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Abstract—Interconnection and Damping Assignment
Passivity Based Control (IDA-PBC) is a popular control
scheme, for the stabilization of underactuated mechan-
ical systems, formulated in Port-Controlled Hamiltonian
(PCH) structure. However, robustness enhancement of this
control approach towards external disturbances remains
an challenging and an open problem. In this paper, an
experimental comparative study between two different IDA-
PBC approaches is proposed. The first controller is a
nonlinear Proportional Integral IDA-PBC, while the second
one is a model reference adaptive IDA-PBC. To evaluate the
effectiveness of both controllers, various real-time experi-
mental scenarios have been conducted for the stabilization
of the inertia wheel inverted pendulum. For the sake of a
fair comparison, different performance-evaluation criteria
have been proposed to quantify the control performance in
terms of convergence and energy consumption. The results
show a better performance of the nonlinear Proportional
Integral IDA-PBC controller compared to the model refer-
ence adaptive IDA-PBC controller.

Index Terms—Underactuated mechanical system, stabi-
lization, IDA-PBC controller, adaptive control.

I. DEFINITION AND PRELIMINARIES

• We denote an n×n identity matrix by In.
• The set of real numbers (including 0) is denoted R.
• Given an arbitrary matrix G, its transpose is denoted

by GT .
• G⊥ denotes the full rank left annihilator of G where

G⊥G = 0.
• For a vector x ∈ Rn, a matrix A ∈ Rn×n, with A =

AT > 0, |x| is the Euclidean norm as |x|2 = xT x and
the weighted norm is denoted by ‖x‖2

A = xT Ax.
• Given a continuous function H(i, j): Rn → R, the

gradient is denoted by ∇iH := ( ∂H
∂ i )

T .

II. INTRODUCTION

Control of underactuated mechanical systems (UMSs)
is an interesting area of research. Underactuation can be

decided intentionally to decrease the weight and reduce
the cost of design [1]. Furthermore, the control of such
systems may represent a viable control solution in case of
an actuator failure. It would guarantee the good operation
of the system and ensures the continuity of difficult
missions [2]. However, this feature presents a significant
challenge in terms of control point of view, compared
to the case of fully actuated systems. Indeed, underac-
tuated systems with fewer control inputs than degrees
of freedom, are generally nonlinear, often characterized
by a non-minimum phase behaviour and the Lagrangian
dynamics may contain nonholonomic constraints [3] [4].
For these reasons, the control design leads to complex
theoretical problems that cannot be solved using classical
control techniques.

To deal with this issue some researchers refer to repre-
senting the system in Port-Controlled Hamiltonian (PCH)
formulation. Writing a system in a PCH form [5] has the
advantage of covering a large set of physical systems and
providing important structural properties [6]. It provides
the relation between the dynamics and the energy of
the system, the coupling between the non-damping and
damping elements [7]. Another formulation of passiv-
ity based control (PBC), namely the Interconnection
and Damping Assignment-Passivity Based Control (IDA-
PBC) was proposed in [8] to control underactuated PCH
systems. It is a successful control approach in the context
of mechanical systems presented through Euler-Lagrange
formulation. It has been used to control various systems,
e.g. Ball and beam [8], inertia wheel inverted pendulum
[8], power converters [9], induction motor [10], non min-
imum phase chemical reactor [11], flexible Spacecraft
[12], among others. It invokes the principle of energy
shaping and dissipation, where the closed-loop energy
function may obtained through the solution of partial
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differential equations (PDEs) called matching equations.
Many theoretical extensions and practical applications

of this approach have already been reported in literature.
For instance, a theoretical analysis about the presence of
physical damping in open-loop hamiltonian formulation
was conducted in [13]. Two methods namely passivation
by interconnection assignment and passivation by damp-
ing injection were given for the control redesign. These
methods were tested in simulation on the ball and beam
system with Coulomb friction and on the Vertical Take-
off and Landing (VTOL) aircraft.

It is worth to note that, it is a hard task to resolve PDEs
to compute the kinetic and potential energy functions.
Transforming the set of PDEs to a set of ODEs is
a method presented in [14] in order to simplify the
resolution of the partial differential equations associ-
ated to the kinetic energy. This approach is based on
the re-parametrization of the target dynamics and has
been applied to the cart and Furuta pendulums. Via a
parametrization of the closed-loop inertia matrix, another
simplification of the PDE equation, associated to the
potential energy was proposed in [15] and has been
applied to solve a global stabilization design of a rotary
inverted pendulum.

Based on IDA-PBC scheme, several control ap-
proaches were reported in the literature. Taking care of
the actuator torque restriction and to ensure a bounded
control action, a modification of IDA-PBC controller
was proposed in [16] by inclusion of a tangent function
in the control law. A discrete-time design of IDA-PBC
approach was proposed in [17] for separable Hamiltonian
dynamics (i.e Inertia matrix is constant). This approach
was tested for the stabilization of the Inertia Wheel
Inverted Pendulum (IWIP) for different values of the
sampling period.

To deal with the robustness issue of IDA-PBC con-
troller, many solutions were investigated in literature.
The inclusion of Integral control (IC) and PID control
have recently reported in several works. For instance, in
[18] a PID-like controller was proposed for the robus-
tification problem of separable PCH systems. Assum-
ing that the stabilization problem is solved by IDA-
PBC method, the authors introduced an integral action
to solve the robustness issue of fully actuated system.
This approach was extended to control underactuated
mechanical systems where the (IC) was included on the
non-passive output. The main idea was reported in [19],
it consists in adding an integral action on the non-passive
outputs to deal with the problem of constant and matched
disturbances rejection in underactuated mechanical sys-
tems with validation through real-time experiments. A
Model Reference Adaptive Control (MRAC) combined
with IDA-PBC controller was proposed in [20] [6]. The
proposed approach compensates the external disturbances
better than the standard IDA-PBC proposed in [8]. The
efficiency of this approach was demonstrated throught
simulation and real-time experiments for the stabilization

of the Inertia Wheel Inverted Pendulum (IWIP) subject
to matched and unmatched disturbances.

In this paper, we propose a comparative study of two
robust approaches, the nonlinear PI controller developed
in [19] and the Model Reference Adaptive control pro-
posed in [6]. It is worth to note that these controllers
were successfully compared in experiments with respect
to the standard version of IDA-PBC [8].

The main contribution of this work is a comparative
study between two IDA-PBC based controllers. The first
is the PI-IDA-PBC [19] and the second one is the
MRA-IDA-PBC [6]. The study is based on some known
performance-evaluation criteria used to quantify the per-
formance of both controllers in terms of stabilization and
energy consumption. The main focuses of this paper is
that the comparative analysis is done by real-time exper-
iments. Validation is performed in a real underactuated
mechanical system, namely the inertia wheel inverted
pendulum. As a second contribution, different scenarios
were considered in our comparative study, in order to
analyse the performance of both controllers.

The rest of this paper is organized as follows. Section
III presents a briefly review on the two implemented
controllers. Section IV presents the application on the
Inertia Wheel Inverted Pendulum. Section V is devoted
to the experimental results. Conclusion and future work
are addressed in section VI.

III. BACKGROUND ON IDA-PBC BASED
CONTROLLERS

In this section, we consider two advanced control
schemes based on IDA-PBC, proposed in [19] [6]. The
standard IDA-PBC [8] is a well known control method
used for the stabilization of various underactuated me-
chanical systems. Based on Hamiltonian formalism, this
technique is robust against parameter uncertainties. It
combines the passivity properties of (Port-Controlled
Hamiltonian systems) PCHs and control by interconnec-
tion and energy based control [8]. The first method is the
PI-IDA-PBC, it consists in a first extension by adding
an outer-loop PI controller to the original IDA-PBC in
order to improve its robustness [19]. The second one is an
improvement of the IDA-PBC controller by an adaptation
term in order to compensate the errors on the uncertain
parameters [6] [21].

A. Standard IDA-PBC controller

The equations of motion of an underactuated mechani-
cal system can be written in Port-Controlled Hamiltonian
form (PCH) as[

q̇

ṗ

]
=

[
0n×n In

In 0n×n

]
∇H(q, p)+

[
0n×m

G(q)

]
u(1)

y = G(q)T
∇pH (2)

where (q, p) ∈Rn are respectively the generalized posi-
tion and momenta, u ∈ Rm is the control input vector,
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G(q) : Rn → Rn×m is the input matrix with rank(G) =
m < n, y is the output vector and H : Rn×Rn→R is the
total energy. This last one is defined as the sum of the
kinetic and potential energy, expressed as follows

H(q, p) :=
1
2

pT M−1(q)p+V (q) (3)

where M :Rn→Rn×n is a positive definite inertia matrix,
M(q) = M(q)T > 0 and V (q) : Rn → R is the potential
energy. The IDA-PBC control law is expressed as the
sum of two terms, namely

uida = ues(q, p)+udi(q, p) (4)

where the first one is the energy shaping control to assign
the desired equilibrium (q∗,0), found by solving a set of
PDEs equations while the closed-loop system is lossless
[15], for more details the reader can refer to [8].

ues = (GT G)−1GT (∇qH−MdM−1
∇qHd +J2M−1

d p) (5)

where Md ∈ Rn×m is a positive definite desired inertia
matrix, Hd ∈ Rn×n is the desired energy expressed as
Hd(q, p) = 1

2 pT Md(q)
−1 p+Vd(q) and Vd(q) is the de-

sired potential energy verifying the condition to have an
isolated minimum at q∗ defined by

q∗ = argmin(Vd) (6)

J2 is a free tuned parameter which fulfills the skew-
symmetry condition, that is

J2(q, p) =−JT
2 (q, p) (7)

The second term of the control input injects damping to
achieve asymptotic stability via a negative feedback of
the passive output. It is expressed as

udi = (−Kv)GT
∇pHd (8)

where udi ∈ Rm and Kv = KT
v > 0. The desired (closed-

loop) PCH dynamics has a desired equilibrium point at
(q∗,0). It is expressed as(

q̇

ṗ

)
= (Jd(q, p)−Rd(q, p))

(
∇qHd

∇pHd

)
(9)

where Jd(q, p) =−JT
d (q, p) is the interconnection matrix

and Rd =RT
d is the damping matrix. They are respectively

expressed by

Jd =

(
0 M−1Md

−MdM−1 J2

)
(10)

Rd =

(
0 0
0 GKvGT

)
(11)

The closed-loop system in Eq.(9) has a stable equilib-
rium point at (q∗,0) with the Lyapunov function

Hd(q, p) :=
1
2

pT M−1
d (q)p+Vd(q) (12)

where Vd is the desired potential energy verify the
condition (6). The first derivative of (12) is expressed
by

Ḣd(q, p) =−‖GT Md
−1 p‖kp

2 ≤ 0 (13)

B. PI-IDA-PBC controller

The nonlinear PI controller consists in an outer-loop
controller designed in order to solve the problem of con-
stant disturbance rejection for underactuated mechanical
systems. In accordance with the first proposition (Eq.(9)
and Eq.(10)) in [19], the control input is defined as
the sum of the standard IDA-PBC controller Eq.(4) and
mathematical expression of PI controller β (q,ζ ).

upi = uida +β (q,ζ ) (14)

The objective is to design a controller β (q,ζ ) in order
to ensure asymptotic stability of the desired equilibrium
(q∗,ζ ∗).

β (q,ζ ) =−K2KIKT
2 GT M−1

∇Vd−KpKIζ (15)

where Kp > 0, KI > 0 are constant matrices. The dynam-
ics of the controller state ζ∈ Rn is expressed as follows

ζ̇ = KT
2 GT M−1

∇Vd (16)

The expression of the matrix K2 includes the input matrix
G and the desired inertia matrix Md ,

K2 = (GT M−1
d G)−1 (17)

This approach requires some assumptions which are
not satisfied for all kind of underactuated mechanical
systems. For more details about the proof of stability,
the reader can refer to [19].

C. MRA-IDA-PBC controller

Considering that the gains values of the IDA-PBC
control law uida are assumed to be uncertain. The MRA-
IDA-PBC controller is a direct model reference adaptive
controller in which the parameters of IDA-PBC con-
troller are estimated online, in order to ensure better
performances and to deal with matched disturbances. The
control input is given by

uMRA = uida +∆(x, t)ẑ (18)

where uida denotes the IDA-PBC control law expressed
in Eq.(4), ∆(x, t) is a matrix of defined functions, z =
[z1z2...zp]

T presents the vector of unknown parameters
and ẑ denotes the estimate of z with the following
adaptation law

ˆ̇z =−Ka∆(x, t)y (19)

where Ka is chosen as a diagonal positive definite matrix.
The estimation error is then expressed as

z̃ = ẑ− z (20)

The closed-loop system with the error z̃ can be written
as follows
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 q̇

ṗ
˙̃z

=

 0 M−1Md 0

−MdM−1 J2−GkvGT G∆Ka

0 −Ka∆T GT 0


 ∇qH̄

∇pH̄

∇zH̄

(21)

where the hamiltonian H̄ is given by

H̄(q, p, z̃) = Hd(q, p)+
1
2

z̃T K−1
a z̃ (22)

The stability analysis is demonstrated by choosing
H̄(q, p, z̃) as a Lyapunov candidate function [20] [6].

˙̄H = Ḣd +K−1
a z̄ ˙̄z (23)

˙̄H = Ḣd +K−1
a z̄∆

T (x, t)GT
∇pHd (24)

˙̄H = ∇qHd q̇+∇pHd ṗ+K−1
a z̄∆

T (x, t)GT
∇pHd (25)

˙̄H ≤ −α|∇pHT
d G|2 (26)

where α is a positive constant.

IV. APPLICATION: THE INERTIA WHEEL INVERTED
PENDULUM (IWIP)

The inertia wheel inverted pendulum is a well known
nonlinear underactuated mechanical system [22]. It had
attracted the attention of many researchers within the
control community and was considered as a benchmark
experiment to study new nonlinear control methodologies
[23] [24] [25]. In this section, we present the application
of the two approaches based on IDA-PBC described in
the previous section.

A. Description and model transformation

The inertia wheel inverted pendulum is an underactu-
ated mechanical system [26] with two degrees of freedom
and one control input like the rotary inverted pendulum
[27] and cart-pole pendulum [28]. The pendulum angle
θ1 with respect to vertical axis is unactuated. The joint
between the body and the inertia wheel θ2 is actuated.
The main control problems of the IWIP are periodic
trajectory tracking [29], generation of limit cycle [30]
[31] and stabilization where the position in which the
pendulum is pointed upwards corresponds to the unstable
equilibrium point. The dynamic model of IWIP can be
obtained using the Euler-Lagrange method [32] [33] [24].
The equations of motion can be expressed by[

a+ IWC IWC

IWC IWC

][
θ̈1

θ̈2

]
−

[
bgsin(θ1)

0

]
=

[
0
u

]
(27)

where θ = [θ1,θ2]
T , is the vector of generalized po-

sitions, u is the torque generated by the actuator and
acting on the inertia wheel. In the above model, the terms
related to the friction in the pendulum joint are neglected.
a=ML2+IPB and b=ml+ML. The dynamic parameters
of the system are IPC and IPB denote the rotational inertia
of pendulum about pendulum center of mass (PC) and
the rotational inertia of pendulum about its base (PB)
respectively. IWC represents the rotational inertia of the

θ2

θ1

G

P

o

x
y

z

F+

F−

Fig. 1: Schematic view of the inertia wheel inverted
pendulum.

τext

g

Persistent
disturbance

Fig. 2: Illustration of the external disturbance action
applied on the pendulum body during experiments.

wheel about its center of mass (WC). l denotes the
Length from pendulum base (PB) to pendulum center
of mass (PC), the length from pendulum base (PB) to
wheel center of mass (WC) is denoted by L , m and M
are mass of the pendulum and wheel respectively and g
is the constant of gravitational acceleration.

The first step is the transformation in PCH system.
Using the following change of coordinates

q1 = θ1 (28)
q2 = θ1 +θ2 (29)
p1 = aq̇1 (30)
p2 = IWCq̇2 (31)

We obtain the following simplified model with diagonal
inertia matrix.(

a 0
0 IWC

)(
q̈1

q̈2

)
−

(
bgsin(q1)

0

)
=

(
−1
1

)
u

(32)
The obtained model is rewritten through Hamilton’s
equations of motion as

q̇1

q̇2

ṗ1

ṗ2

=


p1
a
p2

IWC

bgsin(q1)−u

u

 (33)

where q = [q1,q2]
T and p = [p1, p2]

T are the general-
ized positions and momenta respectively.
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B. Application of IDA-PBC based controllers

According to [8], the IDA-PBC control law can be
described as

uida = γ1 sinq1 + kp(q2 + γ2q1)+ kvk2(q̇2 + γ2q̇1)(34)
uida = γ1 sinq1 +K1q1 +K2q2 +K3 p1 +K4 p2 (35)

where kp > 0 is a proportional gain, kv > 0 is a damping
injection gain, γ1 > b, γ2 =

aγ1
IWC(γ1−b) and k2 > 0.

K1 = kpγ2 (36)
K2 = k2 (37)

K3 =
kvk2γ2

a
(38)

K4 =
kvk2

IWC
(39)

According to [6], the MRA-IDA-PBC control law can be
described as

uMRA = uida +∆(x, t)ẑ (40)

where

∆(x, t) = [p2, p1]
T

ẑ = [K̂3, K̂4]

The adaptation law is expressed as follows

˙̂z = −Ka∆(x, t)T G(x)T
∆pHd

where Ka is a diagonal positive definite matrix.
The PI-IDA-PBC control law expressed by Eq.(14)-

(17), while considering ∇Vd(q)= [α[cos(q1)−1],0]T and
Md a constant matrix described by

Md =

(
a1 a2

a2 a3

)
(41)

with a1 > 0, a1a3 > a2
2, and the input matrix G is

expressed by G = [−1,1]T . The inertia matrix M chosen
for the (IWIP) is described as

M =

(
a 0
0 IWC

)
(42)

V. REAL-TIME EXPERIMENTAL RESULTS

In this section, we will compare experimentally the
performance of IDA-PBC based controllers described in
section 3. The control design parameters are a = 0.032,
Ka = [0.025,0;0,0.025], IWC = 0.000417, K̂3(0)= 3, γ1 =
6.120, K̂4(0) = 8, K1 = 0.0471, ζ (0) = 0.12, K2 = 0.0005
, KI = 0.18, K3 = 16.4, KP = 3.42, K4 = 3.4,K2 = 1.07,
α = 1.8934.

Real-time experiments have been performed on the
benchmark of the inertia wheel inverted pendulum sys-
tem shown in Fig. 3. The position angle of the pendulum
θ1 with respect to the vertical is measured by an incre-
mental inclinometer FAS-G of micro Strain. The inertia
wheel angular position θ2 is measured by an encoder
integrated to the actuator (Maxon EC-powermax 30 DC
motor) of the system.

Inertia wheel

Pendulum

Inclinometer

Variable frequency

drive

Power supply (12V)

Control PC

Interface card (I/O)

Fig. 3: View of the IWIP experimental testbed

Two experimental scenarios have been performed on
the experimental testbed described above. In the first
scenario, no external disturbances have been considered,
while in this second one, an additional mass is attached
to the body of the pendulum, introducing a persistent
external disturbance acting on the passive joint of the
pendulum.

1) Scenario 1: Stabilization in the Nominal case:
First, we applied the MRA-IDA-PBC controller.
The proposed experiments were started from
the initial condition (q1,q2, p1, p2, K̂3, K̂4)

T =
(0.17,00,0, K̂3(0), K̂4(0))T . Second, we applied the
PI-IDA-PBC controller starting from the configuration
(q1,q2, p1, p2,ζ )

T = (0.17,0,0,0,ζ (0))T .

0 5 10 15 20 25 30
-0.1

0

0.1

0 5 10 15 20 25 30
-1

-0.5

0

0.5

MRA-IDA-PBC PI-IDA-PBC

0 5 10 15 20 25 30

0

100

200

0 5 10 15 20 25 30
-1

0

1

(d)

(c)

(b)

(a)

Fig. 4: Obtained experimental results for scenario 1:
Nominal case. (a): Pendulum angular position, (b): pen-
dulum angular velocity, (c): velocity of the inertia wheel,
(d): The control input.

The obtained results in terms of angular positions and
velocities are depicted in Fig. 4.(a,b,c). It can be clearly
observed that the convergence with PI-IDA-PBC is better
than with MRA-IDA-PBC controller. The evolution of
the control input of the PI-IDA-PBC described in Fig.
4(d) converges faster to a steady state than the one
of the MRA-IDA-PBC controller and presents also less
oscillations.
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0 5 10 15 20 25 30
0

0.5

0 5 10 15 20 25 30

2

2.5

3

0 5 10 15 20 25 30

7

7.5

8

(c)

(b)

(a)

Fig. 5: Obtained experimental results for scenario 1:
Nominal case.(a):The time evolution of ζ , (b): The time
evolution of K̂3, (c): The time evolution of K̂4.

The evolution of estimated gains ζ , K̂3 and K̂4 for
both PI-IDA and MRA-IDA are presented in Fig. 5
respectively. The figures describe the convergence of the
estimated gain and PI parameters to their steady state
values. The phase portrait depicted in Fig. 6, allows us to
visually observe the trajectories of the dynamic system.
Starting from the same initial condition, we can observe
that the shortest path corresponds to the PI-IDA-PBC
controller.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

MRA-IDA-PBC PI-IDA-PBC

Fig. 6: Phase portrait (θ1, θ̇1) for scenario1.

In order to quantify the control performance of each
controller in terms of convergence, let us consider the
following criteria:

The root mean square of the tracking error (RMSE)

RMSE = (
1
N

N

∑
i=1

(eθ1(i))
2)

1
2 (43)

TABLE I: Quantification of the performance through
different evaluation criteria for scenario 1

Criteria Scenario1
MRA-IDA-PBC PI-IDA-PBC

RMSE [rad] 0.0035 0.0012
ISE 0.0098 0.0076
IAE 0.1951 0.1885

ITAE 0.0142 0.0049
Eτ [N.m] 124.6523 89.2769

TABLE II: Quantification of the performance through
different evaluation criteria for scenario 2

Criteria Scenario2
MRA-IDA-PBC PI-IDA-PBC

RMSE [rad] 0.0199 0.0187
ISE 0.0198 0.0171
IAE 0.6656 0.5822

ITAE 0.2228 0.1655
Eτ [N.m] 126.199 112.202

The Integral Square Error (ISE)

ISE =
∫

e2
θ1

dt (44)

Inegral Absolute Error (IAE)

IAE =
∫
|eθ1 |dt (45)

Integral Time-weighted Absolute Error (ITAE)

ITAE =
∫

t|eθ1 |dt (46)

where N is the number of the recorded samples, and
eθ1 denotes the tracking error of the unactuated joint θ1.

To compare the obtained performance in terms of
energy consumption, the following input-torques based
criterion can be

Eτ =
N

∑
i=1
|τθ2(i)| (47)

where τθ2 = u is the torque generated by the actuator and
acting on the inertia wheel.

Based on the proposed performance-evaluation crite-
ria, the obtained results are illustrated in TABLE I. Note
that, the smaller value of performance criteria indicates
the best performance. It can be clearly concluded from
those results that the MRA-IDA-PBC provides satisfac-
tory results, but the PI-IDA-PBC has significantly the
best performance in terms of convergence and energy
consumption.

2) Scenario 2: Persistent external disturbance rejec-
tion: The disturbance illustrated in Fig. 2 is persistent
and applied permanently to the inverted pendulum as an
additional mass attached to the pendulum body. It can be
representing an external force Fdis applied on the inverted
pendulum. This force generate a torque τext around the
pendulum pivot passive joint. In this section, the ability
of the two implemented controllers to reject this external
disturbance is studied.
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The obtained experimental results of the second sce-
nario are displayed in Fig. 7(a ,b ,c). It presents the
evolution of the angular position on the pendulum θ1,
the angular velocity of the pendulum θ̇1 and the velocity
of the inertia wheel θ̇2, versus time. Fig. 7(d) depicts the
evolution of the control inputs. The two controllers reject
the introduced persistent disturbance and keep the system
close to its unstable equilibrium point (θ1, θ̇1) = (0,0).
In the case of PI-IDA-PBC controller, the rotation of
the actuator is permanent and the disturbance does not
significantly affect the evolution of the angular velocity
of the inertia wheel. However, in the case of MRA-
IDA-PBC controller, we can observe the effect of the
persistent disturbance on the behaviour of the angular
velocity of the inertia wheel as a shift in the velocity
curve.

The experimental results and the evaluation based on
the different performance criteria in TABLE II show that
the PI-IDA-PBC ensure a better convergence with respect
to the MRA-IDA-PBC controller.
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Fig. 7: Obtained experimental results for scenario 2:
Persistent disturbance rejection. (a): Pendulum angular
position, (b): Pendulum angular velocity, (c): Velocity of
the inertia wheel, (d): The control input.

The generated control input torques for both con-
trollers are illustrated in Fig. 7(d). Both controllers apply
a DC voltage to the motor, which makes it rotate per-
manently to compensate the disturbing torque and thus
allow the rejection of the external disturbance. Using
the input-torques based criterion summarized in TABLE
II, we conclude that the PI-IDA-PBC is better in terms
of energy consumption as well as tracking performance.
The real-time evolution of the controller state ζ of PI-
IDA-PBC and the parameters of the adaptive controller
(K̂3, K̂4) are displayed in Fig. 8(a, b, c) respectively. We
can observe the convergence of these parameters to their
steady-state values.
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Fig. 8: Obtained experimental results for scenario 2:
Persistent disturbance rejection.(a):The evolution of ζ ,
(b): The evolution of K̂3, (c): The evolution of K̂4

versus time.

VI. CONCLUSION AND FUTURE WORK

This paper presented an experimental comparative
study of the behaviour of two controllers based on IDA-
PBC namely, PI-IDA-PBC and MRA-IDA-PBC con-
trollers. The first one is an adaptive control scheme
combined with the IDA-PBC design methodology. The
second one is a an outer-loop controller added to the
interconnection and damping assignment passivity-based
control. Both controllers were primarily designed to
improve the robustness of the standard IDA-PBC for
underactuated mechanical system.

The comparative study was conducted experimentally
for the case of the inertia wheel inverted pendulum
(IWIP). The objective was to stabilize the inertia wheel
inverted pendulum around its unstable equilibrium point,
and to maintain it in this state despite the presence of
external disturbances. Two experimental scenarios were
considered with implementation issues. The first one
concerned the control of the nominal system without
perturbations, while in the second one, the system was
subject to an external persistent perturbation.

Based on the obtained experimental results and dif-
ferent performance-evaluation criteria, the PI-IDA-PBC
has significant performance in term of convergence and
energy consumption compared to the MRA-IDA-PBC
controller. In future work, various possible extensions of
this work can be investigated. At first, we can combine
the adaptation law with the PI to estimate the propor-
tional and integral gains. Furthermore, discussions can
be investigated about the generalization of this study to
the case of other classes of underactuated mechanical
systems. Finally, an automatic optimal tuning of the
control design parameter of both controllers can also be
investigated.
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