

M.-L. Flottes

LIRMM (CNRS - Université de Montpellier)

France

FETCH 2020

École d'hiver Francophone sur les Technologies de Conception des Systèmes Embarqués Hétérogènes

COUNTERFEIT ICS: SOURCES & ISSUES

Source: profit + globalization

- Issues: Financial loss/Reliability/Security
 - Miss out \$100 billion/year
 - Reported counterfeit parts have been quadrupled since 2009
 - Many sectors are impacted (computers, telecom, automotive, military systems)
 - Dramatic consequences on critical systems
 [0-3]

TAXONOMY

- Recycled/remarked components
 - Old components sold as new
 - New components sold with higher specification
 - \circ commercial grade \rightarrow industrial grade \rightarrow defense grade
- Overproduction: Fabrication outside contract
 - Extra ICs or defective/out-of-spec components
- Cloning: Design copy
 - Reverse Engineering / IPs obtain illegally
- Tampered type: Hardware/Software Trojans (HT/ST)
 - Inserted at any level
 - Time bomb / back door

COUNTERFEIT DETECTION

- Physical detection
 - X-Ray, SEM
- Electrical detection
 - Parametric Tests / Functional tests

COUNTERFEIT AVOIDANCE

- "Need for development of innovative avoidance mechanisms to be incorporated in the design"
- (e.g. RO-Based) Sensors: Prevent die and IC recycling [15-16]
- Split manufacturing: Prevent overproduction [17]
- IC camouflaging: Prevent reverse engineering [18]
- Hardware watermarking: Secure IPs [19]
- Hardware metering:
 - Passive methods
 - Digitally stored seriel numbers (nonfunctional identification)
 - PUF (functional identification)
 - Active methods: lock each IC until key is provided by the IP holder
 - Initialize IC to a locked state on power up
 - Add an FSM to unlock with the correct sequence to Initial Sate
 - Logic locking

OUTLINE

- o Principle
- Implementations
- SAT Attack on logic locking
- Improvement on logic locking solutions and other attacks
- Conclusions

TECHNICAL PRINCIPLE: KEYING MECHANISM

TECHNICAL PRINCIPLE: KEY GATES & KEY BITS

XOR Key gate

not(gate)

Key bit K1

K1=0 **K**1=1 **X**

Key bit K1

XNOR Key gate

not(gate)

EVALUATION

- Output corruptibility
 - HD(corret outputs, incorrect outputs)
 - Optimum HD = 50% (maximal ambiguity)
- Security
 - Possibilities to penetrate the system using techniques available to an attacker

APPLICATION PRINCIPLE IN THE IC DESIGN FLOW

- ✓ Prevents from Reverse Engineering
- ✓ Prevents from Overproduction
- ✓ Makes harder identification of 'safe place' for HT insertion.

ASSUMPTION ON LOGIC LOCKING ATTACKS

Acker knows the locked netlist / has un unlocked circuit (K inside)

OUTLINE

- o Principle
- Implementations
- SAT Attack on logic locking
- Improvement on logic locking solution sand other attacks
- Conclusions

IMPLEMENTATION(S)

- o First 2010
 - [6] « EPIC : Ending Piracy of Integrated Circuits»
 - RLL: Random Logic locking
 - Introduce k XOR/NXOR key-gates at random locations (while meeting timing constraints)
 - [7] « Preventing IC Piracy Using Reconfigurable Logic Barriers »
 - LUT-based locking (Correct/incorrect LUT programming provide modification of the information flow)
 - Introduce LUT at choosen location for maximum attacker effort (low-controllable nodes), and for optimal output corruption (high observable nodes)

IMPLEMENTATION(S) CONT'D

- First improvements (output corruption)
 - [8] 2015 « Fault Analysis-Based Logic Encryption »
 - FLL: Fault-Analysis-based logic locking
 - Introduce k XOR/NXOR key-gates at choosen locations for optimal output corruption
 - Metric (maximal number of patterns NC to control the node & maximal number of affected primary outputs NO)
 - Highest $FI = NC_0 xNO_0 + NC_1 xNO_1$
 - [9] Variante 2017
 - WLL: Weighted logic locking
 - XOR key-gates fed by multiple key-bits through additional AND/OR gates which leads to a higher output corruptibility

IMPLEMENTATION(S) CONT'D

- First improvements (security)
 - [10-11] 2012-2016
 - Issue

SLL: Strong Logic Locking

Introduce XOR/NXOR key-gates at choosen locations for ensuring interdependence among key bits

OUTLINE

- o Principle
- Implementations
- SAT Attack on logic locking
- Improvement on logic locking solutions and other attacks
- Conclusions

SAT ATTACK

- Boolean Satisfiability attack (SAT attack [12] 2015): Iteratively rules out incorrect keys
 - 1/ Found a DIP (Differential Input Pattern) / f(DIP,K1)≠f(DIP,K2)

- 2/ Compare f(DIP,Ki) with Oracle(DIP)
 - o If f(DIP,Ki) ≠ Oracle(DIP), Ki can be rejected
- o 3/ Iterate until no more DIP is found
 - All incorrect keys have been rejected

OUTLINE

- o Principle
- Implementations
- SAT Attack on logic locking
- Improvement on logic locking solutions and other attacks
- Conclusions

POST-SAT-ATTACK SOLUTIONS

Resisting the SAT-attack by increasing its Execution time

SAT Execution Time:
$$ET = \sum_{i=1}^{iter} ti$$

- ⇒ Rule out <u>at most one</u> incorrect key per DIP

Inputs			Original	O for ki							
l1	12	13	0	КО	K1	K2	К3	K4	K5	К6	K7
0	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	1	0	1	1	1	1	1	1
0	1	0	1	1	1	0	1	1	1	1	1
0	1	1	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	1	0	0
1	1	0	1	1	1	1	1	1	1	0	1
1	1	1	0	0	0	0	0	0	0	0	1

POST-SAT-ATTACK SOLUTIONS (CONT'D)

SARLock [13], 2016 « SAT Attack Resilient logic locking »

OTHER ATTACKS ON LOGIC LOCKING

- Removal attacks
 - remove locking mechanisms from the studied netlist
- Approximate attacks on compound logic locking techniques (eg SARLock+FLL)
 - returns an approximate key (only FLL key bits are extracted) linving the low-corruptability constituant in the netlist (SARLock counermeasure)
- Power side-channel attacks
- Oracle-less attacks (e.g. redundancy identification)

CONCLUSION

Design for Trust (DfTr)

- Watermarking that embeds a designer's signature into the design
- Passive metering that enables tracking of individual ICs throughout the lifetime
- Camouflaging that introduces look-alike structures at the layout-level
- Split manufacturing that involves partial fabrication at two separate foundries
- And...

Logic locking

- Locks a design with key-controlled protection logic
- Protection anywhere in the supply chain
 - Rogue SoC integrator (IP reuse)
 - Untrusted foundry (overproduction, HT)
 - Unutrusted test faciclity (sell defective parts, recycling)
 - Malicious end-user (replicate)

WORK IN PROGRESS

- All logic Locking solutions exhibit specific weakness
- No metrics
- May exhibit vulnerabilities after implementation
- Implementation Cost

Merci!

REFERENCES

- [0] http://www.blogpresidentcnac.fr/lutter-contre-la-contrefacon-de-composants-electroniques/
- [1] U.S. Senate Committee on Armed Services, "Inquiry into counterfeit electronic parts in the Department of Defence supply chain,", May 2012. [Online]. Available: http://www.armedservices.senate.gov/Publications/Counterfeit%20 Electronic%20Parts.pdf [2] U.S. Department of Commerce, "Defense industrial base assessment: Counterfeitelectronics," Jan. 2010.
- [3] "Reports of counterfeit parts quadruplesince 2009, challenging U.S. DefenceIndustry and National Security," Apr. 2012.[Online]. Available: http://www.ihs.com/images/IHS-iSuppli-Reports-Counterfeit-Parts-Quadruple-Since-2009.pdf.
- [4] Counterfeit Integrated Circuits: A Rising Threat in the GlobalSemiconductor Supply Chain, Ujjwal Guin et al., Proceedings of the IEEE, Vol. 102, No. 8, August 2014
- [5] G. Contreras, T. Rahman, and M. Tehranipoor, "Secure split-test forpreventing IC piracy by untrusted foundry and assembly," in Proc. Int. Symp. Defect Fault Tolerance VLSI Syst., 2013, pp. 196–203.
- [6] J. Roy, F. Koushanfar, and I. Markov, "Ending Piracy of Integrated Circuits," IEEE Computer, vol. 43, pp. 30–38, 2010.
- [7] A. Baumgarten, A. Tyagi, and J. Zambreno, "Preventing IC Piracy Using Reconfigurable Logic Barriers," IEEE Design & Test of Computers, vol. 27, no. 1, pp. 66–75, 2010.
- [8] J. Rajendran, H. Zhang, C. Zhang, G. Rose, Y. Pino, O. Sinanoglu, and R. Karri, "Fault Analysis-Based Logic Encryption," IEEE Transactions on Computer, vol. 64, no. 2, pp. 410–424, 2015.
- [10] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, "Security Analysis of Logic Obfuscation," IEEE/ACM Design Automation Conference, pp. 83–89, 2012.
- [11] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri, "On Improving the Security of Logic Locking," IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 35, pp. 1411–1424, 2016.
- [12] P. Subramanyan, S. Ray, and S. Malik, "Evaluating the Security of Logic Encryption Algorithms," IEEE International Symposium on Hardware Oriented Security and Trust, pp. 137–143, 2015.
- [13] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, "SARLock:SAT Attack Resistant Logic Locking," IEEE International Symposiumon Hardware Oriented Security and Trust, pp. 236–241, 20
- [14] Yang Xie, Ankur Srivastava, Anti-SAT: Mitigating SAT Attack on Logic Locking, IEEE Trans. On CAD of inte. Circuits and systems,, VOL. 38, NO. 2, feb. 2019
- [15] X. Zhang, N. Tuzzio, and M. Tehranipoor, "Identification of recovered ICS using fingerprints from a light-weight on-chipsensor," in Proc. IEEE Design Autom. Conf., Jun. 2012, pp. 703–708.
- [16] X. Zhang and M. Tehranipoor, "Design of on-chip lightweight sensors for effective detection of recycled ICs," IEEE Trans. VeryLarge Scale Integr. (VLSI) Syst., vol. 22, no. 5,pp. 1016–1029, May 2014.
 - R. Jarvis and M. G. McIntyre, "Splitmanufacturing method for advancedsemiconductor circuits," U.S.Patent 7 195 931, 2004.

REFERENCE (CONT')

[18] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, "Security analysis of integrated circuit camouflaging," in Proc. ACMConf. Comput. Commun. Security, 2013,pp. 709–720.

[19] Watermarking Techniques for Intellectual Property Protection A. B. Kahng, J. Lach[†], W. H. Mangione-Smith[†],S.Mantik,I.L.Markov,M. Potkonjak, P. Tucker[‡], H. Wang and G. Wolfe,, IEEE DAC 776-781, 1998

[A] J. Roy, F. Koushanfar, and I. Markov, "Ending Piracy of Integrated Circuits," IEEE Computer, vol. 43, pp. 30–38, 2010.

