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Generation of walking Motions based on Whole-Body Poses and QP
Control

Raphael Grimm1, Abderrahmane Kheddar2 and Tamim Asfour1

Abstract— Generating and executing whole-body motions for
humanoid robots remains a challenging research question. In
this paper, we present an approach that combines human
motion data and QP-based control to generate humanoid
motion. Following the contacts-before-motion paradigm, we first
generate a sequence of stances based on our previous work
on data-driven generation of whole-body multi-contact pose
sequences from human motion data and their mapping to the
target robot kinematics. In this paper, we address the next
step of closed-loop execution of stance sequences based on
QP controllers. We evaluated the approach in simulation on
the humanoid robot ARMAR-4 and HRP4. The results show
that our approach can successfully execute stance sequences
generated by our previous work and thus the viability of
learning locomotion patterns from human demonstrations.

I. INTRODUCTION

Locomotion in an unstructured environment is an ability
necessary for bipedal humanoid robots to interact with the
environment in a real-world scenario, i.e. in a household or
outdoors. In our previous work [1] we concentrated on the
autonomous detection of end-effector contact opportunities
in unknown environments. We will refer to these opportu-
nities as support affordances in the rest of this paper. In
[2] we followed the contacts-before-motion paradigm [3] of
dividing the generation of locomotion into two sub-steps. The
first sub-step is finding a sequence of stances, which consists
of contact poses between the robot and the environment.
The second sub-step is generating a continuous motion
linking these stances and satisfying dynamic constraints.
We concentrated in [2] on solving the first sub-step using
the data-driven approach of learning a probabilistic n-gram
language model and training it on on human demonstrations
of locomotion. Section III-A explains this approach in more
detail. In [4] we combine both of these approaches and thus
enabling the planning of whole-body multi-contact tasks for
humanoid robots in unknown environments. This provides a
link from the high-level task of perception of the environment
to the lower-level task of generating a sequence of stances.

In this paper, we concentrate on linking our previous
work about generating a sequence of stances to the closed-
loop execution of the sequence using a QP controller. We
take stance sequence generated with [2] and map it to
the kinematic structure of a robot using [5]. To deal with
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Fig. 1: We use our previous work (left) to generate a sequence
of stances. In this paper (right) we post-process this sequence and
execute in closed loop.

the challenges outlined in Section III-B, we apply a post-
processing step to the sequence of stances and use a closed-
loop controller based on Quadratic Programming (QP) to
generate joint level commands to execute the sequence.
Section III-C explains our approach in detail and we evaluate
the proposed approach in Section IV.

The remainder of this paper is structured as follows:
Section II discusses other approaches for generating locomo-
tion motions for robots. Section III provides details on our
previous work [2] and the approach proposed in this paper.
The results of our evaluation are described in Section IV and
Section V concludes the paper and discusses future work.

II. RELATED WORK

Planning motions for locomotion with multiple contacts
has been addressed in the robotics literature by many au-
thors. It is a challenging problem due to the complexity
of the kinematic chains, the dynamic constraints, and the
high dimensionality of the tasks. Some solutions ([6]–[8])
solve the full problem including all the dynamic equations
under contact constraints, despite the involved computational
cost. The second approach is the contacts-before-motion
approach. There is extensive work on solving its first ([9]–
[12]) and second ([13]–[15]) sub-task. There are several
other approaches using machine learning for walking on
bi- or multi-pedal robots. The approaches presented in [16]
and [17] directly generate joint commands for walking. In
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comparison [18] and [19] use learning to optimize param-
eters for a pattern generator to optimize walking speed.
These approaches do not perform any contact planning.
In [20] the authors first learn movement primitives from
optimal generated trajectories and then use these primitives
to generate a close to optimal movement without the need
for a computationally expensive optimization process. In
comparison, this paper uses stances generated by a model
trained on human demonstrations. The approach proposed in
[21] uses an observed walking trajectory and post-process
it for execution. The main difference in comparison to this
work is, they use a whole trajectory and try to reproduce it
instead of a sequence of stances.

Our controller uses Quadratic Programming (QP), which
is a mathematical optimization problem and was successfully
used for many robot control problems in the past ([22]–
[27]). It is well suited to solve the second sub-step of the
contacts-before-motion approach.

III. OUR APPROACH

We generate a sequence of stances using a model trained
on human demonstrations of locomotion as described in our
previous work [2] and convert it to a robot’s Kinematic using
[5]. We apply a post-processing step to the sequence of
stances and use a QP based closed-loop controller to generate
joint velocities used to execute the sequence.

A. From human motion data to whole-body support poses

Beginning with human demonstrations of locomotion [28]
we segment these motions according to the whole-body
pose taxonomy presented in [29]. In [2], we proposed the
approach of training an n-gram model for the transition
probabilities between stances representing poses from our
taxonomy. These stances are extracted from the segmented
human motions. We utilize it to generate a sequence of multi-
contact stances for bipedal robots, thus solving the first sub-
step of the contacts-before-motion approach. The sequences
we generate uses hand contacts to stabilize the motion if
available. When querying for a sequence of stances we use
the distance to be covered and a simplified environmental
model as input. This environmental model consists of support
affordances feasible to support the robot during locomotion.

A stance generated by this approach consists of joint
angles for the whole robot qS ∈ Rn, four booleans
cS(lf), cS(rf), cS(lh), cS(rh) ∈ {1, 0} indicating whether
each of the four end-effectors (left/right-foot/hand) is in con-
tact with the environment and a translation vector tSi

∈ R3

describing the relative translation from the previous stance.

S = {qS , cS(lf), cS(rf), cS(lh), cS(rh), tSi} (1)

Using this representation, we derive further information
which we use in the following steps: By accumulating the
translation vectors up to a stance Si we can determine the
robot’s global pose GPR

Si
at this stance. Using GPR

Si
and

qSi the end-effector poses GP e
Si

(e ∈ {lf, rf, lh, rh}) and
their orientations αx/y/z can be calculated. These enable
us to determine step height hSi

for stances with a single

foot support, step size sSi as the distance between two
consecutive contacts of the same foot and the orthogonal
distance oSi

between both feet.
The stances extracted from human demonstrations are

converted to a specific robot kinematic by using the Master
Motor Map Framework [5].

The approaches for generating the sequence of stances
and converting for a specific robot have some implications:
Generating the stance sequences uses a simplified model
of the environment comprised of affordances instead of
meshes or occupancy grids. Hence slight collisions with the
environment cannot be prevented and have to be considered
in the next step. When converting the stances, differences
between the robot’s kinematic and a human body, i.e. the
robot’s feet may be much larger than a human’s feet, may
cause self-collisions. Furthermore, the algorithm mapping a
human stance to a specific robot tries is optimization based
and tries to minimize the pose error for all end-effectors.
Hence, it makes a trade-off between position and rotation
errors, which can lead to big rotation errors if the position
is hard to reach due to the robot’s kinematic limitations.
Section III-B outlines further challenges encountered during
execution.

B. Challenges when executing the sequence of stances

When using a model trained on human demonstrations
for stance planning, the resulting sequence of stances can
contain challenges interfering with a direct execution. Such
challenges include:

1) The simplified environmental model used during stance
generation may result in collisions with the environ-
ment (i.e. A foot sticks into the ground).

2) The surfaces of environment and robot establishing a
contact are not always parallel aligned.

3) Due to differences in the kinematic structure, the
surfaces supposed to establish a contact do not always
touch. (See Fig. 2(a))

4) Since the sequence of stances is generated using human
demonstrations, the step size sS can be too large for a
robot.

5) For analog reasons, the orthogonal distance between
both feet oS may be too large.

6) This also can result in a too large or unnatural large
step height hS .

7) If the robot’s feet are wide self-collisions between both
feet or a foot and a leg may occur. (See Fig. 2(b))

8) Since the number of poses used in the n-gram model
is limited, contact points between the robot and the
environment can move without the separation of a
contact. This leads to a jumping contact. Formal:

∃ i ∈ N, eef ∈ {lf, rf} :
cSi

(eef), cSi+1
(eef), GP eef

Si
6= GP eef

Si+1
(2)

9) The aforementioned rotation errors of end-effectors
caused by the stance conversion do not reflect the
original end-effector pose, look unnatural and make
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(a) (b)

Fig. 2: Feet highlighted in red are in contact with the environment.
(a) shows an execution impediment where a foot in contact to the
ground is not touching it. (b) shows a self-collision caused by the
differences in body sizes. The big and small image shows the same
stance sequence for HRP-4 and ARMAR-4 respectively. HRP-4 has
a self-collision while ARMAR-4 has no self-collision.

Algorithm 1: Stance sequence post-processing
Input: Sequence of stances: SSeq;

Sequence Scaling Factor : scf ;
Maximal step size : smax;
Orthogonal foot distance limits:
oSmin

, oSmax
;

Swing foot rotation limit: αx, αy, αz;
Swing foot height limit: hmin, hmax;

Output: Post-processed sequence of stances: SSeqPP

1 SSeqPP ← SSeq

2 moveStancesUp(SSeqPP )
3 unifyContacts(SSeqPP )
4 contactFeetParallelToGroundSurface(SSeqPP )
5 contactFeetToSurfaceElevation(SSeqPP )
6 limitSwingFootRotation(SSeqPP , αx, αy, αz)
7 scaleTranslation(SSeqPP , scf)
8 limitToMaxStepSize(SSeqPP , smax)
9 limitOrthogonalFeetDistance(SSeqPP , oSmin

, oSmax
)

10 limitSwingFootHeight(SSeqPP , hmin, hmax)
11 return SSeqPP

generating a continuous motion hard due to kinematic
constraints.

Some of these challenges, i.e. too large step sizes, are
amplified if the sequence of stances should be executed in
a statically stable manner since the human motions used for
training are only dynamically stable.

C. From whole-body support poses to continuous motion

After generating a sequence of stances using [2], we
generate a continuous trajectory for the robot. We do this
by first post-processing the sequence in order to mitigate the
aforementioned challenges and then executing the sequence
in a closed-loop QP controller generating joint velocities for
each time step.

1) Post-Processing: Post-Processing is done by applying
Algorithm 1 to the sequence of stances.

First, all stances are translated along the z-axis until the
lower foot in contact is at the elevation for the ground
support. Then we remove jumping contacts. This can be done
by either selecting one of the contact poses or interpolating
multiple of these poses. This paper uses the first contact
pose. After this, contact poses are oriented such that they are
parallel to the environmental contact surface. This is done by
transforming the contact into the frame of the environmental
surface and setting the contact’s roll and pitch to zero. In
stances with a double foot support, one foot still could be
above the ground surface. Hence, all contacts are set to
the z-value of the environmental surface with which they
are supposed to be in contact. In combination with prior
steps, this step prevents the robot from intersecting with
the supporting plane. Then the swing foot’s orientation is
limited to prevent unnatural orientations of the foot. This is
done by clamping the rotation around each axis in an interval[
+αx/y/z,−αx/y/z

]
.

Too large step sizes are resolved using two transformations.
The first transformation is scaling translations along the path
the robot walks with a factor scf . The second transformation
is reducing the step sizes of all steps that are too large
after scaling. Only using the second transformation would
suffice to make the step size feasible for the robot but would
create many steps of the same length if all steps in the
input sequence are too large. The first transformation is able
to keep this characteristic of smaller and larger steps. It
also allows us to estimate the length of the post-processed
sequence. Hence we can generate a sequence of stances
SSeqScaled of length lscaled = l

scf when we want to cover
the distance l. When generating SSeqScaled of length lscaled
the availability of support affordances can be erroneous. To
counter this, we also scale the availability of affordances
along the path the robot has to cover. If some affordance
(e.g.: hand contacts to a railing) is only available for a part
of distance supposed to be covered (e.g.: for the first meter)
and the scaling factor scf is 0.5, we use two meters when
generating SSeqScaled.

To prevent collisions between the robot’s feet and deal
with stances where the orthogonal distance between both
oS feet is too large, a minimal oSmin

and maximal oSmax

orthogonal distance are introduced and both feet are moved
to respect these limits. This also removes any interlocking
of the feet visible in a normal human gait. A more com-
plex approach retaining this interlocking can perform self-
collision checks and only move the feet further apart when
they are in collision. This paper uses the first method since
the implemented controller cannot handle an interlocking
gait.
In the last transformation, the swing foot height above the
ground is clamped to an interval [hmin, hmax]. The minimal
height hmin prevents collisions to the ground and can be
used to get a safety distance to prevent collisions in case
of inaccurate execution. The maximal height hmax prevents
unnatural high positions of the swing foot (impediment 6).
Algorithm 1 and Fig. 3 show a rough outline of the post-
processing as well as intermediate results.

512



(a) after executing line 2 of Algorithm 1: The sequence contains some jumping contacts (see red circle).

(b) after executing line 3 of Algorithm 1: Contacts now are static, but the rotation of swing and support feet are erroneous (see red circle)

(c) after executing line 6 of Algorithm 1: Most steps are too large to execute in a statically stable fashion. (see red arrow)

(d) after executing line 8 of Algorithm 1: Some steps are still larger than
smax. (see red arrow)

(e) The result of Algorithm 1

Fig. 3: Intermediate results of post-processing a sequence of stances with Algorithm 1. End-effector poses for the left (green) and right
(blue) foot have a red border if they are used to form a contact to the ground. Examples for remaining execution impediments are
highlighted in the images. The initial sequence is not visualized since it is completely under the floor plane.

Now all of the robot’s contact surfaces are aligned to the
ground, the swing foot has a sane orientation and height, all
steps have a feasible size and the feet do not collide.

The joint configurations accompanying each stance are not
changed. They are used as a reference configuration during
execution by the controller. In our current implementation,
the hands are moved by the reference configuration.

2) Closed-Loop QP controller: To generate a continuous
trajectory we use a closed-loop QP controller. A QP is
a mathematical optimization problem, which can be used
to calculate set-points for all actuators of a robot while
following a set of weighted tasks. The basic optimization
problem is formulated as follows:

χ∗ = argmin{1
2
∗ χT ∗Q ∗ χ+ cT ∗ χ} (3)

subject to :Aχ ≤ b (4)
c, χ, χ∗ ∈ Rn, Q ∈ Rnxn, A ∈ Rmxn, b ∈ Rm

The formulation we use for the QP follows [26] and uses
set-point-tasks for the position of the Center-of-Mass (CoM),
joint angles and end-effector poses. For more details on the
formulation we refer to [26] since explaining it in detail is
beyond the focus of this paper.

Our controller is only able to execute statically stable
motions on a flat surface. It uses QP for joint level control

and a simple state machine for progressing through the
stance sequence. The control loop is closed on joint angles
and force-torque (FT) sensors in the robot’s ankles. Joint
angles are fed back into the QP. We use ankle forces for
contact detection, which, in combination with the robot’s
configuration, drive progression through the state-machine.
The joint velocities we calculate by solving the QP, are used
as control variables, and sent to the simulator.

The contact poses are used as targets for the end-effector
set-point-tasks. The joint angles accompanying each stance
are used as set-point for the joint angle task. This task has a
low weight and is oversteered by end-effector tasks. Hence,
it primarily moves the upper body. The CoM task uses the
support foot’s position as the target and is only active for the
x- and y-axis.

IV. EVALUATION

Evaluation is done by executing post-processed stance
sequences with physic simulations of ARMAR-4 and HRP-4
using the controller described in the previous section. The
simulations use Bullet [30].

For evaluation we first take a look at the time required to
post-process a sequence of stances depending on the distance
we want to cover. Table I shows the time required is less
than 150 µs per meter if a distance of at least 5m has to be
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TABLE I: Mean and coefficient of variance (CV) for the time
T required for post-processing a sequence of stances to cover a
requested length. The time per meter gives a more comparable
measure. Post-processing was executed 1000 times for each length.

Length [m] Mean(T) [µs] CV(T) [µs] Mean(T)/Length [µs/m]

0.2 153 0.19 764
1.0 244 0.17 244
5.0 674 0.11 135

10.0 1185 0.07 119
15.0 1672 0.08 111
20.0 2187 0.08 109
25.0 2681 0.09 107
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Fig. 4: Differences of the length of the post-processed stance
sequence depending in proportion to requested distance to cover
dRequest. When dRequest increases the proportion decreases.

covered and post-processing requires only a few milliseconds
for 25m. Thus post-processing is fast enough for online use.

A generated stance sequence does not always cover exactly
the requested distance dRequest. Furthermore post-processing
can change the distance by limiting the step size sS which is
not considered when generating the sequence. Fig. 4 shows
this difference as portion of dRequest. The sawtooth pattern is
generated because generating a sequence of stances only adds
a discrete number of steps of a certain size. If the distance
to cover increases, the difference as the portion of dRequest

approaches zero.
We generated stance sequence with three different sets of

available support affordances (1. Only feet, 2. Feet and left
hand, 3. Feet and right hand). Since our controller does not
use the hand contacts, both hands are only controlled by the
set-point task for joint angles. Hence, the different sets of
affordances only caused a change in the sequence of feet
contacts.

Each sequence was executed ten times for each robot.
Since generating the sequence of stances and post-process
are deterministic, the resulting stance sequence is always
identical for the same set of affordances. The controller
and simulator are running asynchronously which is a slight
source of non-determinism. This non-determinism only has
a negligible influence and all runs of each setup were nearly
identical.

(a) (b)

Fig. 5: Execution of a post-processed sequence of stances only
allowing foot contacts on (a) ARMAR-4 and (b) HRP-4.

For both robots and the three sets of affordances, all execu-
tions were successful meaning the robot executed the whole
sequence without toppling over or getting stuck because
some step is too large. The execution of walking without any
hand contacts for ARMAR-4 and HRP-4 is shown in Fig. 5.
Fig. 6 shows the target (red line), the position in the simulator
(green line) and the position in the controller’s internal QP-
State (blue) after the solver was executed for the CoM and
both feet. In Fig. 6 we can see that the QP-Controller is
able to follow the target. The increasing difference between
the simulation and QP-State are caused by inaccuracies in
the simulators calculation resulting in a drift of the robot.
The inaccuracies between target and QP-State are caused
by the controller’s implementation. The slight differences
(i.e. for the CoM) are partially caused by different set-point
tasks competing with each other. Furthermore, the controller
always uses the current target as set-point which allows the
controller to deviate from the path as long as it reaches
the target. In addition, our controller has tolerances for all
targets, which allows it to transition to the next stance as
long as it is close enough to the target. We do this since it
speeds up execution.

V. CONCLUSION

In this paper, we showed how a sequence of stances
containing execution impediments can be post-processed
and used to generate a continuous walking motion. In the
previous section, we discussed how this post-processing has
to be changed to apply it to more complex scenarios. There
are several areas for extending this work in the future.
On the post-processing side, we want to deal with more
complex scenes and include environmental obstacles as well
as elevations like ramps and stairs. We want to incorporate
hand contacts as discussed in the previous section. On the
controller side, we want to execute the motion on a real robot
in a dynamically stable fashion.

ACKNOWLEDGMENTS

We would like to thank Stéphane Caron, Vincent Samy,
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Fig. 6: Execution of a post-processed sequence of stances only allowing foot contacts on (a) ARMAR-4 and (b) HRP-4. Both robots
execute the same sequence. The distance to cover is one meter for HRP-4. The motion is in direction of the y-axis. The top line and
bottom lines are respectively for the left and right foot while the middle lines show the CoM position.

REFERENCES

[1] P. Kaiser, E. E. Aksoy, M. Grotz, and T. Asfour, “Towards a hierarchy
of loco-manipulation affordances,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Deajeon, Korea, 2016,
pp. 2839–2846.
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