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Abstract—Fault localization problem is one of the most difficult
processes in software debugging. The current constraint-based
approaches draw strength from declarative data mining and
allow to consider the dependencies between statements with the
notion of patterns. Tackling large faulty programs is clearly a
challenging issue for Constraint Programming (CP) approaches.
Programs with multiple faults raise numerous issues due to
complex dependencies between faults, making the localization
quite complex for all of the current localization approaches. In
this paper, we provide a new CP model with a global constraint
to speed-up the resolution and we improve the localization to be
able to tackle multiple faults. Finally, we give an experimental
evaluation that shows that our approach improves on CP and
standard approaches.

I. INTRODUCTION

Developing software programs is universally acknowledged
as an error-prone task. The major bottleneck in software
debugging is how to identify where the bugs are [26], this
is known as fault localization problem. Nonetheless, locating
a fault is still an extremely time-consuming and tedious task.
Over the last decade, several automated techniques have been
proposed to tackle this problem.
Spectrum-based approaches. Spectrum-based fault localiza-
tion (SBFL) (e.g. [1], [18]) is a class of popular fault
localization approaches that take as input a set of failing and
passing test case executions, and then highlight the suspicious
program statements that are likely responsible for the failures.
A ranking metric is used to compute a suspiciousness score
for each program statement based on observations of passing
and failing test case execution. The basic assumption is that
statements with high scores, i.e. those executed more often
by failed test cases but never or rarely by passing test cases,
are more likely to be faulty. Several ranking metrics have
been proposed to capture the notion of suspiciousness, such
as TARANTULA [17], OCHIAI [2], and JACCARD [2].
Multiple fault programs. Most of current localization tech-
niques are based on the single fault hypothesis. By dismissing
such assumption, faults can be tightly dependent in a program,
giving rise to numerous behaviours [11]. Thus, it makes the
localization process difficult for multiple fault approaches [3],
[23], [16]. The main idea of these approaches is to make
a partition on test cases into fault-clusters where each one
contains the test cases covering the same fault. The drawback
is that a test case can cover many faults with overlapping

clusters, which leads to a rough localization. Another idea
consists in localizing one fault at a time [27]. Here, we start
by locating a first fault, then correct it (which is an error-prone
step), generate again new test cases, and so on until no fault
remains in the program.
Data Mining and CP based approaches. In the last decade,
fault localization was abstracted as a data mining (DM) prob-
lem. Cellier et al. [6], [7] propose a combination of association
rules and Formal Concept Analysis (FCA) to assist in fault
localization. Maamar et al. [21] formalize the problem of fault
localization as a closed pattern mining problem. A CP model
with reified constraints is used to extract the k best patterns
satisfying a set of constraints modeling the most suspicious
statements. The drawback is the wide use of reified constraints,
which causes problem scaling. Moreover, it considers only
simple faults. Other approaches tackle fault localization as a
supervised learning problem [4], [24]. CP-based approaches
have also been investigated. Bekkouche et al. [5] proposed
LOCFAULTS a new tool for fault localization in a program for
which a counter-example is available.
Declarative Data Mining. The CP-paradigm is at the core
of generic approaches for pattern mining [9], [14]. With
the recent development of global constraints, CP became
competitive for solving some data-mining tasks [19], [20].
Recently, a large effort was made by the community to a
better understanding of the unstructured information conveyed
by the patterns and to produce pattern sets [10]. Mining
top-k patterns (i.e. the k best patterns according to a score
function) is a promising road to discover useful pattern sets.

The contribution of this paper is two-fold. Firstly, we
propose a new CP model linked to multiple fault context
for mining top-k suspicious patterns using a global constraint
and a new scoring function based on the notion of pattern
suspiciousness degree while ensuring the coverage criterion.
Secondly, we give a new multiple fault ranking algorithm
reasoning on the extracted top-k patterns to sort the statements
from the most suspicious to the guiltless one. This algorithm
exploits some observations linked to multiple fault localization
and properties related to DM for finer-grained localization.

Experiments performed on single and multiple faults pro-
grams coming from Siemens Suite benchmarks show that
our approach enables to propose a more precise localization
as compared to the popular spectrum-based fault-localization
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approaches and the CP based approach F-CPMINER.

II. BACKGROUND

A. Fault Localization

Let us consider a faulty program Prog having n lines, la-
beled e1 to en. For instance, we have Prog = {e1, e2, . . . , e10}
for the Character Counter program given in Fig.1. A test
case tci is a tuple 〈Di, Oi〉, where Di is the input data and
Oi is the expected output. Let 〈Di, Oi〉 a test case and Ai
be the current output returned by a program Prog after the
execution of its input Di. If Ai = Oi, tci is considered as a
passing (i.e. positive), failing (i.e. negative) otherwise. A test
suite T = {tc1, tc2, ..., tcm} is a set of m test cases to check
whether the program Prog follows a given set of requirements.

Given a test case tci and a program Prog, the set of executed
(at least once) statements of Prog with tci is called a test
case coverage Ii = (Ii,1, ..., Ii,n), where Ii,j = 1 if the
jth statement is executed, 0 otherwise. Ii indicates which
parts of the program are active during a specific execution.
For instance, the test case tc4 in Fig.1 covers the statements
〈e1, e2, e3, e4, e6, e7, e10〉. The corresponding test case cover-
age is then I4 = (1, 1, 1, 1, 0, 1, 1, 0, 0, 1).

SBFL techniques assign suspiciousness scores for each of
statements and rank them in a descending order of suspicious-
ness. Most of suspiciousness metrics are defined manually and
analytically on the basis of multiple assumptions on programs,
test cases and the introduced faults. Fig 2 lists the formula of
three well-known metrics: TARANTULA [17], OCHIAI [2] and
JACCARD [2]. Given a statement ei, pass(T ) (resp. fail(T ))
is the set of all passed (resp. all failed) test cases. pass(ei)
(resp. fail(ei)) is the set of passed (resp. failed) test cases
covering ei. The basic assumption is that the program fails
when the faulty statement is executed. Moreover, the whole
of suspiciousness metrics shares the same intuition: the more
often a statement is executed by failing test cases, and the less
often it is executed by passing test cases, the more suspicious
the statement is considered. Fig.2 shows the suspiciousness
spectrum of the different metrics according to an up to 1000
passing and/or failing test cases.

• TARANTULA allows some tolerance for the fault to be
executed by passing test cases (see Fig.2a). However, this
metric is not able to differentiate between statements that
are not executed by passing tests. For instance, consider
two statements ei and ej with pass(ei) = pass(ej) = ∅,
|fail(ei)| = 1 and |fail(ej)| = 1000. For TARANTULA,
ei and ej have the same suspiciousness degree.

• OCHIAI came originally from molecular biology. The
specificity of this metric is that it attaches a particular
importance of the presence to a statement in the failing
test cases (see Fig.2b).

• JACCARD has been defined to find a proper balance
between the impact of passing/failing test cases on the
scoring measure [2] (see Fig.2c).

B. Closed Frequent Pattern Mining (CFPM)

Let I = {1, ..., n} be a set of n items indices and
T = {1, ...,m} a set of transactions indices. A pattern P (i.e.,
itemset) is a subset of I. The language of patterns corresponds
to LI = 2I . A transaction database is a set D ⊆ I × T .
The set of items corresponding to a transaction identified by
t is denoted D[t] = {i | (i, t) ∈ D}. A transaction t is an
occurrence of some pattern P iff the set D[t] contains P (i.e.
P ⊆ D[t]). The cover of a pattern P is the set of all identifiers
of transactions in which P occurs: coverD(P ) = {t ∈ T |P ⊆
D[t]}. The frequency of a pattern P is the size of its cover:
freqD(P ) = |coverD(P )|.

Given a user-specified minimum support θ ∈ N+, a pattern
P is called frequent in D iff freqD(P ) ≥ θ. The goal of
frequent pattern mining is to identify all patterns P ∈ LI that
are frequent in a given transaction database D.

In mining frequent patterns, the main observation is that the
output is often huge, particularly when the transaction database
is dense, or using a too low minimum support threshold. As
a consequence, several proposals have been made to generate
only a concise representation of all frequent patterns. The most
popular one is the so called closed frequent patterns [22].

Definition 1 (Closed frequent pattern): A frequent pattern
P ∈ LI is closed if there does not exist a superset that has
the same frequency: closedfreq(P )⇔ freqD(P ) ≥ θ ∧ ∀i ∈
I \ P : freqD(P ∪ {i}) < freqD(P ).

The user is often interested in discovering richer patterns
satisfying properties defined on a set of patterns [10]. In this
setting, the approach that we present in this paper deals with
top-k patterns, which are the k best patterns optimizing an
interestingness measure.

Definition 2 (top-k patterns): Let m be a measure, k an
integer and � a dominance relation on LI . top-k is the set
of k best patterns according to m : {x ∈ LI | freqD(x) ≥
1 ∧ @y1, . . . , yk ∈ LI : ∀1 ≤ j ≤ k,m(yj)�m(x)}.

C. CP models for the itemset mining

Two CP models have been proposed for mining closed
frequent patterns. The first one is based on reified constraints
[9], while the second one uses a global constraint [20] to
express the mining task.

Reified model. De Raedt et al. have proposed in [9] a first CP
model for itemset mining (CP4IM). They showed how some
constraints (e.g. frequency, closedness) can be formulated
using a CP approach [9], [13]. This modeling uses two sets
of boolean variables: (1) item variables {P1, P2, ..., Pn} where
(Pi = 1) iff (i ∈ P ); (2) transaction variables {T1, T2, ..., Tm}
where (Tt = 1) iff (P ⊆ t). The relationship between P and
T is modeled by m reified n-ary constraints. The minimal
frequency constraint is encoded by n reified m-ary constraints.
The closedness constraint closedfreq(P ) is encoded by n m-
ary constraints.

Global constraint model. Despite the declarative side of the
reified model, such an encoding has a major drawback since
it leads to constraints networks of huge size, by introducing
extra variables and numerous constraints, precisely (m+n+n)
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Program : Character counter tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8
function count (char *s) {

int let, dig, other, i = 0;
char c;

e1: while (c = s[i++]) { 1 1 1 1 1 1 1 1 8 4 4 4 7
e2: if(’A’<=c && ’Z’>=c) 1 1 1 1 1 1 0 1 4 2 2 2 2
e3: let += 2; //fault1 1 1 1 1 1 1 0 0 3 1 1 1 1
e4: else if ( ’a’<=c && ’z’>=c ) 1 1 1 1 1 0 0 1 5 5 5 5 10
e5: let += 1; 1 1 0 0 1 0 0 0 3 7 7 7 4
e6: else if ( ’0’<c && ’9’>c ) //fault2 1 1 1 1 0 0 0 1 6 6 6 6 3
e7: dig += 1; 0 1 0 1 0 0 0 0 3 8 8 10 5
e8: else if (isprint (c)) 1 0 1 0 0 0 0 1 10 10 10 10 10
e9: other += 1;} 1 0 1 0 0 0 0 1 10 10 10 10 10
e10: printf("%d %d %d\n", let, dig, other);} 1 1 1 1 1 1 1 1 8 4 4 4 7
Passing/Failing F F F F F F P P

Figure 1: "Character counter" program containing two faults.
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T (ei) =

|fail(ei)|
|fail(T )|

|pass(ei)|
|pass(T )| +

|fail(ei)|
|fail(T )|

O(ei) =
|fail(ei)|√(

|fail(ei)|+|pass(ei)|
)
×|fail(T )|

J(ei) =
|fail(ei)|

|pass(ei)|+|fail(T )|

Figure 2: Suspiciousness Degrees.

constraints. Moreover, it does not ensure domain consistency
1 [20]. Space complexity and non-domain consistency of the
reified approach are clearly identified as the two main bottle-
necks behind the competitiveness of this declarative model.
To address these two issues, the CLOSEDPATTERN global
constraint was proposed [20], enabling to encode efficiently
both the minimal frequency constraint and the closedness
constraint. This global constraint does not require any reified
constraint nor extra variables.

Definition 3 (CLOSEDPATTERN global constraint): The
global constraint CLOSEDPATTERND,θ(P ) holds iff there
exists an assignment σ = 〈d1, ..., dn〉 of variables P s.t.
freqD(σ) ≥ θ and closedfreq(σ).

Lazaar et al. [20] have proposed a filtering algorithm that
ensures a domain consistency for the global constraint in worst
case time O(n2×m). It ensures also extracting the whole set
of closed patterns, with a backtrack free manner, having the
worst case time O(C × n2 × m), where C is the number
of closed patterns. It is the first CP model ensuring a tight
complexity, very close to specialized data mining approaches,
such as LCM [25].

III. MULTILOC APPROACH

This section presents our approach implemented in MUL-
TILOC tool for multiple fault localization using CLOSEDPAT-
TERN. It consists of two steps:

1) top-k Extraction: this step extracts the k most suspicious
patterns. Unlike the approach proposed in [21], our top-
k extraction exploits (i) a new measure (coined PSD for
Pattern Suspiciousness Degree); (ii) a new CP model

1Domain consistency, also known as arc consistency, enables to remove
from the domain of each variable all values that do not belong to a solution
of the considered constraint.

based on CLOSEDPATTERN global constraint [20]; (iii)
the extracted top-k patterns ensure the coverage cri-
terion. This criterion ensures that all statements are
covered by the top-k patterns. Doing so, we are able
to rank the overall statements.

2) Ranking step. The extracted top-k patterns are con-
fronted each other to provide a meaningful localization.
The ranking algorithm presented in [21] is based on
observations motivated by simple faults. We propose a
thorough analysis for a multiple fault ranking algorithm
based on observations linked to multiple fault context
as well as properties associated to pattern mining for a
finer-grained localization.

Let Prog = {e1, ..., en} be a set of indexed statements
composing the program Prog and T = {tc1, ..., tcm} a set of
test cases. The transactional dataset D is defined as follows:
(i) each statement of Prog corresponds to an item in I,
(ii) the coverage of each test case tci forms a transaction
in T . Moreover, to look for contrasts between subsets of
transactions, T is partitioned into two disjoint subsets T + and
T −. T + (resp. T −) denotes the set of coverage of positive
(resp. negative) test cases.

Let d be the 0/1 (m, n) matrix representing the dataset D.
So, ∀t ∈ T ,∀i ∈ I, (dt,i = 1) if and only if the statement i
is executed (at least once) by the test case t. Figure 1 shows
the transactional dataset associated to the program Character
Counter. For instance, the coverage of the test case t5 is I5 =
(1, 1, 1, 1, 1, 0, 0, 0, 0, 1). As t5 fails, thus I5 ∈ T −.

We propose a new measure that evaluates the suspiciousness
degree of a pattern (i.e., subset of statements present in the
same failing/passing test cases) rather than the suspiciousness
of an isolated statement.

Definition 4 (Pattern Suspiciousness Degree (PSD)): Given
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a pattern P of a program. The Suspiciousness degree of P is:

PSD(P ) = freq−(P ) +
|T +| − freq+(P )

|T +|+ 1

Where freq−(P ) (resp. freq+(P )) represents the fre-
quency of the pattern P in the negative dataset T − (resp.
positive dataset T +).

The originality of PSD formula comparing to SBFL metrics
comes, first and foremost, from the fact that PSD takes into
account the dependencies between statements. Second, PSD
attaches a particular importance to the presence of a pattern
in the failing test cases. That is, with its unbounded part on
failed tests, PSD is able to differentiate between two patterns
P1 and P2 where freq−(P1) > freq−(P2) and freq+(P1) =
freq+(P2). The more frequent pattern in failing test cases is
more suspect than the less frequent, whatever their presence
in passing ones. Now, to evaluate the interest of pattern in
terms of suspiciousness w.r.t. a set of patterns, we define a
dominance relation between patterns.

Definition 5 (PSD-dominance relation): A pattern P domi-
nates another pattern P ′ w.r.t. PSD (denoted by P �PSD P

′),
iff : PSD(P ) > PSD(P ′)

The PSD value of a given pattern is proportional to its
presence in failing test cases (freq−) and inversely related
to its presence in passing test cases (freq+). Thus, the
dominance relation states that P �PSDP

′, if P is more suspect
than P ′. The top-k suspicious patterns are extracted according
to the definition 2 with the use of �PSD as dominance relation.
Thus, P is a top-k suspicious pattern if there exists no more
than (k − 1) patterns that PSD-dominate P .

A. top-k Extraction

Algorithm 1 details the extraction of the top-k suspicious
patterns ensuring the coverage criterion. It takes as input the
faulty program Prog, the corresponding datasets of negative
and positive test cases (T − and T +). It returns as output top-
k suspicious patterns covering all statements of the program
Prog. The algorithm starts by building the following CP model
(line 4):
• X = {X1, .., Xn} the binary statement variables where

(Xi = 1) if the statement ei is in the searched pattern P
• Cα, the set of constraints composed of :

– CLOSEDPATTERNT ,θ(X) with (θ = 1).
– PSD(X) > α to ensure that the PSD value of the

extracted pattern P must be greater than α.
This CP model aims at extracting a closed pattern in T

dataset with a PSD greater than α. Starting with α = 0, we
compute the k first suspicious patterns (lines 5-8). During the
search, a top-k list of suspicious patterns, noted S, is main-
tained. Once the k patterns are found, S is sorted according
to decreasing order �PSD (line 9). It is worth noting that the
PSD value of each pattern P in top-k list is calculated using
the frequency of P in T − and T +(i.e., freq− and freq+).
Considering that the first extracted patterns are not necessarily
the top-k ones, we try iteratively to extract a pattern that PSD-
dominates the last one Sk (lines 10-16). This is achieved by:

Algorithm 1: Extracting the top-k suspicious patterns.

1 Input: Prog, T = {T −, T +}
2 Output: top-k suspicious patterns S
3 Loc← 〈〉; k ← |Prog |; covered← ∅; α← 0;
i← 1;

4 (X,Cα)← CPmodel(T );

5 repeat
6 P ← SolveNext(X,Cα);
7 if P 6= ∅ then S.add(P ); i+ +;
8 until (i > k) ∨ (P = ∅);

9 Sort S according to decreasing order �;

10 repeat
11 α← PSD(Sk);
12 P ← SolveNext(X,Cα);
13 if P 6= ∅ then
14 S.remove(Sk);
15 Insert P in S according to decreasing order �PSD;

16 until P = ∅;
17 covered←

⋃
i∈1..k Si;

18 if |covered| < k then
19 R←Prog \covered;
20 α← 0;
21 foreach ei ∈ R do
22 Cα.add(Xi = 1);
23 P ← SolveNext(X,Cα);
24 Cα.remove(Xi = 1);
25 Insert P in S according to decreasing order �PSD;

26 return S;

(i) updating α with the PSD of Sk (line 11), (ii) removing
the last pattern Sk (line 14), (iii) inserting the new P in the
right place according to �PSD order (line 15). This process is
repeated until no pattern, better than the last Sk in terms of
�PSD can be found (line 16).

The lines 19-25 ensure the coverage criterion. If some
statements R are not covered by any Si, than for each
statement in R, we extract a pattern covering it. This is
achieved by: (i) reinitializing α to 0, to be able to generate any
pattern covering ei ∈ R (line 20), (ii) adding the constraint
(Xi = 1) to the store Cα before extraction (line 22), (iii)
removing (Xi = 1) from the store Cα after extraction (line
24), (iv) inserting the new P in the right place according to
�PSD order (line 25). It is important to stress that the extraction
at line 23 will always return a pattern. This follows from the
assumption that each statement ei in Prog is covered by at
least a test case, and when the thresholds (α, θ) = (0, 1).

B. The ranking Process

The top-k patterns represent a rough localization. The rank-
ing step in MULTILOC approach confronts the top-k patterns
to produce a finer-grained multiple fault localization.

Definition 6 (Highly suspect statements): Given two top-k
patterns Si, Sj ∈ S s.t., Si �PSD Sj . A statement e ∈ Si \ Sj
is highly suspect if freq+(e) < freq+(Sj).

The following proposition shows that highly suspect relation
preserves the PSD-dominance relation.
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Algorithm 2: Ranking Step.

1 Input k patterns S = 〈S1, . . . , Sk〉;
2 Output an ordered list of suspicious statements Loc

3 suspect← 〈〉; pending ← 〈〉; guiltless← 〈〉;
4 foreach i ∈ {1, . . . , k − 1} do
5 guiltless.addAll(

⋂
l∈i..k Sl \ suspect);

6 foreach j ∈ {i+ 1, . . . , k} do
7 ∆← Si \ Sj ;
8 foreach e ∈ ∆ do
9 if freq+(e) < freq+(Sj) then

10 suspect.add(e);
11 ∆.remove(e);

12 pending.add(∆);

13 guiltless.addAll(Sk \ suspect ∪ pending);
14 Loc.addAll(suspect);
15 Loc.addAll(pending \ suspect);
16 Loc.addAll(guiltless);
17 return Loc;

Proposition 1: Given two top-k patterns Si, Sj ∈ S s.t.,
Si �PSD Sj and a statement e highly suspect, then PSD(e) >
PSD(Sj) and freq+(Si) < freq+(Sj).
Proof: Since that Si �PSD Sj , we have PSD(Si) > PSD(Sj),
and freq−(Si) ≥ freq−(Sj) (Def.4). From the
anti-monotonicity property of the frequency (i.e.,
X ⊆ Y ⇒ freq(Y ) ≤ freq(X)), freq−(e) ≥ freq−(Si)
(≥ freq−(Sj)). Taking into account freq+(e) < freq+(Sj),
we have PSD(e) > PSD(Sj), but the converse is not true.
We have freq+(Si) < freq+(e) (< freq+(Sj)), thus
freq+(Si) < freq+(Sj). 2

Definition 7 (Guiltless statements): Given a top-k patterns
S = 〈S1, . . . , Sk〉. Statements shared by the top-k patterns⋂
i∈1..k Si are guiltless statements.
The intuition behind definition 7 is that statements that

are always executed by failing/passing test cases, initialisation
statements for instance, are less suspicious.

Algorithm 2 takes as input the top-k patterns and returns
a ranked list Loc of most accurate suspicious statements
enabling to better locate multiple faults. The algorithm is based
on definitions 6, 7 and proposition 1. The returned list Loc
includes three computed ordered lists noted suspect, pending
and guiltless. Elements of suspect list are ranked first (line
14), followed by those of pending list (line 15), then by
elements of guiltless (line 16). As we tackle multiple faults,
a given fault can appear in any Si. For that, the main loop
at line 6 aims to confront Si with the rest of top-k patterns
Sj with i < j. At line 5, we compute the guiltless statements
according to Def.7. Lines 7-8 allow us to emerge the highly
suspect statements according to Def.6 by filling the suspect
list. After this treatment, the remaining statements are neither
suspect nor guiltless. So, they are added to the pending list
(line 12). At the end, we accord a particular treatment to the
last top-k pattern Sk by computing what remains as statement
in Sk not designated as suspect or guiltless and not in the
pending list (line 13). Once done, we add respectively in the

Table I: S : top-k suspicious patterns of example 1

top-k freq+ freq− PSD
S1 : (e1, e2, e3, e10) 0 6 6.66
S2 : (e1, e2, e10) 1 6 6.33
S3 : (e1, e10) 2 6 6
S4 : (e1, e2, e3, e4, e10) 0 5 5.66
S5 : (e1, e2, e4, e10) 1 5 5.33
S6 : (e1, e2, e3, e4, e6, e10) 0 4 4.66
S7 : (e1, e2, e4, e6, e10) 1 4 4.33
S8 : (e1, e2, e3, e4, e5, e10) 0 3 3.66
S9 : (e1, e2, e3, e4, e6, e7, e10) 0 2 2.66
S10 : (e1, e2, e3, e4, e6, e8, e9, e10) 0 2 2.66

localization Loc the suspect list (line 14), the pending list
(line 15) and the less suspicious statements in the guiltless
list (line 16).

IV. RUNNING EXAMPLE

To illustrate our approach, we consider the Character
counter program given in Fig.1. In this figure, we have eight
test cases where tc1 to tc6 are passing test cases, and tc7 and
tc8 are failing test cases. According to the provided test cases,
we report the suspiciousness ranking given by TARANTULA,
OCHIAI and JACCARD. We give also the ranking given by the
CP approach F-CPMINER. In this example, two faults are in-
troduced at e3 and e6, where the correct statements are respec-
tively ”let+ = 1” and ”else if(′0′ <= c&& ′9′ >= c)”.
We fix the size of the top-k patterns to the size of the program
(i.e., k = 10).

Table I shows the top-k patterns generated using Algo.1
and their corresponding freq+, freq− and PSD values. Using
Algo.2 on the extracted top-k, the first fault in e3 is ranked
first. Here, e3 is the only statement that is in S1 and disappears
in S2 (i.e., e3 ∈ S1 \ S2). This statement satisfies the
proposition 1 with freq+(e3) < freq+(S2) and thus, it is
highly suspect and added to suspect list in Algo.2. OCHIAI
and JACCARD are also able to rank e3 on the top while
TARANTULA ranked it in the third position by missing the
behaviour of such fault with its formulation. F-CPMINER is
also able to rank e3 on the top with its dedicated reasoning
on single fault.

In the same way, e2 is ranked in the second position with
MULTILOC using proposition 1 on S2 and S3. Afterwards,
no more statements are added to the suspect list. Most of
them are added to the guiltless list like e1 and e10 where⋂
i∈1..10 Si = {e1, e10}. The localization Loc returned by

Algo.2 is built first with suspect list, and second with pending
list. Here we can observe that e6 is the first statement added
to pending list and thus, ranked in the third position (Fig.1).
If we take a look to S6 and S8, e6 is disappearing but does not
satisfy proposition 1 where freq+(e6) > freq+(S8). Thus,
e6 is added to pending list in Algo.2. To sum up, Algo.2 on
top-k patterns given in Table I will build:

• suspect = 〈〈e3〉, 〈e2〉〉
• pending = 〈〈e6〉, 〈e5〉, 〈e7〉〉
• guiltless = 〈〈e1, e10〉, 〈e4〉, 〈e8, e9〉〉
• Loc = 〈〈e3〉, 〈e2〉, 〈e6〉, 〈e5〉, 〈e7〉, 〈e1, e10〉, 〈e4〉, 〈e8, e9〉〉
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Table II: Siemens suite.

Program # Versions LOC LEC Test cases |T + | |T − |
Replace 29 514 245 5542 5450 92
PrintTokens2 9 358 200 4056 3827 229
PrintTokens 4 348 195 4071 4016 55
Schedule 5 294 152 2650 2506 144
Schedule2 8 265 128 2680 2646 34
TotInfo 19 272 123 1052 1015 37
Tcas 37 135 65 1578 1542 36

LOC: lines of code in the correct version – LEC: lines of executable code

Taking a look to the other approaches, SBFL metrics are
ranking e6 in the same position, the sixth one. A same ranking
is obtained using F-CPMINER with its single fault reasoning.

V. EXPERIMENTS

In this section, we present the experimental results obtained
on some benchmarks. First, we describe the benchmark pro-
grams. Second, we present the experimental protocol and our
implementation. Third, we provide the results and comparisons
with existing approaches.

A. Benchmark programs

We have considered the Siemens suite2, which is the most
common program suite used to evaluate software testing and
fault localization approaches. The Siemens suite is provided
with seven C programs, each program has a correct version
and a set of faulty versions (one fault per version). The suite
is also provided with test suites for each faulty version.
Single Fault benchs. Table II summarizes the 111 faulty
programs used in our single fault experiments. For each
Siemens program, we report the number of faulty versions,
the size of the program with its lines of code (LOC) and lines
of executable code (LEC), the averaged number of test cases,
passing and failing test cases.
Multiple Faults benchs. Based on the Siemens suite and by
combining randomly the provided faults, we create 6 versions
with two faults, 6 versions with three faults and 3 versions
with four faults. In addition, we ensured that each fault is in
a different statement.

B. Experimental protocol

First, we need to know the statements that are covered by a
given (passing/failing) test case. For this end, we use GCOV 3

profiler tool to trace and save the coverage information of
test cases as a boolean matrix (e.g., see Fig.1). Then, each
test case is classified as positive/negative w.r.t. the provided
correct version. Doing so, we get two datasets (T +, T −) for
each faulty program version.

We have implemented our Multiple fault localization ap-
proach as a tool coined MULTILOC. The first step with the
CP model and Algo.1 are implemented within GECODE4

solver (where the CLOSEDPATTERN global constraint was
implemented). The ranking step with Algo.2 is implemented

2A complete description of Siemens suite can be found in [12], [15].
Siemens suite is available on http://sir.unl.edu/php/previewfiles.php

3https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
4www.gecode.org

Table III: Qualitative comparison for single fault on Siemens Suite
(Exam score %). (1): MULTILOC (2): F-CPMINER (3): TARAN-
TULA (4): OCHIAI (5): JACCARD

Program P-EXAM (%) O-EXAM (%)
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Replace 5.67 12.34 11.09 8.07 10.81 4.45 10.47 9.35 6.34 9.07
PrintTokens2 2.55 2.66 16.52 10.83 16.07 1.61 1.72 15.58 9.88 15.13
PrintTokens 3.97 5.89 13.59 6.66 11.28 2.05 3.97 11.66 4.74 9.35
Schedule 17.72 25.26 6.70 6.01 6.30 16.01 22.63 4.99 4.31 4.60
Schedule 2 47.04 44.82 61.70 55.29 61.61 36.24 30.46 50.90 44.49 50.80
Tot info 11.81 11.51 23.62 18.05 21.52 6.07 5.56 17.88 12.32 15.78
Tcas 43.11 40.33 43.94 42.11 43.86 19.08 16.13 19.91 18.09 19.83
Total 18.83 20.40 25.45 21.17 24.62 12.22 12.99 18.72 14.44 17.89

in C++ and linked to the first step. Our experiments were
conducted on an Intel® i5-2400 CPU at 3.10GHz x 4 with
8 GB RAM. The CPU timeout was set to 180s, which is an
acceptable waiting time for a localization.

For a fair comparison between our tool and the other
approaches, we have implemented the SBFL metrics, TARAN-
TULA, OCHIAI and JACCARD as presented in [17], [2]. We
have also used the distribution of F-CPMINER provided by
the authors [21].

The localization accuracy is evaluated with the notion of
EXAM score [27]. The EXAM score measures the total effort
given by a developer to locate the fault. In other words, it
reports the percentage of statements that a developer will
check before the one containing the fault: lower is better.
This being said, some statements can be equivalent in terms
of suspiciousness. Here, the accuracy may vary depending on
which statement to check first. For such reason, we report two
exam scores, the optimistic and the pessimistic one, denoted
respectively O-EXAM and P-EXAM. We talk about O-EXAM
(resp. P-EXAM) when the first (resp. last) statement to check
in the set of equivalent statements is the faulty one.

C. Single Fault Results

Table III reports an EXAM score comparison (P-EXAM
and O-EXAM) between MULTILOC, F-CPMINER and SBFL
metrics on single fault programs. Each line reports the aver-
aged P-EXAM/O-EXAM scores of the different versions of the
corresponding Siemens program. The first observation that we
can draw is that, except Schedule versions, MULTILOC is more
accurate than SBFL metrics (P-EXAM and O-EXAM score). On
the whole, our approach is able to locate single faults better
than F-CPMINER. Now, if we take a close look we can observe
that F-CPMINER is better on programs with size less than 130
LEC. On the other side, MULTILOC is more efficient than F-
CPMINER on programs with size more than 190 LEC.

As F-CPMINER and MULTILOC start by generating top-k
patterns from T dataset, we run the two CP models and extract
top-k patterns. Table IV reports the results in terms of CPU
time (in seconds) and the search space size with the number of
nodes. The main observation is that our CP model with the use
of a dedicated global constraint for closed pattern outperforms
significantly the CP model used in F-CPMINER at all levels.
In terms of CPU times, we can observe for tcas programs (37
versions out of 111) a speed-up factor of 8. Factors of 19 to
32 are noted for five programs (65 versions out of 111) and
for Print Token2 (9 versions out of 111), we have a factor of
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Table IV: Comparative performance for extracting top-k patterns.
(1): MULTILOC (2): F-CPMINER

Program k
Time (s) Speed-up #Nodes Factor

(1) (2) (2)/(1) (1) (2) (2)/(1)
Replace 245 5.24 147.69 28 1056 2450119 2320
PrintTokens2 200 2.69 146.25 54 574 3588108 6251
PrintTokens 195 3.20 61.49 19 524 1235562 2357
Schedule 152 1.84 14.89 32 2299 210884 91
Schedule 2 128 0.47 12.66 26 579 113438 195
TotInfo 123 0.10 2.53 25 270 10445 38
Tcas 65 0.02 0.16 8 38 133 3

54. The same observation, with more amplified factors, can be
draw on the number of explored nodes.

D. Multiple Fault Results

Table V reports an EXAM score comparison (P-EXAM
and O-EXAM) between MULTILOC, F-CPMINER and SBFL
metrics on the 15 multiple fault versions. For instance, if we
take programs with three faults, we have reported the averaged
P-EXAM and O-EXAM scores of the first located fault f1, the
second fault f2 and the third one f3.

Let us start with the two fault programs (6 versions). Our
first observation is that CP approaches are drastically more
efficient than SBFL metrics in terms of P-EXAM and O-EXAM.
In general, CP approaches reduce by half the EXAM score
for f1 and by approximately 20% for f2. As F-CPMINER is
designed for single faults, we observe a slight improvement
comparing to our approach on f1 in terms of P-EXAM and O-
EXAM. However, MULTILOC with its multiple fault reasoning
is quite more efficient on f2 than F-CPMINER (20% on P-
EXAM and 8% on O-EXAM).

For three-faults programs (6 versions), here also CP ap-
proaches are more accurate than the standard SBFL met-
rics. With three faults, dependencies between faults are more
significant giving rise to numerous behaviours affecting the
localization process. F-CPMINER becomes less effective even
on the first fault f1. MULTILOC clearly demonstrates a
stability and robustness on multiple faults. Comparing with
F-CPMINER, MULTILOC wins with 2% on f1, 5% on f2
and 20% on f3 in terms of P-EXAM and O-EXAM.

For four-faults programs (3 versions), here the results sup-
port our observations on the comparison between F-CPMINER
and MULTILOC. Furthermore, we observe that F-CPMINER is
not able to catch f4 in any program version (EXAM score at
100%). It is important to stress that such case can not happen
with MULTILOC, since our approach ensures the coverage
criterion. Comparing now with SBFL metrics, we observe
that in some cases, the standard metrics can be effective. For
instance, JACCARD is able to quickly locate the first fault
f1. This can be explained by the fact that each metric was
defined to catch a particular fault-behaviour. In multiple fault
context, combining faults can lead to a broad spectrum of
behaviour and each time one of them is catched by a given
metric. However, on the whole, MULTILOC remains the robust
approach on four-fault programs with an improvement of more
than 15% on P-EXAM and O-EXAM comparing with SBFL
metrics.

Figure 3 shows a comparison on P-EXAM (fig.3a) and
O-EXAM (fig.3b) between SBFL metrics, F-CPMINER and
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Figure 3: MULTILOC vs F-CPMINER vs Measures : Mul-
tiple Faults

Table V: Qualitative comparison for multiple faults on Siemens
Suite (EXAM score %). (1): MULTILOC (2): F-CPMINER (3):
TARANTULA (4): OCHIAI (5): JACCARD

Program P-EXAM (%) O-EXAM (%)
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

A f1 15.36 12.29 33.75 26.35 30.93 8.59 7.00 26.84 19.44 24.02
f2 43.82 62.70 68.87 62.79 66.97 38.67 46.75 65.80 59.72 63.90

B
f1 13.01 15.60 34.94 27.99 33.28 7.53 9.66 28.10 20.39 26.45
f2 39.96 44.69 60.47 54.26 57.91 26.31 31.09 57.28 45.54 54.72
f3 49.84 69.22 80.11 76.42 77.61 40.96 58.35 67.12 69.72 64.63

C

f1 21.77 22.83 8.77 10.30 7.98 21.46 22.42 8.50 7.68 7.54
f2 39.00 56.28 20.99 41.26 23.99 35.72 51.09 18.64 40.99 21.81
f3 58.71 83.61 53.86 59.46 66.78 41.09 81.28 53.58 59.18 66.51
f4 63.69 100 78.01 75.17 75.17 46.61 100 76.23 73.39 73.40

Total 37.80 51.91 48.86 48.19 48.96 29.66 45.29 44.68 44.01 44.77
A: 2 faults B: 3 faults C: 4 faults

MULTILOC. The x-axis reports the cumulative percentages of
located faults on the 15 multiple fault programs (42 faults
in total) while y-axis reports the EXAM score. Let us start
with the pessimistic case (i.e. P-EXAM). 15% of faults are
located at the same time for MULTILOC, F-CPMINER and
TARANTULA, while OCHIAI and JACCARD need more P-
EXAM score. For the remaining faults, MULTILOC dominates
the other approaches. 90% of faults are located with an effort
of 60% in terms of P-EXAM, where F-CPMINER and SBFL
metrics need an effort greater than 85% of P-EXAM. To locate
the 42 faults (100%), MULTILOC spent 90% of P-EXAM
instead of 100% for the other approaches.

Our previous observations are more accentuated on fig.3b
with the optimistic case. The figure shows clearly a great
dominance of MULTILOC. F-CPMINER dominates the SBFL
metrics until 80% of faults. Afterwards, it is with a great
difficulty that F-CPMINER locates the 20% of remaining
faults.

E. Statistical analysis

In order to strengthen our previous observations, we carried
out a statistical test on P-EXAM and O-EXAM data. According
to the fact that the data do not come from normally distributed
populations and that P-EXAM and O-EXAM scores are taken
from the same subjects, the Wilcoxon Signed-Rank Test is
used [8]. We have used the one-tailed alternative hypothesis
with the following null hypothesis: H0 : Given an approach X
(e.g., TARANTULA) and MULTILOC, the two groups of data
are not different. For the left-tailed alternative hypothesis H1,
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Single fault
EXAM F-CPMINER TARANTULA OCHIAI JACCARD

P-EXAM 95.91% 99.8% 70.19% 95.91%
O-EXAM 63.31% 100% 99.92% 100%
Multiple fault
P-EXAM 99.31% 99.95% 99.96% 99.96%
O-EXAM 98.26% 99.94% 99.96% 99.92%

Table VI: Probabilities of observing H1: MULTILOC is more
efficient (One-tailed Wilcoxon Signed-Rank Test).

we state that MULTILOC is better than the given approach (i.e.,
less EXAM score). As we have a large number of samples for
single fault (i.e., 111 programs: over 30 to be on the safe side)
we have used the normal approximation with the calculated z-
value to either accept or reject the null hypothesis.

Table VI reports the probabilities of observing H1 on
Siemens Suite using Wilcoxon Signed-Rank Test. For instance,
the first probability given in table VI (95.91%) represents the
confidence that MULTILOC is more efficient than F-CPMINER
on P-EXAM score on Siemens Suite. The z-test gives us a p-
value of 4.09%.

For single fault, H1 is accepted with a high confidence.
We can conclude that MULTILOC is definitely more efficient
than SBFL metrics. Comparing with F-CPMINER, MULTILOC
remains very competitive with a probability of 95.91% (resp.
63.31%) on P-EXAM (resp. O-EXAM). For multiple fault, we
can conclude that MULTILOC is drastically efficient than
SBFL metrics and F-CPMINER with a confidence over 98%.

VI. CONCLUSION

In this paper we proposed a new approach implemented in
MULTILOC tool for multiple fault localization. Our approach
consists of two steps: (i) extracting top-k suspicious patterns
using CLOSEDPATTERN global constraint and a new measure
(coined PSD for Pattern Suspiciousness Degree) while ensuring
the coverage criterion; (ii) a thorough analysis of the top-k
extracted patterns (i.e. ranking step) for finer-grained local-
ization. Experiments performed on single and multiple faults
programs, coming from Siemens suite benchmark, showed that
our approach enables to propose a more precise localization as
compared to the popular SBFL approaches and the CP-based
approach F-CPMINER.
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