs.oracle.com/javase/7/docs/api/

5 http://docs.oracle.com/javase/7/docs/api/javax/swing/
GroupLayout.html

6 https://docs.oracle.com/javase/7/docs/api/java/security/
KeyStore.html

7 https://sourceforge.net/, https://github.com/, https://code.
google.com/archive/search and https://gitorious.org/

