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Abstract—In this paper, the problems of stabilization
and disturbance rejection in the control of class I of
underactuated mechanical systems (UMS) are addressed.
Based on a global change of coordinates, the original
dynamic model is transformed into a strict-feedback form
and a Super-Twisting (STW) controller is designed to
resolve the stabilization problem. To deal with the problem
of uncertainties and external disturbances in UMS, a distur-
bance observer (DO) is proposed for the estimation of the
input disturbances in the aim of compensating them in the
controller and improving the performance and robustness
of the resulting closed-loop system. Indeed, the proposed
observer-based scheme is compared with the standard STW
controller. Both controllers have been implemented and
validated through real-time experiments on the inertia
wheel inverted pendulum. The obtained results show clearly
the superiority of the proposed observer-based STW control
scheme and its effectiveness in terms of external disturbance
rejection.

Index Terms—Underactuated mechanical system, Stabi-
lization, Super-Twisting controller, Disturbance Observer.

I. INTRODUCTION

Underactuation in mechanical systems is an attractive
case study area of research for control and robotic com-
munity. Different challenging control problems and var-
ious applications exist in real life. For instance, walking
robots, aerospace vehicles, and marine vehicles are some
examples of nonlinear applications. Compared to fully
actuated systems, the restriction of having fewer control
inputs than degrees of freedom complicates the design of
the control approach. Besides of their complex nonlinear
dynamics and the nonlinear coupling between the directly
actuated and the underactuated degrees of freedom, the
instability of their internal dynamics leads to a non-
minimum phase behaviour. Furthermore, the dynamic
model of UMS may include some non-holonomic and
non-integrable constraints. Indeed, the level of com-
plexity in the control design depends on the degree of
underactuation, thus the linearization and conventional
control approaches do not resolve the control problem
of high-order underactuated systems. For instance, if the
obtained underactuated system after a linearization is

uncontrollable, the stabilization may not be achieved by
a smooth state feedback controller. Sliding mode control
(SMC) was one of the most promising controllers studied
for nonlinear systems [1] and commonly designed in
various UMSs due to its robustness and insensitivity to
parametric uncertainties. Xu and Ozguner [2] proposed
a sliding-mode controller for a special class of UMSs
transformed into a cascaded representation where the
proposed control approach was justified by simulation
on the TORA and inverted pendulum systems. After
a transformation in a feedforward form, a SMC was
designed in [3] for the slosh-container system which
belongs to the second class of UMSs according to the
proposed classification in [4]. In [5] the authors proposed
a nonlinear disturbance observer-based SMC approach
for uncertain rotational pendulum system. Another SMC
approach based on the LMI method is proposed to control
a complex Tethered Satellite [6]. Other extensions of
SMC based on fuzzy logic methods were also designed
in the literature for UMSs in [7] [8] [9] [10].

The main disadvantage of the first SMC especially in
real-time implementation is the high-frequency oscilla-
tory phenomenon [11] which affects the performances
of the system and increase the energy consumption. As
UMSs have fewer actuators than degrees of freedom [12],
they are more sensitive to variation in the control input
signal than fully actuated systems. Thus the chattering
phenomenon is not convenient for such systems since
it can lead to low control accuracy, the instability of
the system and permanently damage of the actuators.
In order to counteract this limitation which is related
to the discontinuous terms in the control law, the use
of a smooth approximation can resolve the problem.
However, this solution is not always promising for all
complex nonlinear mechanical systems. Furthermore, the
invariance property of the sliding mode control will
be lost. To attenuate the chattering phenomenon [13],
other effective solutions are proposed based on genetic
algorithms; however, these control methods require a
careful selection of parameters and a large execution
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time. Higher-Order Sliding Mode Control (HOSMC)
based strategies are also developed in the literature to
overcome the above-cited problems and to deal with the
control problems related to UMSs [14] [15] [16].

Among the most effective second-order sliding mode
approaches, Super-Twisting Control has been widely
implemented by researchers, is a second-order SMC, de-
signed to drive both the sliding variable and its derivative
to zero in finite time. It has the main properties of first-
order sliding mode controller with a continuous control
law since the discontinuous term inducing the switching
function is integrated into the control law expression
[17]. It has the benefits of compensating Lipschitz un-
certainties [18] and attenuating the chattering without
eliminating it [19]; however, it requires the knowledge
of the disturbance boundaries which is difficult to be
practically estimated. In this paper, we propose to im-
prove the robustness of the STW controller by including
some knowledge of the input external disturbances in the
considered class I of underactuated systems. To address
the problem of underactuation, the system is transformed
in a strict-feedback form. This conversion represents the
system into cascade interconnection of a linear subsystem
and a nonlinear core subsystem, which makes the control
problem more simplified. To improve the disturbances
rejection of the system, a classical disturbance observer
is proposed to estimate the external input disturbances.
The effectiveness of the proposed disturbance observer-
based STW control is evaluated through its experimental
implementation to stabilize the inertia wheel inverted
pendulum (IWIP) which has commonly served as a
benchmark testbed in many research works [20] [21] [22]
[23].

The rest of the paper is outlined as follows. In Section
II we present a general background on the transformation
of this class in strict-feedback form. In section III,
the dynamic model of the IWIP and an illustration of
the transformation are presented. The proposed STW
controller and the disturbance observer are illustrated in
section IV. Experimental results with a comparative anal-
ysis are displayed in Section V. In the end, conclusion
and future works are presented in section VI.

II. CLASS I OF UNDERACTUATED MECHANICAL
SYSTEMS

Most of real-life UMSs are nonlinear high-order sys-
tems. Due to their different properties, no common and
general control scheme is appropriate for all UMSs. The
main idea is to refer to the classification proposed in
[4] and to use an explicit change of coordinates which
uncouple the original system into a cascade interconnec-
tion of a simple reduced nonlinear and linear subsystems.
The main motivation behind this transformation is the
representation of the system model into other simplified
structure and to makes the control analysis more sim-

plified. The general expression of a dynamical model of
second-order UMS can be represented by

M(q)q̈ + C(q, q̇)q̇ +G(q) = F (q)τ (1)

where τ = [τ1, τ2]
T ∈ Rm is the vector of control

input, M(q) and C(q) denote the inertia matrix and the
matrix of Coriolis and Centrifugal respectively, G(q) and
F (q) = [0, Im]T ∈ Rn×mm < n represent respec-
tively the gravity vector and the non-square matrix of
external forces. The vector of generalized coordinates is
q = (q1, q2) ∈ Rn−m×Rm where the first coordinate q1
is a non-actuated configuration and the second coordinate
q2 is actuated.

Considering the dynamical model of system (1), with
the lack of control input in the first equation[
m11(q) m12(q)
m21(q) m22(q)

] [
q̈1
q̈2

]
+

[
h1(q, q̇)
h2(q, q̇)

]
=

[
0
τ

]
(2)

where m11(q),m12(q),m21(q),m22(q) represent the
components of the inertia matrix and h1(q, q̇), h2(q, q̇)
contain the Coriolis, Centrifugal and gravity terms.

If the following assumption is verified, the system (2)
with two degrees of freedom and only one control input
can be represented into strict-feedback form.

Assumption1: Considering the vector of generalized
coordinates q = (q1, q2), a global change of coordinates
can be defined as follows if the term m−1

11 (q2)m12(q2)
is integrable.

z1 = q1 + γ(q2) (3)
z2 = m11(q2)p1 +m12(q2)p2

ξ1 = q2

ξ2 = p2

where γ(q2) =
∫ q2
0
m

(−1)
11 (θ)m12(θ)dθ and

[z1, z2, ξ1, ξ2]
T represent the new state vector. Using

the explicit change of coordinates, we obtain a new
representation of the system in strict-feedback form
described as follows

ż1 = m−1
11 (ξ1)z2 (4)

ż2 = g1(z1 − γ(ξ1), ξ1) (5)
ξ̇1 = ξ2 (6)
ξ̇2 = u (7)

where g1(q1, q2) = −∂V (q)
∂q1

, V (q) denotes the potential
energy of the system and u is the new control input
from collocated partial feedback linearization. The torque
and the new control terms are related through these
expressions

τ = α(q)u+ β(q, q̇) (8)
α(q) = m22(q)−m21(q)m

−1
11 (q)m12(q) (9)

β(q, q̇) = h2(q, q̇)−m21m
−1
11 (q)h1(q, q̇) (10)

In the next section, the strict-feedback simplified
model is adopted for the representation of the inertia
wheel pendulum system.
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III. THE INERTIA WHEEL INVERTED PENDULUM

The inertia wheel inverted pendulum presented in Fig.
1 was widely considered as an academic system to
implement and study new approaches for the stabilization
control problem [20] [24] [25] or generation of stable
periodic limit cycles [26] [27] [28] [29]. It has two
degrees of freedom and one control input. The pendulum
angle θ1 according to the vertical is unactuated and
the angle between the body and the inertia wheel θ2
is actuated. To stabilize the system, the design of the
control input is required to act on the inertia wheel and to
maintain the unactuated pendulum in its unstable angular
equilibrium position. According to the Euler–Lagrange

θ2

θ1

G

P

o

x
y

z

F+

F−

Fig. 1. Schematic view of the system: the first joint θ1 is unactuated,
while the second θ2 is actuated.

method, the equation of motion of the system is obtained

L =
1

2
(I1θ̇

2
1 + i2(θ̇1 + θ̇2)

2)−m0g cos(θ1) (11)

The dynamic model of the IWIP [30] [22] is presented
as follows[

I + i2 i2
i2 i2

] [
θ̈1
θ̈2

]
−
[
m0g sin(θ1)
0

]
=

[
0
τ

]
(12)

where θ = [θ1, θ2], represents the vector of generalized
coordinates, τ is the torque applied on the wheel. The two
constants I and m0 are expressed by I = ml2+ML2+i1
and m0 = ml +ML. The dynamic parameters of the
IWIP are presented in TABLE I.

TABLE I
SUMMARY OF THE DYNAMIC PARAMETERS OF THE IWIP

Parameter Description Value
i1 Inertia of the pendulum body 0.031468[kg.m2]
i2 Inertia of the Wheel 4.17610−4[kg.m2]
l Body center of mass position 0.06[m]
L Wheel center of mass position 0.044[m]
m Body mass 3.228[kg]
M Wheel mass 0.86422[kg]
g Constant of gravitational acceleration 9.8[m.s−2]

A. Strict-feedback form of the system

The inertia matrix of the system is constant and the ex-
pression m−1

11 (q2)m12(q2) is integrable. The model (12)

of the system verifies the Assumption 1. Therefore, the
resulting strict-feedback system can be obtained through
this new configuration.

z1 =
∂L

∂θ̇1
= (I1 + i2)θ̇1 + i2θ̇2 (13)

z2 = θ1 (14)

z3 = θ̇2 (15)

where Z = [z1, z2, z3] represents the new system states
of the transformed system, θ1, θ̇1, θ̇2 are respectively the
original angular position, the angular velocity of the
pendulum and the angular velocity of the wheel. Using
the new coordinates in (13) (14) and (15) the dynamics
is transformed into a strict-feedback form as follows

ż1 =
∂L

∂θ1
= m0g sin(z2) (16)

ż2 =
z1

I1 + i2
− i2z3
I1 + i2

(17)

ż3 = u (18)

The obtained system is a cascade connection between a
reduced nonlinear subsystem and linear subsystem where
the new coordinate z2 is considered as a virtual control
input of the z1-subsystem described in (16). The stability
of this latter can be verified via Lyapunov stability
analysis. Let a Lyapunov function expressed as.

V (z1) =
z21
2

(19)

then the derivative of the Lyapunov function (19) is
expressed

V̇ (z1) = z1ż1 (20)

If we consider a sigmoidal desired trajectory for the z1-
subsystem and its first derivative expressed by

θ1d = z2d = − arctan(z1) (21)

θ̇1d =
m0g sin(z2)

(1 + (z21))
(22)

we substitute (16) into (20) , then replacing (21) in the
expression, we obtain .

V̇ (z1) = z1m0g sin(z2) (23)
V̇ (z1) = z1m0g sin(− arctan(z1)) (24)

V̇ (z1) = −m0gz1
z1√
1 + z21

(25)

if z1 > 0, then, V̇ (z1) < 0
if z1 = 0, then, V̇ (z1) = 0
if z1 < 0, then, V̇ (z1) < 0
Therefore by the valid Lyapunov function (19) and

the analysis of three cases of z1, the convergence of the
system is verified.
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IV. PROPOSED CONTROL APPROACH

A. Design of the Super-Twisting Controller

The super-twisting sliding mode control is widely used
in nonlinear control systems due to its effectiveness to
solve the problem of the chattering phenomenon and to
hide the high-frequency oscillation. Furthermore, it does
not require information about the boundaries of the dis-
turbance and any information concerning the derivative
of the sliding variable. The proposed continuous STW
control law is described as

u = −k1|σ|
1
2 sign(σ) + w (26)

ẇ = −k2sign(σ) (27)

where σ is the sliding variable, sign denotes the standard
signum function, k1 > 0 and k2 > 0 are positive
constant controller’s gains. It is worth to note, that the
proposed control law (26) cannot stabilize the system if
it is applied directly to the original model (12). Indeed,
the stabilization requires the transformation of the system
in the strict-feedback form to define the sliding variable
with respect to the desired trajectory expressed in (21).
The final control law term is expressed in (8). The
proposed sliding variable required to implement the STW
controller in our case is expressed as

σ = (θ1d − θ1) + α1(θ̇1d − θ̇1) (28)

where θ1d and θ̇1d are the proposed desired trajectory and
its first derivative respectively, α1 is a positive constant
to be selected. In the next section, we propose the use
of a linear disturbance observer (DO) to deal with the
external disturbance rejection of this class of second-
order underactuated mechanical systems.

B. Disturbance Observer

Uncertainties and external disturbances are extremely
inevitable in UMSs. Due to the lack of actuator and the
nonlinear coupling between the coordinates, the system
become more sensitive to uncertainties and small exter-
nal disturbances can conduct to the destabilization and
instability of the system. On this basis, we propose the
use of disturbance observer which is widely employed
as a tool for disturbance rejection especially in the
practice environment. The proposed DO can be easily
implemented in real-time applications to improve the
robustness of the closed-loop system, to compensate the
system uncertainties and to reject the input disturbances.
In our case, we deal with a second-order system, it
is reasonable to use the basic form of a disturbance
observer. Assuming that the model of the IWP can be
represented by

M(q)q̈ +H(q, q̇) = τ + d (29)

where q ∈ R2, q̇ ∈ R2, τ is the control input and d =
[d1, d2]

T ∈ R2 is a vector of disturbance torque which
can be the friction, unmodeled dynamics in independent
joint control or external disturbing torque. The basic idea

is to use the system states and input torque as input and
then to estimate all the unknown external torque imposed
on the system. The expression (29) can be written as

d =M(q)q̈ +H(q, q̇)− τ (30)

The expression of the proposed conventional observer is
described as follow
˙̂
d = −L1(q, q̇)d̂+L1((q, q̇))(M(q)q̈+H(q, q̇)−τ) (31)

where L1(q, q̇) is a diagonal matrix. d is considered to
be an unknown disturbance torque and the measurement
of the velocity and acceleration is provided by numerical
derivation. The observer error is expressed by

e = d− d̂ (32)

Assuming that the disturbance is constant during the
sampling period and there is no prior information about
its derivative, we consider that (ḋ = 0), the resulting
observer error system can be written by

ė+ L1(q, q̇)e = 0 (33)

The system (33) has the form of a linear state space
model Ẋ = AX where A = −L1. If all real parts of the
eigenvalues of A are negative, the system is asymptoti-
cally stable. The global asymptotic stability of (33) can
be verified by the choice of L1(q, q̇) = diag(ϕ,ϕ) is a
diagonal constant positive matrix.

V. EXPERIMENTAL RESULTS

In this section, we will include some experimental
results to validate the performance of the proposed ap-
proach.

Inertia wheel

Pendulum

Inclinometer

Variable frequency

drive

Power supply (12V)

Control PC

Interface card (I/O)

Fig. 2. View of the IWIP experimental testbed

The experiment was conducted on the benchmark of
the inertia wheel inverted pendulum [24] [25] [31] as
shown in Fig. 2. For comparison purposes, as a first
step, we implement only the STW controller then the pro-
posed STW controller combined with a basic disturbance
observer. To compare the effectiveness of both control
schema against disturbance, two punctual disturbances
were applied to the pendulum body. For the standard
STW controller, the external disturbances were applied
at time t = 10s and t = 20.5s. For the proposed scenario,
the disturbances were applied by pushing the pendulum
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Fig. 3. Obtained experimental results (top): Pendulum angular position
versus time, (bottom): pendulum angular velocity versus time.
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Fig. 4. Obtained experimental results (top): velocity of the inertia
wheel versus time, (bottom) the control input (torque) versus time.

at t = 10.5s and t = 21s. The considered scenario was
achieved in the best possible way in order to apply the
same disturbance at approximately the same time. The
parameters of the real benchmark are summarized in
TABLE I. The parameters used for the control scheme
are K1 = 1.2, K2 = 0.15, α1 = 0.1, L1 = diag(5, 5).
The evolution of the system states and the control input
are depicted in Fig. 3.

We can easily conclude through the evolution of pen-
dulum position Fig. 3.(b) and the angular velocities of
the pendulum Fig. 3.(b) and the inertia wheel versus
time Fig. 4.(a), that the convergence of the system state
has been established for both control schema and they
are able to compensate the disturbances. However, more
oscillations are shown in case of the STW controller and
we can observe a faster convergence and better external
disturbance rejection of the proposed approach than the

0 5 10 15 20 25 30

-0.05

0

0.05

0 5 10 15 20 25 30

-1

-0.5

0

0.5

Fig. 5. Obtained experimental results (top): Evolution of the estimated
disturbance d1(t)versus time, (bottom): Evolution of the estimated
disturbance d2(t)versus time

standard STW controller. The evolution of the control
input for both control scheme is depicted in Fig. 4.(b).
The control input signal of the proposed approach is
more smoother with respect to the control input of the
standard STW approach. The evolution of the estimated
disturbances is illustrated in Fig. 5, we can see the effect
of the punctual disturbances applied in the pendulum
body by the two peaks in the evolution of the estimated
disturbances.

VI. CONCLUSION AND FUTURE WORK

In this paper, a disturbance observer based STW
control is proposed for the stabilization of the inertia
wheel inverted pendulum which belongs to the class I
of UMSs. Real-time experiments show the performance
and the effectiveness of the proposed control scheme
and its robustness towards external punctual disturbances.
Our future work will be focused on the extension of
this control approach for more complex and high-order
underactuated mechanical systems.
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