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Abstract: Application programming interfaces (APIs) are important sources for supporting 
source code reuse as each API provides a large set of pre-implemented functionalities  
that support programmers to achieve their daily work in different contexts. However, APIs 
provide huge number of classes and methods that hinder programmers to understand and  
use APIs. Numerous client-based approaches have been proposed for facilitating APIs  
usage through identifying frequent usage pattern. Although they represent significant efforts for 
helping APIs understanding, the client applications are not available for either newly released 
APIs libraries or APIs that are not widely used. In this paper, a non-client-based approach for 
frequent usage patterns identification and documentation is proposed. The approach incorporates 
hierarchical clustering algorithm and API’s source code information. An experimental evaluation 
is conducted using four widely used APIs. For all studied APIs, the results show that the 
proposed approach is comparable with client-based approaches in terms of usage patterns 
cohesion. 
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1 Introduction 

Application programming interfaces (APIs) are one of the 
most important forms for source code reuse as they are 
developed only for reuse (Frakes and Kang, 2005). Each 
API provides a large set of functionalities (resp. their source 
code) that support programmers to achieve their daily work 
in different contexts (Kodhai and Kanmani, 2016). These 
pre-implemented functionalities are free of errors, and thus 
help to produce high quality software applications, reduce 
time and effort consumed in programming and testing (Roy 
et al., 2011). Moreover, the distinguishing feature in many 
frameworks and integrated development environments 
(IDEs) is the ability to benefit from existing APIs. 

Nowadays, an API is written in object-oriented languages 
(such as, standard template libraries in C++ or Java SDK) and  
 
 

provides a large number of classes and methods. Moreover, 
APIs are provided by different companies where each one 
follows and writes in different style (Zhong et al., 2009; 
Bansal and Malhotra, 2016). Consequently, even experienced 
programmers may encounter difficulties when they use new 
or not widely used APIs. Furthermore, programmers struggle 
with identifying a set of API methods that should be invoked 
together to implement a specific task. Such a set is called 
frequent usage pattern. In fact, if API of interest is well 
documented, it might be not difficult for programmers to 
find a set of API methods that implement the task at hand. 
However, in most API documentations, the relationships  
between API methods (called co-usage relationships) are 
often not documented and the documentation is limited  
to the functionality implemented by each API method 
individually. Some APIs or frameworks (such as, .NET  
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framework) documentation have sample code snippets but 
these snippets exhibit only one usage scenario (Zhong et al., 
2009). To overcome the limitations associated with APIs 
documentation, programmers can use source code search 
engines to learn how to use API’s methods. However, these 
search engines usually return a large number of code 
snippets which hinder the programmers to locate API’s 
methods that are necessary and sufficient to implement their 
daily work. 

Recently, there is a body of research work has been 
proposed for facilitating APIs usage (Robillard et al., 2013). 
The proposed approaches support APIs understanding 
through identifying sequential (Alur et al., 2005; Mandelin 
et al., 2005; Thummalapenta and Xie, 2007) and unordered 
usage patterns (Zhong et al., 2009; Saied et al., 2015b) from 
a given API source code. These approaches mainly rely on 
source code of client applications for API of interest. 
Although they represent a significant effort for helping APIs 
understanding, the client applications are not available for 
both new released APIs libraries and APIs that are not 
widely used. Also from the coverage perspective of APIs, 
even available client applications may not cover all usage 
scenarios of API of interest. As a result, client-based 
identification approaches of API usage patterns are only useful 
for identifying a subset of API methods that are used frequently 
by different client applications. 

In this article, a non-client-based frequent usage patterns 
identification and documentation of API is proposed  
(called Non-Client-Based Usage Pattern Identification and 
Documentation, for short NCBUPID). The proposed approach 
takes as input source code of API of interest and produces  
as output a set of documented frequent usage patterns.  
Each usage pattern is documented by a set of terms  
describing the purpose of that pattern. NCBUPID is  
based on the idea that a set of API methods that always  
are called together and thus represent a frequent usage 
pattern is supposed to have strong relations. The intuition 
behind this idea is that API methods that collaborate and 
contribute to implement the same functionality are related. 
In this paper, the results of two types of relations between 
API methods and their combination are investigated. These 
relations are structural and textual similarities. Furthermore, 
NCBUPID relies on agglomerative hierarchical clustering 
(AHC) to cluster together a set of related API methods 
which represent a frequent usage pattern. It is important to 
mention that NCBUPID is not an alternative solution for 
client-based approaches. It is a solution when client 
applications of a given API are not available (for example, 
new released API). Moreover, it is expected that it does not 
perform better than client-based ones and the goal is to 
obtain results close to those achieved by client-based 
approaches. 

In order to evaluate NCBUPID approach, a comparative 
evaluation is performed between NCBUPID and the most 
recent client-based approach in the subject called IML-FUP 
(Salman, 2017). Experiments have been conducted using 
four APIs with 89 client applications from different domains. 
These APIs are HttpClient1, Java Security2, Swing3 and AWT4. 
In our evaluation, 30 clients were used for AWT and Swing,  
17 clients were used for Java Security and 12 clients were used 
for HttpClient. The experimental results show that the 
identified usage patterns using NCBUPID remain sufficiently 
cohesive. 

The remainder of this paper is organised as follows: 
Section 2 provides motivational examples. Section 3 details 
the proposed approach steps. Next, Sections 4 and 5 
describe evaluation setting and discuss experimental results, 
together with the threats to validity, respectively. Then, 
Section 6 discusses the related work. Finally, Section 7 
concludes the article and indicates future work. 

2 Motivational examples 

In this section, two motivational examples are presented to 
explain how structural and textual similarities between 
source code elements could be information sources for 
identifying co-usage relationship between API’s methods. 
Structural similarity represents interdependencies between 
API’s methods using method calling, parameter passing, etc. 
textual similarity refers to textual matching between API’s 
methods vocabulary. 

2.1 Layout design in swing API 

In Swing API (Java swing api, 2016), the class GroupLayout is 
a layout manager that hierarchically groups graphical 
components in order to position them in a container.5 Each 
group may contain any number of elements, where an element 
is a Group, Component, or gap. Usually, this class is used by 
every client program uses graphical user interface (GUI). Also, 
this class consists of 30 methods including constructor. By 
analysing a variety of code snippets that use GroupLayout 
class, it was found there is a subset of GroupLayout’s 
methods that are always called together (Saied et al., 2015a) 
(see Figure 1). These methods are: GroupLayout(Container), 
setHorizontalGroup(Group) and setVerticalGroup(Group). 

The above three mentioned methods have strong structural 
and textual similarities. Structurally, both setHorizontalGroup 
(Group) and setVerticalGroup(Group) methods use as a 
parameter the same object type, called Group. Moreover,  
the GroupLayout(Container) method calls directly both 
setHorizontalGroup(Group) and setVerticalGroup(Group) 
methods (se Figure 1). Textually, these methods share the 
following terms (see Figure 2): set, group and host. 
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Figure 1 Two code snippets of “GroupLayout” returned by Krugle code search engine 

 

Figure 2 Code segment of GroupLayout class 
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2.2 Loading and storing keys in Java security API 

In Java security API (2016), a class called KeyStore represents 
a storage facility for cryptographic keys and certificates.6  
The KeyStore class deals with three different types of  
entities: KeyStore.PrivateKeyEntry, KeyStore.SecretKeyEntry 
and KeyStore.TrustedCertificateEntry. Before an instance  
of KeyStore class can be accessed, it must be loaded using  
the methods load(LoadStoreParameter). When this  
instance has been loaded, it is possible to load existing  
entries from the KeyStore instance, or to store new  
entries into the KeyStore instance using the methods  
getEntry(String, ProtectionParameter) and setEntry(String, 
Entry, ProtectionParameter), respectively. 

 load(LoadStoreParameter): loads this keystore object 
using the given LoadStoreParameter.6 

 getEntry(String, ProtectionParameter): gets a keystore 
entry for the specified alias with the specified protection 
parameter.6 

 setEntry(String, Entry, ProtectionParameter): saves a 
keystore entry under the specified alias. The protection 
parameter is used to protect the entry.6 

The above-mentioned methods are identified as a frequent 
usage pattern in Saied et al. (2015a). These methods are 
structurally and textually similar. Structurally, both 
getEntry() and setEntry() methods use the same object  
type (ProtectionParameter) to protect KeyStore entries. 
Also, LoadStoreParameter object, which must be passed  
to the load() method, is used to set the ProtectionParameter 
object. Moreover, both getEntry() and setEntry()  
methods read the initialisation value of a field called 
initialised defined in KeyStore class (see Figure 3).  
This field is initialised by the load() method. Textually,  
the load(), getEntry() and setEntry() methods use the  
same vocabulary (see Figure 3). For example, these  
methods share the following terms: entry, parm, prot and 
alias. 

Figure 3 Code segment of KeyStore class 

 

 

 
 
 



 API library-based identification and documentation of usage patterns  
 

3 The proposed approach (NCBUPID) 

This section describes how the proposed approach identifies 
non-clients-based frequent usage patterns from APIs source 
code using hierarchical agglomerative clustering. 

3.1 Overview 

Figure 4 presents an overview of frequent usage patterns 
identification process which defines five steps. The first step 
takes as input an API source code which is statically parsed 
to identify public methods. In the second step, each public 
method is characterised by interdependency and term 
vectors which encode structural and textual information 
associated with that method, respectively. Then in the third 
step, similarities between these public methods (resp. their 
vectors) are computed. The proposed process relies on the 
following heuristics to compute such similarities: 

 Heuristic 1 [structural similarity]: it refers to 
interdependencies among public methods (e.g. method 
calls, parameters passing, etc.) where methods that depend 
on each other are expected to collaborate in order to 
implement the same domain task or functionality. 

 Heuristic 2 [textual similarity]: it refers to textual 
matching between terms derived from identifiers of API’s 
public methods. Identifier names record important domain 
knowledge which represent functionality(s) implemented 
by these code elements (identifiers). Therefore, when two 
or more methods share a lot of terms, it is expected these 
methods contribute to implement the same domain task 
or functionality especially when the developers use the 
same vocabulary across source code elements. 

 Heuristic 3 [combining structural and textual similarities]: 
it refers to the integration between both structural and 
textual similarities. The idea behind such integration is that 
by combining these sources of information their drawbacks 
can be minimised and better results can be achieved. 

The fourth step in the proposed process clusters similar 
methods together using agglomerative hierarchical clustering 
algorithm (AHC) as each FUP is a group of public methods 
which are used together. Each resulted cluster represents  
a frequent usage pattern. Finally, each identified pattern  
is documented automatically by finding keywords describe 
the purpose of that pattern. In the following sections, each 
process step is detailed. 

3.2 Parsing API’s public methods source code 

This is the first step in the identification process where 
source code of each given API is statically analysed. This 
static analysis allows finding public methods of that API and 
then identifies interdependencies between these methods and 
extract textual information. Such static analysis is performed 
using the Eclipse Java Development Tool (JDT). 

In object-oriented technology, there are numerous 
interdependency relationships between source code elements. 
This study investigates the results of a set of these relationships 
which are recommended by motivation examples. Such 
interdependencies represent structural similarity which 
includes: 

1 Calling the same method(s): when the same API 
method is called by two or more API methods. 

2 Accessing the same attribute(s): when the same 
attribute(s) is accessed by two or more API methods. 

3 Using the same parameter type(s): when the same 
parameter type(s) is used by two or more API methods. 

4 Returning the same value type: when the returned-value 
type is the same for two or more API methods. 

To find textual links between API methods, textual source 
code information specific to each API method is only 
considered in this study. This information includes method 
name, parameter names and local variable names. 

Figure 4 The proposed approach overview 
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3.3 Encoding API’s public methods information 

In this proposed approach, clustering algorithm starts from a 
set of points so that each point represents an API public 
method. Therefore, source code information (i.e., both 
structural and textual information) associated with each public 
method should be encoded as a point in clustering algorithm 
search space. To do this, two vectors are created for each API 
public method: interdependency and term vectors. 

The interdependency vector of each API public method  
has a constant length that represents the number of all 
interdependency relationships existing between API’s public 
methods. Figure 5 shows a toy example of API consisting of 
four public methods with 15 interdependency relationships. 
Therefore, each API method will have interdependency’s 
vector of length 15. For a given API method, an entry 1 or 0 in 
the i-th position denotes that i-th element (either field, method 
or data type) is referenced or not referenced respectively by that 
API method. 

Similarly to interdependency vector, the term vector of 
each API public method has constant length that represents 
number of all terms composing public method names, 
parameter names and local variable names of a given API. 
Figure 6 shows a toy example of term vector representations 
of API consisting of four public methods. For each public 
method, an entry in the i-th position refers to term frequency 
in that public method. 

3.4 Computing structural and textual similarities 

In order to group and aggregate together similar API public 
methods into clusters which represent usage patterns, a  
 

similarity metric is needed. In this study two similarity metrics 
are defined: structuralSim and textualSim. The structuralSim is 
used to capture interdependencies relationships between API 
public methods while the textualSim is used to compute textual 
matching between API public methods vocabulary. 

The structuralSim between two API public methods is 
defined in equation (1) using Jaccard similarity coefficient. 
For two given API public methods (mi and mj), the rationale 
behind using the Jaccard similarity is that two API methods 
are close to each other if they share a large subset of  
the called methods, fields, 160 returned data types and 
parameter data types in their corresponding interdependency 
vectors. 
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where interdependencyVec denotes to interdependency 
vector of mi and mj. 

The textualSim between two API public methods is 
defined in equation (2) using cosine similarity (Saied et al., 
2015a; Marcus and Maletic, 2003; Kayarvizhy et al., 2016). 
For two given API public methods, this metric is used to 
determine how much relevant textual information is shared 
among their corresponding term vectors. 
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Figure 5 An graphical representation of four interdependency vectors consisting of CM (Class.Method), (Class.Field), RDT (returned data 
type ) and PDT (parameter data type) 

 

Figure 6 An graphical representation of term vector consisting of methods vocabulary 
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In order to compute the similarity resulted by combining 
structural and textual heuristics, the structuralSim and 
textualSim are combined in equation (3). For two given API 
methods mi and mj, the combined similarity (combinedSim) 
is computed as follows: 

 

 
 

,

,
,

2

i j

i j

i j

structuralSim m m

textualSim m m
combinedSim m m


  (3) 

3.5 Clustering algorithm 

To identify groups of public methods which represent usage 
patterns, an algorithm should be used. Among the possible 
algorithms, a clustering algorithm is opted. This kind of 
algorithms is used to group elements using similarity function. 
This makes it suitable for the problem addressed in this study 
as similarity metrics defined prior will play the role of a 
similarity function. 

Clustering algorithms are classified into hierarchical  
or non-hierarchical. Hierarchical clustering algorithms are 
further categorised into agglomerative (AHC for short) and 
divisive. In this study, AHC is opted to cluster similar API 
public methods into frequent usage patterns. AHC starts 
with singleton clusters (i.e. clusters having only one object) 
and recursively merges the two most similar clusters in each 
stage. These singleton clusters initially consist of individual 
API public methods and later of clusters of public methods 
formed during the previous stages. Based on this description 
of AHC, it can be deduced that AHC computes similarity 
among public methods, among clusters, and between 
clusters and public methods. In this study, the application of 
AHC relies on the following two steps. 

3.5.1 Building a hierarchy of clusters 

For a given set of API public methods, AHC groups similar 
methods into clusters. The basis for such clustering is the 
strength of the relationship between them. This relationship 
refers to structural similarity, textual similarity and a 
combination thereof. 

AHC works by creating a tree of nested clusters, called a 
dendrogram. A dendrogram is a tree representation frequently 
used to illustrate the arrangement of the clusters produced by 
hierarchical clustering (Haifeng and Zijie, 2010). AHC is a 
adapted to build a dendrogram from a given set of API public 
methods according to Algorithm 1. This algorithm relies on a 
series of successive binary mergers, initially of individual 
methods and later of clusters formed during the previous 
stages. In the beginning, it puts each method in its own 
cluster. Among all current clusters, the two most similar 
clusters (mostSimilarClusters()) are picked. Then, these two 
clusters are replaced with a new cluster by merging the two 
original ones. The process continues until only one cluster 
remains such that at each iteration only one pair of clusters 
that have the highest relationship strengths are merged.  
This single cluster represents a dendrogram (dendgr) that 
contains a set of nested clusters. Merging two clusters mean 

aggregation the method vectors of these clusters using the 
logical disjunction in one vector (see lines 11–14). Also, it is 
important to mention that the function mostSimilarClusters() 
represents structural similarity, textual similarity or  
their combination depending on the type of similarity to be 
investigated. 

 

Figure 7 shows an example of dendrogram tree. At the 
lowest level, each method is in its own cluster. At the 
highest level, all methods belong to the same cluster. The 
internal nodes represent new clusters formed by merging the 
clusters that appear as their children in the tree. 

Figure 7 An example of a dendrogram tree 

 

3.5.2 Selecting candidate frequent usage patterns 

Breaking the generated dendrogram tree based on predefined 
criteria allows grouping classes into clusters. Each resulting 
cluster can be a candidate frequent usage pattern. Therefore, 
the appropriate breaking points should be selected to  
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obtain frequent usage patterns. This selection is performed 
by an algorithm based on a depth-first search (refer to  
Algorithm 2). This algorithm takes as input the dendrogarm 
tree and returns a set of clusters. These clusters are 
interpreted as frequent usage patterns. This algorithm starts 
by comparing the similarity value (Sim()) of each node in 
the dendrogram (starting from the root) and its sons. If the 
similarity value of the focused node is less than the average 
of the similarity values of its two sons, then the algorithm 
continues to the next son nodes. Otherwise, the focused 
node is identified as a frequent usage pattern, added to the 
FUPs accumulator and the algorithm computes the next 
node in the stack (traversedClusters). In this way, the most 
relevant frequent usage patterns will be identified as the 
traversal continues. 

To visualise how Algorithm 2 selects clusters (i.e., frequent 
usage patterns), see Figure 7. The red horizontal line 
determines the cutting points. Based on these points, four 
clusters can be obtained as follows. A first cluster contains 
methods m6, m8 and m2. A second cluster contains 
methods m10 and m1 while methods m5, m3, m9 and m7 
belong to a third cluster. Finally, only one method m4 forms 
a fourth cluster. 

 

3.6 Documenting identified usage patterns 

Frequent usage patterns can be efficiently used if their 
documentation (e.g., main purpose, name, etc.) is available. 
Thus, the need to document the identified usage patterns  
is necessary. To achieve this goal, a heuristic is used  
to discover the purpose of an identified usage pattern.  
In many object-oriented languages, method names are 
sequences of terms concatenated using a camel-case  
notation (e.g., setLeftComponent(), getHighlightInnerColor() 
and closeMenu()). The first term of a method name refers to the 
functionality to be performed by that method (set, get and 
close). The other terms indicate to objects or input which are 
associated with that functionality (LeftComponent, Menu and 
HighlightInnerColor). According to these assertions, each 
identified usage pattern is documented using the following 
steps: decomposing method names, token frequency computing 
and constructing the pattern name. 

3.6.1 Decomposing method names 

For a given frequent usage pattern, method names of that 
pattern are split into tokens according to the camel-case 
convention. In this convention the uppercase case letters and 
underscore are used as delimiters for splitting. For example 
setLeftComponent() is split into set, left and component. 
However, it is possible to encounter single case method 
term (such as, maxvalues), abbreviations and acronyms. To 
handle such name compositions, an algorithm proposed by 
Warintarawej et al. (2015) is used. 

3.6.2 Token frequency computing 

In this step, the tokens extracted from method names  
of each usage pattern undergo a preprocessing step. A 
preprocessing involves normalising the tokens such as stop 
word removal. Then, a token frequency is computed and 
assigned to each token extracted from a method name. For a 
given token, this frequency indicates to the number of times 
a token is used for naming API public methods of a given 
frequent usage pattern. 

3.6.3 Constructing the pattern name 

In this step, a usage pattern name is constructed based on 
the high frequency tokens. The first word of the pattern 
name is the first high frequency token. The second word of 
the pattern name is the second high frequency token and so 
on. The number of words used in the pattern name is 
specified by the user. When many tokens have the same 
frequency, all the possible combinations are given to the 
user and he can select the appropriate one. 

4 Evaluation setting 

This section describes the setting of experiments. 
Particularly, research questions, studied APIs, a collection 
of client applications and used metrics for evaluating the 
effectiveness of the proposed approach are defined. 

4.1 Research questions and evaluation metrics 

The main goal of this study is to evaluate whether the proposed 
approach can identify API’s cohesive usage patterns that are 
comparable to those identified using clients-based approaches. 
Therefore, the following research questions are formulated. 

 RQ1 [Pattern Usage Cohesion]: To which extent the 
textual and structural heuristics individually and a 
combination thereof help identifying API’s methods 
that always are invoked together? 

 RQ2 [Comparable Usage Pattern]: To which extent the 
identified patterns are comparable to those identified by 
client-based approaches? 

In order to address the first research question (RQ1), the 
impact of structural and textual heuristics on identifying usage 
pattern is studied. Therefore, results of these heuristics 
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separately and in combination are investigated for identifying 
usage patterns from selected APIs. To evaluate the results of 
studied heuristics and their combination in terms of the 
cohesion of identified patterns, a measure for a pattern usage 
cohesion is needed. Such a measure evaluate whether an 
identified pattern is cohesive enough to exhibit co-usage 
relationships between the API methods from the perspective of 
API client applications. For this, Service Interface Usage 
Cohesion metric (SIUC) is used (Perepletchikov et al., 2010). 
A service in this metric is deemed to be externally cohesive 
when all of its service operations are invoked by all the clients 
of this service. This definition for service cohesion is similar to 
pattern usage cohesion. Therefore SIUC metric was adopted 
in Saied et al. (2015b) and Salman (2017) and referred to as 
Pattern Usage Cohesion (PUC) and Multi-Level Pattern 
Usage Cohesion (MLPUC), respectively. PUC values take a 
range in [0…1]. The larger the value of PUC is, the better 
the usage cohesion. The ideal usage cohesion occurs when 
PUC is equal to 1. This means that all the pattern’s methods 
are actually always used together. For a given pattern p, 
PUC is defined as follows (Saied et al., 2015b): 

 

 

 
client

PMe client

PMe
PUC p

clients p



 (4) 

where  clients p  is the total number of all client methods 

of the API’s methods in p. PMe  is the number of all API’s 

methods in p.  PMe client  is the number of API’s 

methods in p invoked by a client method client. 
In order to address the second research question (RQ2), 

NCBUPID is compared to the most recent client-based 
frequent usage patterns identification approach in the 
subject, called IML-FUP (Salman, 2017). To identify API 
usage patterns, IML-FUP uses formal concept analysis  
 

(FCA) technique to cluster API’s methods which always or 
frequently are used together within a variety of client 
applications of the studied API. This comparison is 
performed in terms of average PUC, average number and 
size of identified patterns. For fair comparison, the proposed 
heuristics are evaluated using the same set of API methods 
that were used by IML-FUP (i.e., a set of API methods 
called by the client applications considered in this study). 

4.2 Experimental setup 

To assess the first research question (RQ1), NCBUPID is 
run three times on each studied API. In the first and second 
runs, structural and textual heuristics are considered 
separately, respectively. In the third run, the combination of 
these heuristics is considered. For each run, API’s public 
methods only are used as a data set to be clustered. For each 
studied API, identified API usage patterns for three runs are 
collected and analysed. It is important to mention that some 
of identified patterns by NCBUPID are not covered (called) 
by selected client applications – in spite of these clients 
represent a large number of applications from different 
domains. Therefore for each selected API, only API’s 
methods which are covered by client applications can be an 
input for NCBUPID. 

To assess the second research question (RQ2), all APIs 
and their client applications used by IML-FUP are 
considered in this study. Tables 1, 2, 3 and 4 show these 
APIs and applications. API’s methods which only are called 
by these client applications can be clustered by IML-FUP. 
Therefore, for fair comparison between NCBUPID and 
IML-FUP the set of API’s methods called by client 
applications of each API is identified. Then, this set is used 
as an input for both NCBUPID and IML-FUP. Then, 
identified patterns from these approaches are evaluated 
using the evaluation measures (PUC, average number and 
size of identified pattern). 

Table 1 Client applications corresponding to SWING API 

API Client applications Description 

swing 

LaTeXDraw2.0.8 Is a graphical drawing editor for LaTeX 

SweetHome3D-3.4 An interior design application 

RapidMiner An integrated environment for machine learning and data mining 

Msproject MS-Project import/export plugin for GanttProject 

Pert The PERT plugin for GanttProject 

Mogwai Java 2D and 3D visual entity relationship design and modelling (ERD,S QL) 

G4P (GUI for processing) A library that provides a rich collection of 2D GUI controls 

Apache-jmeter-2.11 Java application designed to test and measure performance 

Art-of-Illusion A 3D modelling and rendering studio 

AtlasCreator An application creates off-line atlases of raster maps for various cell phone applications 

Code2uml A tool for constructing UML class diagrams from java .class and .jar files 

Davmail A POP/IMAP/SMTP/Caldav/Carddav/LDAP gateway allowing users to use any mail client 

EasyFileShare An application to share files from your PC to any other device 

Freemind A mind-mapping editor 

GanttProject core An application for project management and scheduling 

GLIPS A cross-platform SVG graphics editor 
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Table 1 Client applications corresponding to SWING API (continued) 

API Client applications Description 

 Java-chat An application for chatting 

JEdit A text editor 

JHotDraw A Java GUI framework for technical and structured Graphics 

Mailcarbon An application for backup emails from one server to another over IMAP 

Neuroph A lightweight Java Neural Network Framework 

Metawidget A smart widget Building User Interfaces for domain objects 

VASSAL-3.2.15 An engine for building and playing human-vs.-human games 

Open-so-frontend An application for managing the Stack Overflow family of sites 

Swingx Contains extensions to the Swing GUI toolkit 

Paros A Java based HTTP/HTTPS proxy for assessing web application vulnerability 

PlotDigitizer An application to digitise data points off of scanned plots and scaled drawings 

Pmd A source code analyser 

RESTEasy A JBoss project that provides various frameworks to build RESTful Web Services 

xsmile A Java based XML browser 

Table 2 Client applications corresponding to AWT API 

API Client applications Description 

awt 

LaTeXDraw2.0.8 Is a graphical drawing editor for LaTeX 

SweetHome3D-3.4 An interior design application 

RapidMiner An integrated environment for machine learning and data mining 

Msproject MS-Project import/export plugin for GanttProject 

Pert The PERT plugin for GanttProject 

Mogwai Java 2D and 3D visual entity relationship design and modelling (ERD, SQL) 

G4P (GUI for processing) A library that provides a rich collection of 2D GUI controls 

Apache-jmeter-2.11 A project that can be used as a load testing and measure performance tool 

Art-of-Illusion A 3D modelling and rendering studio 

AtlasCreator An application creates off-line atlases of raster maps for various cell phone applications 

OpenLaszlo An open source platform for the development and delivery of rich Internet applications 

Davmail A POP/IMAP/SMTP/Caldav/Carddav/LDAP gateway allowing users to use any mail client

EasyFileShare An application to share files from your PC to any other device 

Freemind A mind-mapping editor 

GanttProject core An application for project management and scheduling 

GLIPS A cross-platform SVG graphics editor 

Java-chat An application for chatting 

JEdit A text editor 

JHotDraw A Java GUI framework for technical and structured Graphics 

Mailcarbon An application for backup emails from one server to another over IMAP 

Neuroph A lightweight Java Neural Network Framework 

Metawidget A smart widget Building User Interfaces for domain objects 

VASSAL-3.2.15 An engine for building and playing human-vs.-human games 

Open-so-frontend An application for managing the Stack Overflow family of sites 

Swingx Contains extensions to the Swing GUI toolkit 

Paros A Java based HTTP/HTTPS proxy for assessing web application vulnerability 

Htmlpdf The html and pdf export plugin for GanttProject 

Pmd A source code analyser 

RESTEasy A JBoss project that provides various frameworks to build RESTful Web Services 

xsmile A Java based XML browser 
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Table 3 Client applications corresponding to SECURITY API 

API Client applications Description 

security 

YaHPConverter A Java library that allows you to convert an HTML document into a PDF document 

ApacheJackrabbit Is an open source content repository for the Java platform 

Apache-jmeter A project that can be used as a load testing and measure performance tool 

Davmail A POP/IMAP/SMTP/Caldav/Carddav/LDAP gateway allowing users to use any mail client

Heritrix A web crawler 

Hibernate An Object/Relational Mapper tool 

HttpclientAuthHelper An application to authenticate Httpclient with services that use NTLM, KERBEROS and 
SSL 

Lcrypto Bouncy Castle Cryptography 

MinaSource An application framework which develop high performance and high scalability network 
applications 

Mule-3.x A lightweight enterprise service bus (ESB) and integration framework 

OpenLaszlo An open source platform for the development and delivery of rich Internet applications 

Paros A Java based HTTP/HTTPS proxy for assessing web application vulnerability 

RESTEasy A JBoss project that provides various frameworks to build RESTful Web Services 

RSSOwl An aggregator for RSS and Atom News feeds 

wildfly An application server 

Xsmile A Java based XML browser 

Xstream An application to serialise objects to XML and back again 

Table 4 Client applications corresponding to HTTPCLIENT API 

API Client applications Description 

httpclient 

Davmail A POP/IMAP/SMTP/Caldav/Carddav/LDAP gateway allowing users to use any mail client

Heritrix A web crawler 

HttpclientAuthHelper An application to authenticate Httpclient with services that use NTLM, KERBEROS and 
SSL 

HueMorseCommunicator An application to sends messages through a Philips Hue light using morse code 

Javabook-client A Java API for Facebook 

Mule-3.x A lightweight enterprise service bus (ESB) and integration framework 

OpenLaszlo An open source platform for the development and delivery of rich Internet 

Paros A Java based HTTP/HTTPS proxy for assessing web application vulnerability 

Rabbitmq-management Java project to handle rabbitmq administration 

RSSOwl An aggregator for RSS and Atom News feeds 

Sage-gateway An application for data archival, preservation and access for all projects of NSF’s Arctic 
Science Program 

Weibo4j-oauth2 Sina Mblog openAPI javaSDK 

 
4.3 Data collection 

To execute the empirical evaluation of NCBUPID, a large 
group of 89 client applications are used. This group is open-
source Java projects from different domains and sizes7 and 
they are developed using different Java APIs. Among these 
APIs, four widely used API libraries are considered also  
for empirical evaluation. These APIs are: httpclient, security, 
swing and awt. The httpclient API is used to facilitate 
communication over web services. The security API provides 
security framework. The awt API help designers to create 
interfaces and paint images and graphics. Finally, the swing 
API concerns with GUI. Tables 1, 2, 3 and 4 present 

descriptive information for clients applications developed 
using these APIs. 

The client applications and their APIs are used as follows: 
30 client applications are chosen for swing and awt APIs, two 
groups of 17 and 12 clients are chosen for security and 
httpclient APIs, respectively (see Tables 1, 2, 3 and 4). 

5 Experimental results analysis 

This section presents and discusses experimental results of 
NCBUPID and answers of the research questions defined in 
section 4.1 
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Table 5 Statistics on source code of APIs of interest 

API Name #classes & Interfaces #Public Methods 

swing 2570 18,515 

httpclient 871 7290 

security 688 5764 

awt 491 4778 

5.1 Impact of the proposed heuristics (RQ1) 

In order to answer the first research question (RQ1), the 
usage cohesion of identified patterns is analysed. Figure 8 
shows average cohesion values of patterns identified from 
each API by applying separately and in combination the 
structural and textual heuristics. The results of applying 
each heuristic are analysed in the following subsections. 

Figure 8 Average cohesion values of patterns identified using 
the investigated heuristics 

 

5.1.1 Analysing the structural heuristic results 

As shown in Figure 8, it is clear for all studied APIs when 
only structural interdependencies between API’s methods 
are used, the identified patterns have strong co-usage 
relations between the patterns’ methods. In fact, the average 
usage cohesion values of these patterns take a range 
between 0.70 for security API and 0.76 for awt API. 

5.1.2 Analysing the textual heuristic results 

As shown in Figure 8, for all APIs when only textual 
similarity is used between API methods, the co-usage 
relationships between API’s methods of identified patterns 
are slightly degraded comparing with structural similarity. 
Indeed using this heuristic alone, average cohesion values 
are in a range between 0.60 for awt API and 0.73 for swing 
API. 

5.1.3 Analysing results of combining structural and 
textual heuristics 

As seen in Figure 8 when a combination of structural and 
textual heuristics is applied, usage patterns identified from 
APIs that have a large number of clients (such as, awt and 
swing) have cohesive usage relationships among their API’s 

methods like or better than structural heuristic. Indeed, 
average cohesion values of the patterns decrease when 
number of clients of API decreases. Average cohesion 
values of patterns identified from awt and swing that have 
30 client applications are equal to 0.76 while for security 
and httpclient that have 17 and 12 client applications are 
0.62 and 0.52, respectively. 

The results presented in Figure 8 show that structural 
heuristic helps to identify usage patterns having strong  
co-usage relations between their API’s methods than those 
patterns identified using textual heuristic alone for all 
studied APIs. This is due to two reasons. On one hand, 
structural source code information represents strong links 
between source code elements that collaborate to implement 
specific functionality or similar functionalities. On the other 
hand, textual heuristic mainly depends on vocabulary used by 
developers to write source code statements and comments, 
and size of textual source code information considered. When 
developers use different vocabularies, this leads to slight 
degradation in pattern cohesion comparing to structural 
information. Moreover, when number of client applications of 
API is small (i.e., number of public methods covered in that 
API) this may negatively impact pattern cohesion because 
there is no enough textual source code information for 
matching. 

However, when multiple source of information are 
combined (i.e., structural and textual heuristics in 
combination), often this yields better results than if these 
sources are used individually. The sources of information 
have their individual benefits and drawbacks, but when they 
are combined, those drawbacks can be minimised and better 
results can be obtained. It is clear from Figure 8 that average 
cohesion value by applying combined heuristic on swing 
API is better than applying each heuristic individually. Also 
this is true for awt API where the result of combined 
heuristic is better than the textual heuristic and equals to 
structural heuristic. However, for security and httpclient 
APIs the average cohesion values of the combined heuristic 
are less than average values resulted by applying each 
heuristic individually. This is due to that number of covered 
methods in security and httpclient APIs are small where the 
numbers of client applications of these APIs are 17 and 12, 
respectively. Figure 9 shows the relationship between the 
average cohesion values of combined heuristic and number 
of covered methods for each studied API. 

Figure 9 Relationship between average cohesion of combined 
heuristic and number of covered methods of each API 
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As a summary, the structural heuristic helps to identify co-
usage relationships between the API’s methods with high 
precision and always has better contribution than textual 
heuristic for identifying cohesive usage patterns across  
all studied APIs. On average 70% and up to 76% of API’s 
methods in an identified usage pattern using structural 
heuristic are always uniformly co-used together. Combining 
the structural and textual heuristics perform the best for 
identifying co-usage relations between API’s methods in case 
of developers use the same vocabulary across source code 
elements and also there is enough textual source code 
information (i.e., a large number of covered API’s methods). 
On average 74% and up to 76% (for swing and awt APIs, 
respectively ) of API’s methods in an identified usage pattern 
using combined heuristic are always uniformly co-used 
together. 

5.2 Identified patterns from API client applications 
perspective (RQ2) 

To answer the RQ2, NCBUPID and IML-FUP approaches 
are applied for identifying usage patterns from studied APIs. 
Then, the obtained results are compared as follows. 

5.2.1 Average PUC 

Table 6 shows average cohesion values for all identified 
usage patterns for each studied API by applying the two 
approaches (NCBUPID and IML-FUP). The results shown 
in this table reveal that both NCBUPID and IML-FUP 
identify patterns that have high usage cohesion values.  
This means that such patterns have cohesive co-usage 
relationships among their methods. In fact, the average 
cohesion values of identified patterns are around 75% for 
NCBUPID (namely, for both structural heuristic and a 
combination of structural and textual heuristics in swing and 
awt APIs) and 100% for IML-FUP. In spite of the results of 
NCBUPID are, as expected, slightly less than the results of 
IML-FUP, they are higher enough, taking into account the 
identification process of NCBUPID does not depend on 
client applications. Hence, the performance of NCBUPID 
for identifying usage patterns is comparable to IML-FUP. 

Table 6 Average cohesion of identified API patterns for 
NCBUPID and IML-FUP 

API 
NCBUPID 
(Str. Heu.) 

NCBUPID 
(Tex. Heu.) 

NCBUPID 
(Com. Hue.) 

IML-FUP* 

security 0.70 0.63 0.62 1.0 

httpclient 0.70 0.63 0.51 1.0 

swing 0.74 0.73 0.76 1.0 

awt 0.76 0.60 0.76 1.0 

Notes: Str, Tex, Com and Hue abbreviations for 
Structural, Textual and Combined heuristics 
respectively. 

IML-FUP*: Average cohesion values for core patterns 
identified by IML-FUP (the best average cohesion values). 

5.2.2 Average number of identified patterns 

Figure 10 shows the accumulative number of identified 
patterns using the three different heuristics. As shown in  
this figure, there is an order relation between numbers of 
identified patterns using different heuristics. For all APIs of 
interest, it can be noticed that structural heuristic helps to 
identify the largest number of usage patterns comparing 
with the results of applying other heuristic. Here, the 
number of identified patterns reached a peak of 146 
patterns. In the second place, when textual heuristic is used 
alone, the number of identified patterns at the peak is 132 
patterns. The lowest number of usage patterns is obtained 
when a combination of structural and textual heuristics are 
applied where the number of patterns at the peak is 58. 

Figure 10 Average number of identified patterns using different 
heuristics 

 

5.2.3 Average size of identified patterns 

Figure 11 shows the accumulative number of average sizes 
of identified patterns using the three different heuristics. As 
shown in this figure, the largest usage patterns are identified 
when the combined heuristic is applied and size of patterns 
identified by applying structural and textual heuristics 
individually are much less than the combined heuristic. 
Indeed, the size of patterns identified using the combined 
heuristic at the peak is 98.16%. This interprets the small 
number of identified patterns using this heuristic. 

Figure 11 Average size of identified patterns using different 
heuristics 

 

Table 7 shows the size and number of usage patterns 
identified from all studied APIs using both NCBUPID and 
IML-FUP approaches. In this table, the results of structural 
similarity only presented as it is better than textual and 
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combined heuristics in terms of the number and size of 
usage patterns. As it is shown in this table, IML-FUP 
identifies more patterns than NCBUPID. Also, IML-FUP’s 
patterns are slightly larger than NCBUPID ones. This  
is because IML-FUP depends on client applications to 
identify usage patterns. In fact, these client applications can 
be considered as usage scenarios of API methods. Such 
scenarios represent valuable information to IML-FUP for 
identifying API’s methods that do not use to the same 
vocabulary, but they are frequently used together in these 
scenarios. The number and size of usage patterns identified 
using NCBUPID is comparable to ones identified using 
IML-FUP. 

Table 7 Statistics for patterns identified from each API using 
NCBUPID (namely structural heuristic) and IML-
FUP 

API 

NCBUPID (Structural Heu.) IML-FUP 

 UP’s Size  UP’s Size 

#UPs Avg. Min Max #UPs Avg. Min Max

security 38 2.45 2 10 37 3.86 2 25 

httpclient 16 2.44 2 5 36 2.83 2 9 

swing 67 2.67 2 11 100 2.76 2 14 

awt 25 3.28 2 19 60 2.61 2 6 

5.3 Results summary and discussion 

The findings of evaluation show that the structural heuristic 
and the combination of structural and textual heuristics help 
to identify highly cohesive API usage patterns. For all 
studied APIs, structural heuristic performs better than 
textual heuristic. However, when the developers use the 
same vocabulary to name API source code elements, the 
combination of structural and textual heuristics is the best 
for identifying good quality API usage patterns. This is 
because each heuristic represents a source of information, 
and in such combination the information from one source is 
used to filter results from another source. 

The identified usage patterns using structural and 
combined heuristics are enough cohesive patterns to provide 
informative co-usage relationships between API’s methods, 
where client applications are not available. In fact, the 
identified usage patterns retain informative for other clients 
and independent of the API usage scenarios. Consequently, 
the proposed approach can be used for facilitating the 
development tasks when new APIs are used and for 
enriching APIs documentation with co-usage relationships. 

The proposed approach is compared with IML-FUP which 
is the most relevant and recent client-based work in the domain 
in terms of size, number and cohesion of identified usage 
patterns across four APIs (Salman, 2017). This work identifies 
usage patterns that are strongly cohesive and generalisable 
across different client applications. The results indicate that the 
proposed approach is comparable with IML-FUP in terms of 
the previously defined comparison criteria. 

 

To evaluate the efficiency of NCBUPID, it is applied  
to four widely used APIs with 89 client applications. 
Additionally, the strongest points in the proposed approach as 
follows: 

1 It follows a fully-automatic process that does not need 
any manual intervention during the identification 
process. 

2 The only input required for the approach is source codes 
of APIs which are always available. 

3 The approach is designed based on exploiting pre-
proven algorithms, like breadth first search (BFS) and 
hierarchical clustering algorithm. 

5.4 Threats to validity 

As with any empirical evaluation-based work, the proposed 
work has internal and external threats to validity. These 
threats as follows: 

 The identification process by using the combined 
heuristic is based on textual similarity between source 
code elements of APIs. In some situations, APIs’ 
developers may use different vocabulary to name the 
source code elements which degrade the results and 
impact the internal validity. 

 The experimental evaluation relies on a limited number 
of APIs and client applications, and for a better test a 
large number of APIs and their clients are needed. 
However, the APIs and their clients used in this 
empirical study are enough to generalise the results. 

 NCBUPID is validated using only Java code (all APIs 
and client applications are written using Java code). 
However, it can be applied to any object-oriented APIs. 
This is because NCBUPID relies on common object-
oriented elements and relationships. 

6 Related work 

Recently, a body of research work has been proposed to 
deal with APIs usage from different aspects. Robillard et al. 
(2013) analyse and study a large number of approaches that 
aim to automate the process of inference properties and 
knowledge from APIs. These approaches are organised into 
different categories based upon the goal they pursue 
(Robillard et al., 2013; Saied et al., 2015b): suggesting 
usage examples of API, suggesting API Elements, API bug 
detection, API usage obstacles detection and mining API 
usage patterns. 

6.1 Suggesting usage examples of API 

Usage examples are important for understanding APIs usage. 
Many systems were proposed in this direction. These  
systems are classified into two types. Firstly, IDE-based  
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recommendation systems that suggest usage examples to 
developers by exploring the current context used by IDE 
(Perepletchikov et al., 2010; Duala-Ekoko and Robillard, 
2011). As such examples are context-based examples, they 
cannot be used to the purpose of API documentation. Secondly, 
JavaDoc-based recommendation systems that can be accessed 
via web so they have high reachability and scalability (Holmes 
et al., 2006; Wang et al., 2011; Montandon et al., 2013). They 
aim to instrument the documentation of a given API with 
examples. However, they have lower precision level than  
IDE-based recommendation systems. 

6.2 Suggesting API elements 

Suggesting API elements for programmers or source code 
completion is a key feature in integrated development 
environments (IDEs). This is because it allows programmers 
to access API elements and free them to remember every 
detail. Therefore, many techniques are proposed to enhance 
current source code completion systems (sccs) to work with 
large APIs (Buse and Weimer, 2012; Bruch et al., 2009). 
Bruch et al. (2009) propose a system (called ICCS) that 
learns from source code repositories. Their work aims to 
filter out and evaluate the relevance of every API method 
suggested by an source code completion system. Nguyen et 
al. (2012) propose a sccs (called GrePacc). The system work 
by extracting features from the source code. Then, these 
features are exploited to find a ranked list of usage patterns 
that relevant to that source code. 

6.3 Bugs detection 

Bugs detection is an important benefit for pattern 
identification. For instance, suppose that API methods 
(open() and close()) should be called together in a given 
body of a function. Then, missing one of these methods is 
an important indicator of a bug. In the literature, there are 
many API bugs detection techniques (Hou and Pletcher, 
2011; Nguyen et al., 2012). Li and Zhou (2005) propose 
PR-Miner tool. This tool is used to detect rules (or patterns) 
from source code repositories. Such rules can be exploited 
for violations detections. Monperrus et al. (2010) propose a 
tool (called DMMC) based on statistical information of 
type-usages. Each type-usage represents a list of method 
invocations on a variable occurring within a given method 
body. Such statistics are exploited to determine client 
methods that call the missing method. 

6.4 API usage obstacles detection 

Nowadays, there are many approaches that are directed to 
exploit developers’ questions and inquiries in forums, 
newsgroup and Q&A website (such as stackoverflow.com), 
to detect usage obstacles of a given API (Li and Zhou, 
2005). These approaches aim to help API developers to find 
out the obstacles that hinder the programming efforts and 
then make the required improvements. Hou and Li (2011) 
propose an approach to analyse discussions of 172 
programmers. Then, obstacles and probable causes of API 
of interest are identified and described in detail. Wang and 

Godfrey (2013) propose to analyse developer questions of 
Android and iOS. Their work aims to exploit developers’ posts 
for discovering usage scenarios of API classes that cause usage 
obstacles. However, they discovered a few scenarios. 

6.5 API usage patterns identification for 
documentation and understanding purposes 

The approaches that are relevant to the one proposed in  
this paper are those interested in API usage patterns 
identification for APIs documenting and understanding 
purposes (Nguyen et al., 2009; Michail, 1999; Michail, 2000; 
Uddin et al., 2012; Wang et al., 2013). 

These approaches identified three categories of API usage 
patterns: (1) temporal, (2) sequential and (3) unordered  
usage patterns. The identified patterns were assessed using 
consistency, cohesion, coverage and succinctness. However, 
these approaches do not work without client programs input to 
the identification process. Thus, such approaches are limited to 
widely used APIs and cannot be applied on newly released 
APIs. 

In the same vein, namely independence from client 
programs, Zhu et al. (2014) proposed an approach to 
automatically mining API usage examples from test code. 
Their proposal separated multiple test scenarios in test code and 
extract code examples. Then, a clustering technique is 
employed to assemble examples of the similar API usage for 
the recommendation. Like for client programs, test code is not 
always available for APIs which are new. Moreover, test code 
does not cover all functionalities of APIs that are not yet widely 
used. 

Recently, Saied et al. (2015a) proposed an approach 
called NCBUP-miner to inferring API usage patterns using 
API source code, independently of the availability of API 
client programs. Their approach is based on a clustering 
algorithm called DBSCAN. The main drawback of Saied  
et al.’s approach is that their approach depends on an expert 
intervention during the inferring process to adjust values  
of two important parameters for hierarchical DBSCAN 
algorithms called epsilon and epsilonStep. The benefits of 
NCBUPID over their approach are as a follows. First, 
NCBUPID overcomes the previous mentioned limitation of 
NCBUPminer. Second, NCBUPID identifies usage patterns 
that are more highly cohesive than the ones identified by 
NCBUP-miner. Finally, NCBUPID helps to document the 
identified usage patterns by automatically generating their 
purpose using some heuristics based on well accepted code 
convention. 

7 Conclusions 

An approach, called NCBUPID, is proposed to understand 
and facilitate API usage through identifying unordered 
frequent usage patterns. The proposed approach works 
independently from available client applications of API of 
interest as these clients are not always available for new 
released and not widely used 490 APIs. In particular, it 
mainly relies on structural and textual information among 
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API methods to identify usage patterns using agglomerative 
hierarchical clustering. 

An experimental evaluation using four well-known APIs is 
conducted. The results obtained are comparable with those 
approaches that depend on the availability of client applications 
in terms of the cohesive of identified usage patterns. 
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