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Analysis of a simple model for post-impact dynamics active compliance
in humanoids falls with nonlinear optimization

Vincent Samy1, Karim Bouyarmane2 and Abderrahmane Kheddar1,3

Abstract— We analyse a mass-spring-damper model as an
active compliance steering controller to adaptively comply with
post-impact dynamics in humanoid falls. We use it as a one
degree of freedom virtual link that can be attached between a
point at impact and a given limb point (e.g. torso or waist of
the humanoid). By mapping position and torque limits of the
robot joints into corresponding position and force limits in the
virtual link, we formulate a nonlinear optimization problem
to find its admissible stiffness and damping that prevents
violating the constraints before reaching a steady state rest. The
nonlinear constraints are analytically derived using symbolic
computation and then numerically solved with off-the-shelf
nonlinear optimization solver. The virtual model trajectories
are then mapped back on the full body of the humanoid robot
and illustrated on the HRP-4 robot in simulation.

I. INTRODUCTION

Simple models, such as the center-of-mass (CoM) and
multi-dimensional mass-spring-dampers, proved to be ex-
tremely efficient in capturing the dominant behavior of com-
plex dynamical systems, among which humanoid robots. For
example, the CoM and related centroidal dynamics are used
to design various strategies for dynamic walking, e.g. [1],
[2]. The linear inverted pendulum (LIP) model is one of the
most popular in humanoid research since many years [3].
The CoM model enhanced by a spring along the massless
CoM/Center of Pressure point system (spring-loaded inverted
pendulum, or SLIP) is used to generate behaviors beyond
walking, e.g. jumping and running [4], [5], [6]. The CoM
models were extended to generate multi-contact motions,
e.g. [7], [8], [9]. Mass-spring-damper models have also been
used as nominal desired impedance or admittance at the
contact space [10]. There are of course many other variants
of simple dynamics models and their usages in robotics.

In our previous work [11], we have addressed humanoid
falling (see references in [11], [12] for a thorough state-of-
the-art approaches in humanoid falls) using locally linearized
control to comply with post-impact dynamics using task-
space quadratic programming (QP) formalism [13], [14]. The
idea is to reshape the humanoid posture so as to meet the
impacts at contact positions that maximize compliance by
adapting the actuators Proportional-Derivative (PD) gains.
In [12], we showed that the actuator gain parameters can
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(a) Landing on arms. (b) Landing on legs.

Fig. 1: Shock-absorber virtual-link dynamic model represen-
tation in two different landing configurations.

also be integrated as decision variables in the QP controller.
However, a problem that still needed to be solved was the
computation of motor PD gains using a prediction of the
system over a receding horizon (preview) to ensure that the
structural limits of the robot (torque limits, joint limits) are
not reached during the whole post-impact phase, until the
system comes to a rest.

Inspired by what is well established in dynamic walking,
we propose a mass-spring-damper model applied to the
situation of humanoid falls, to be used in a two-stage QP
control approach. The idea of the virtual-link dynamic model
is to emulate a shock absorber on the impacting limbs of the
robot (see Fig. 1). This paper is not about impact regulation
or impact handling that should include robust hardware
design instead. Our model shall be seen as a planning or
preview control strategy to handle post-impact dynamics by
actively complying assuming a system to detect and handle
impacts readily available or implemented, e.g. [15].

To this end, we present a detailed analysis of the pa-
rameter tuning of a one degree-of-freedom (1 dof) mass-
spring-damper system to serve as a model-preview adaptive
controller for post-impact trajectory generation of humanoid
whole-body motion after the impact occurred. We analyt-
ically derive the constraints on the stiffness and damping
decision parameters of this model and formulate a nonlinear
optimization problem to solve. Once the latter parameters are
obtained, the corresponding trajectory is tracked by the robot
in the post-impact phase using a whole-body QP controller.
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Fig. 2: Mass-spring-damper system.

II. ANALYTICAL RESOLUTION

Let us consider the system in Fig. 2. The analytical
solution for the motion of this system comes from the
standard resolution of the well-studied second order linear
differential equation:

mz̈(t)−K(zref − z(t))−B(żref − ż(t)) +mg = 0 , (1)

where m is the mass of the system, z(t) is the position of
the mass at time t, g the gravity and K, B the gains that we
want to compute to fullfill the constraints that are deduced
from torque and joint angle limits of the full system. This
equation can also be interpreted as a PD controller of a linear
motor supporting a mass m under the gravity g. In such case,
zref is the reference position which is set to the position just
before impact q-(0) and żref is always 0.

Solving for z(t) leads to known three cases: (i) an under-
damped solution if B2 < 4mK and the system oscillates
at its natural frequency; (ii) critically damped solution when
B2 = 4mK, it is the fastest way to reach the zref position
without oscillating; and (iii) the over-damped solution when
B2 > 4mK, where zref is reached over a longer time.

Given a solution of Eq. (1) that depends on the parameters
K and B, our objective is to find admissible values of these
parameters such that:
• joint limit constraint: a position limit constraint is

satisfied on z(t) (e.g. preventing the mass from col-
liding with the ground after the impact, or equivalently
reaching a maximum compression limit);

• torque limit constraint: a force limit constraint is satis-
fied on K(zref− z(t))+B(żref− ż(t)) (the post-impact

g
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Fig. 3: Landing phases and post-impact of the virtual link.
Left figure: the system just before impact at time t = 0-, the
velocity of the base is v- and the joint velocity is 0 (velocity
of the mass relative to the base). Middle figure: the system
just after impact at t = 0+ (assumed handled by hardware
at t = 0). Right figure: the system at the time of maximum
compression amplitude t = tma.

force generated by the spring recoil should be kept
below a safety threshold when possible);

• the system converges to zero velocity.
The above constraints capture in the 1dof virtual-link the

full-body constraints on both joints angle and torques limits.
We choose to search for over-damped solutions in order (i)

to avoid oscillations of the virtual link that would otherwise
be mapped to the whole-body, and (ii) to relax critical
convergence to zref, as long as we reach a rest steady state
over time. Hence, we solve Eq. (1) with B2 > 4mK. We
will see later that this is not a limiting assumption in terms
of finding a solution whenever the solution set is nonempty.

Note that we do not consider an explicit velocity constraint
in the formulation, as during the entire post-impact phase,
the system is only decelerating (slowing down) due to the
dissipation of energy through the damping. The constraint
would be effective if written on the initial velocity, but the
latter is an input to the problem over which we have no
direct control. Hence, the post-impact initial velocity might
or might not cross the velocity limit if it was to be set.

Solving the differential equation Eq. (1) for z as a function
of t, with K and B as parameters, leads to:

z(t,K,B) =
e- 1

2m (B−√γ)t(Bg + 2Kż(0) +
√
γg)m

2
√
γK

−e- 1
2m (B+

√
γ)t(Bg − 2Kż(0)−√γg)m

2
√
γK

+
Kz(0)−mg

K
,

(2)

with γ = B2 − 4Km.
In the following, for the sake of readability and in order

to reduce the size of the symbolic expressions, but without
loss of generality, we set example numerical values to the
initial conditions and to the mass of the system (all the
developments can be kept with their symbolic expressions):

m = 1 , g = 9.81 , z(0) = 0 , ż(0) = -5. (3)

The derivations and reasoning to follow are still valid
for any other numerical values corresponding to the specific
robot and falling conditions at hand. Initializing the velocity
to a value different from zero simulates a falling system state
just after an impact. Suppose the system is impacting with
a net velocity v− = -5ms-1 (external floating-base velocity)
and ż−(0) = 0ms-1 (internal joint velocity) and that the
impact is inelastic (no bounce), the remaining velocity in
the joint post-impact is then ż+(0) = -5ms-1, see Fig. 3.

With the numerical values (3), z(t,K,B) in (2) becomes:

z(t,K,B) =
e- 12 (B−

√
γ)t(-10K + 9.81(B +

√
γ)

2
√
γK

−

e- 12 (B+
√
γ)t(10K + 9.81(B −√γ)

2
√
γK

− 9.81

K
,

(4)

with γ = B2 − 4K (we recall that γ > 0).
A 3D time-evolution representation of z as function of K

and B can be represented, this is illustrated in Fig. 4.
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Fig. 4: Evolution of position z in m (blue axis), for a given
stiffness K ∈ [0...50] in N.m-1 (red axis), and damping B ∈
[0...25] in N.s.m-1 (green axis).

Taking the time-derivative of z(t,K,B) gives us the joint
velocity:

ż(t,K,B) =

(-B +
√
γ)e- 12 (B−

√
γ)t(-10K + 9.81(B +

√
γ))

4
√
γK

− (-B −√γ)e- 12 (B+
√
γ)t(10K + 9.81(B −√γ))
4
√
γK

. (5)

The 3D time-evolution of ż as a function of K and B can
also be visualized (Fig. 5).
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Fig. 5: Evolution of velocity ż in m.s-1 (blue axis), for a
given stiffness K ∈ [0...50] in N.m-1 (red axis), and damping
B ∈ [0...25] in N.s.m-1 (green axis).

Lastly, from z and ż, we can compute the joint force
(spring force) with respect to time and as a function of K

and B (Eq. (6) and Fig. 6).

f(t,K,B) = K(zref − z(t,K,B))−Bż(t,K,B) =

-
(2.5B2 − 5K − 4.905B + (4.905− 2.5B)

√
γ)e- 12 (B−

√
γ)t

√
γ

-
(-2.5B2 + 5K + 4.905B + (4.905− 2.5B)

√
γ)e- 12 (B+

√
γ)t

√
γ

+ 9.81 . (6)
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Fig. 6: Evolution of force f in N (blue axis), for a given
stiffness K ∈ [0...50] in N.m-1 (red axis), and damping B ∈
[0...25] in N.s.m-1 (green axis).

The joint limit and force limit constraints can be respec-
tively written from the expressions (4) and (6) as

∀t > 0 z ≤ z(t,K,B) ≤ z , (7)

∀t > 0 f ≤ f(t,K,B) ≤ f , (8)

where z, z, f , f are lower and upper bounds of the virtual
link position and force deduced from joint and torque limits
constraints of the robot impacting limb (see Section III).

The projection of the joint and the torque constraints on
the K-B plane through time is visualized in Fig. 7. The
joint limit visualization is obtained by intersecting the 3D
time-evolution plot of z(t,K,B) with the plane z = z,
while the force limit constraint visualization is obtained by
intersecting the 3D time-evolution plot of f(t,K,B) with
the plane at f = f (the reason why only one side of these
two constraints is relevant is explained below). By analyzing
these visualizations, we can substitute the time-continuous
constraints (7) and (8) with fixed time constraints.

First, we can define the maximum amplitude time tma

as the time at which the velocity reaches 0. Solving for
Eq. (5) = 0 with K and B as parameters using a symbolic
computation software (e.g. Maple), we get:

tma =
ln
(

- 4905B−2500K−9623.61
1250B2−1250B√γ−2500K−4905B+4905

√
γ+9623.61

)
√
γ

.

(9)
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Fig. 7: Projection of the joint limit and the force limit on the
K-B plane for different time with z = -0.3m and f = 60N.

This equation is stiffness-dependant and damping-dependant.
The joint limit constraint can then be captured by:

z ≤ z(t = tma,K,B) ≤ z. (10)

Secondly, we observe that the force limit can be reached
in three main ways: i) high damping force when having
high velocity; ii) high stiffness force when having high
position error; iii) a mix of the two. In this study, we are
interested in post-impact dynamics involving a relatively
short compression range between initial position and the
limit, and high post-impact velocity resulting from the fall.
In these conditions, the force maximum value is more likely
to come from the damping of the velocity and not from the
stiffness related to the distance. And since we only decelerate
the system, we consider that the maximum force is reached
at t = 0+ (after impulse). The torque limit constraint (here
a force limit constraint) thus writes:

f ≤ f(t = 0+,K,B) ≤ f. (11)

Of course, it is necessary to confirm this latter assumption
once the t 7→ f(t) trajectory is derived with the computed
values of K and B. This is the case in Fig. 7b.

As only the over-damped behavior is accounted, a third
constraint, the over-damped system constraint, is added to
the above joint limit and torque limit constraints.

4K −B2 < 0. (12)

The problem we have formulated up to this point thus
reduces to the following system of inequalities:

find K,B (13)

such that


z ≤ z(t = tma,K,B) ≤ z
f ≤ f(t = 0+,K,B) ≤ f
4K −B2 < 0

(14)

This is a system of nonlinear inequalities, as the con-
straints (10)–(12) are nonlinear inequalities in K and B, of
which we have derived the analytical expressions throughout
this section using symbolic computation tools.

To solve our system of nonlinear inequalities, we formu-
late it as the system of constraints of a nonlinear constrained
optimization problem in K and B, with an arbitrary convex

cost function, e.g. choose the gains to be close to the
nominal PD gains Kn and Bn used in whole-body control,
by minimizing (K−Kn)

2+(B−Bn)2; or since we want the
most passive joint possible, we can alternatively minimize:

min
K,B

K2 +B2 (15)

such that


z ≤ z(t = tma,K,B) ≤ z
f ≤ f(t = 0+,K,B) ≤ f
4K −B2 < 0

that finds the minimum norm solution for (K,B) satisfying
the system of nonlinear inequality constraints.

We use the Matlab software to compute the solution of
this optimization problem. The result is shown in Fig. 8. In
this example, the impulse happens at the time t0 = 0 such
that at t−0 the velocity is zero and at t+0 the velocity is -5m.s-1

and z(0) = 0, z = -0.5, f = 60.
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Fig. 8: Computation of the solution region depending on
the problem constraints in the K-B domain. The blue curve
represents Eq. (12), the green curve Eq. (11) and the orange
curve Eq. (10). The set of admissible solutions is the white
region whereas the red dot is the particular solution, of the
the nonlinear optimization problem.

When the joint limit is not too close to the current position
(Fig. 8a), we are able to find a set of solutions that satisfy
all the constraints (Fig. 9). However, if the joint limit is set
to 0.3 instead of 0.5 (much closer to the current position)
as in Fig. 8b, no solution can be found, as the solution
set is empty. The latter situation can also occur in falling
conditions from which it is impossible for the robot to safely
comply (e.g. dropping from a high altitude, impacting with
very high velocity).

III. RESULTS

The accompanying video shows simulations that were
realized based on our approach; first with low-dimensional
toy systems (matching the studied model) and on a full
humanoid robot HRP-4.

The Fig. 10a is a trivial application of our method on a
1-dof system: the virtual link corresponds to the full model.
The Fig. 10b shows a 2-dof system with two prismatic joints.
The maximum force f is the sum (and not the least) of
the maximum forces of the two linear actuators, and the
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Fig. 9: Evolution of the different joint parameters through
time. The system reaches the joint limit without crossing it
and after around 0.5s it is completely stopped.

(a) 1-dof system simulation.

(b) 2-dof system simulation.

Fig. 10: Low-dimensional systems simulations.

minimum position z is obtained when the two joints are put
at their position limits. In both examples, we obtain a perfect
realization of the desired behavior in simulation, after both
systems reach the ground with an impact velocity of v− =
−5ms−1.

The Figs. 11 and 12 show falling motions of the humanoid
HRP-4, controlled based on the virtual-link model illustrated
in Fig. 1. The virtual link model analysis is used to generate
trajectories for the limb extremity attached to torso (arms)
or to the waist (legs), and these trajectories are tracked in
the post impact phase with a whole-body QP controller.

In these two cases, the limit position z of the virtual link

Fig. 11: Front fall screenshots from the accompanying video.

Fig. 12: Leg fall screenshots from the accompanying video.

is obtained from forward kinematics of the limb of interest
when all the joints are put in their limits:

z = FKlimb(qlimb
limit) , (16)

where FKlimb denotes the forward kinematics function of the
limb and qlimb

limit the configuration of the limb at its limits (here
limb ∈ {arm, leg}). However, it is only an approximation,
since FKlimb is generally a nonlinear mapping. This example
shows that obtaining the exact bounds on the virtual-link
range of motion (i.e. the compression limit) from the robot
joint limits and the kinematics is not trivial (see Section IV).
For the force bound of the virtual link, it can be obtained in
first approximation from the pseudo inverse of the Jacobian
transpose applied on the torque limits of the limb, or exactly
by using the force polytope analysis detailed in [16], which
accounts for both torque limits in the limb and friction limits
at the contact. As for the effective mass of the virtual link in

M

meff
lr

lc

Fig. 13: Effective mass computation.

case of landing on the arms, we use the reasoning illustrated
in Fig. 13. Modeling the part of the robot between the knee
and the arm as an inverted pendulum rod, the effective mass
can be defined as the point mass localized at the extremity
of the rod that has the same moment around the CoP of the
rod as the total gravity force applied at the CoM, i.e.

Mglc cos(θ) = meffglr cos(θ), (17)
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where M is the mass of the rod (mass of the robot between
the knee and the arm), lc the distance of the CoM of the
rod from its CoP at the knee, lr the total length of the rod
(distance between the effective mass and the CoP), and θ the
angle between the rod and and ground. Therefore, we have:

meff =M
lc
lr
. (18)

The impact velocities for the arm landing and leg land-
ing falls were respectively measured at v− = −3ms−1 and
v− = −1.47ms−1. In Fig. 11, the particular posture that
the robot adopts just before it starts falling is generated by
applying the method presented in our previous work on non-
singular falls and optimal falling postures [11], [12].

IV. CONCLUSION AND DISCUSSION

We presented a study on a one degree of freedom mass-
spring-damping model, called virtual link, to capture the
dynamics of active post-impact compliance when a humanoid
robot falls and collides with the environment.

The analysis of the system allowed us to find the stiffness
and damping parameters (K,B) of the virtual link model
that satisfy, when possible, the structural robot limits that
are the joint limits and torque limits mapped onto a position
limit and force limit on the virtual link. Our approach results
in trajectories that are subsequently tracked by a whole-
body QP controller, simulating the behavior needed by the
humanoid to realize active compliance to the post-impact
dynamics, using an admittance task to map obtained forces.

As discussed in Section III, a general exact mapping from
the joint limits of a humanoid robot to the bounds on the
range of motion of the corresponding virtual link can be dif-
ficult to obtain. A good approximation and practical method
consisted in using forward kinematics and reachable space
computation of the point corresponding to the attachment
of the mass considering the contact constraint. This is the
method we used in our examples. An alternative method
would be to represent the kinematic tree structure of the
humanoid as a deformable structure (spring-loaded joints)
with repulsive potential fields at the joint limits, and use
computer graphics animation techniques (such as a virtual
force pulling the virtual link’s attachment point along the
gravity until equilibrium is reached) to compute the desired
bounds iteratively. This can be obtained with very fast simple
computations, which we investigate in future work.

Our analysis highlighted situations in which no solution
exists (when the solution set on (K,B) is empty), due to
extreme falling conditions for example (high impact velocity)
or very limiting bounds. In these situations, the proposed
approach is unsuccessful and the model appears to be no
longer valid to propose a practical damage-reduction solu-
tion. Future work will investigate what alternative models
can be used to deal with these extreme situations.

Moreover, other limiting situations in which a constant
(K,B) solution does not fit in the constraint region through-
out the time can also occur. It can be overcome in future work
by seeking for time-varying (K(t), B(t)). We can optimize

for those with trajectory optimization techniques using basis-
functions parameterization (e.g. splines).

The approach in this work was specifically designed
for position-controlled robots, and applied in simulation by
tracking the desired trajectories by a whole-body controller
with high motor PD gains. We plan in the future to combine
this work with our previous work on low-level motor PD gain
adaptation [12] to realize the tracking of the trajectories with
lower adaptive motor PD gains.

Finally, we plan to extend the analysis proposed here to
directly tune the low-level motor PD gains of the joints by
using a multi-dof system modeling the compliance with a
torsional spring-damper behavior at each joint.
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