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This paper deals with the impact of the design parameters on the static workspace and the stiffness range of a planar 3-DoF tensegrity mechanism. The static model is established through the energetic approach and the stiffness is derived analytically along the 3-DoF of the mechanism. The design parameters considered here are the spring stiffness and the location of the mechanism attachment points to the base. Results on the impact of these parameters are finally analyzed. This analysis constitutes a first step towards the geometric optimization of tensegrity mechanisms.

Introduction

The term tensegrity was created by Richard B. Fuller as a union of 'tensional' and 'integrity' [START_REF]Synergetics, explorations in the geometry of thinking[END_REF]. A tensegrity structure is formed entirely by a combination of rigid and flexible elements. Its configuration stands by itself and maintains its form solely because its structural members (struts) are suspended in a network of tensional elements (cables or springs) [START_REF]Tensegrity Structures Form, Stability and Symmetry[END_REF]. Tensegrity structures are characterized by being light, deployable and of variable stiffness [START_REF] Azadi | Variable stiffness spring using tensegrity prisms[END_REF]. Working with these structures has been of interest for engineers and researchers since tensegrity applications range from mobile robotics [START_REF] Friesen | Ductt: a tensegrity robot for exploring duct systems[END_REF], manipulators [START_REF] Furet | Prototype of a tensegrity manipulator to mimic bird necks[END_REF][START_REF] Lessardand | A bio-inspired tensegrity manipulator with multi-dof, structurally compliant joints[END_REF] and robots in medical applications [START_REF] Boehler | Experiments on a variable stiffness tensegrity mechanism for an mr-compatible needle holder[END_REF].

Developing mathematical models (a kinematic one, for instance) for tensegrity mechanisms is challenging [START_REF] Henrickson | Shape control of tensegrity structures[END_REF][START_REF] Ji | Kinematics, singularity, and workspaces of a planar 4-bar tensegrity mechanism[END_REF][START_REF] Wenger | Kinetostatic analysis and solution classification of a planar tensegrity mechanism[END_REF] and requires to know the extension of flexible elements at all time so as to establish a relationship between the joint and the cartesian variables. If the measurement of these extensions is not available, static modeling is considered. Several methods have been proposed in the literature to determine the equilibrium configurations of tensegrity mechanisms [START_REF] Furet | Kinetostatic analysis and actuation strategy of a planar tensegrity 2-x manipulator[END_REF][START_REF] Manríquez-Padilla | Form-finding analysis of a class 2 tensegrity robot[END_REF]. Static workspace computation, using a continuous approach, has been proposed by [START_REF] Boehler | Definition and computation of tensegrity mechanism workspace[END_REF] for a 2-DoF tensegrity mechanism.

For the tensegrity mechanism reported in this paper, a potential energy approach is considered in order to determine stable equilibrium configurations based on the stiffness analysis. This paper is an attempt to understand the influence of one geometric parameter on static workspace and the stiffness range. The geometric parameter under observation concerns the mechanism attachment points. This analysis constitutes the first step towards the geometric optimization of tensegrity mechanisms.

This paper is organized as follow. The 3-DoF planar tensegrity mechanism is described in section 2. The respective static and stiffness models are presented in subsection 2.1. These models are synthesized using an energetic approach. The computation of the static workspace and stiffness range are presented in subsection 2.2. The impact of the design parameters on the static workspace and the stiffness range is finally discussed in section 3. Skelton [17], this mechanism is a class-1 tensegrity system. The actuators are connected to the bar, of length 2b, using cables and springs. The springs are considered here identical of stiffnesses k. The cables, attached to the bar on p 1 , are enrolled on pulleys fixed on A 1 and A 2 and are connected to springs before being enrolled on pulleys mounted on the actuators 1 and 2. The other two cables, attached to p 2 , are enrolled on pulleys fixed on A 3 and A 4 and are enrolled on pulleys mounted on the actuators 3 and 4. 

Mechanism Description

p i = P + R m m p i (1) 
with

R m = cos θ -sin θ sin θ cos θ Let's define 1 = a 1 -p 1 , 2 = a 2 -p 1 , 3 = a 3 -p 2 and 4 = a 4 -p 2
as the distances between the bar's attachment points and the different nodes.

The system initial configuration is defined when the position of the bar's center of mass coincides with the origin of the inertial reference frame and θ = 0. Initial tensions in the cables/springs have minima values. Initial lengths are determined according to equation 2.

0g = 0(g+1) = √ a 2 + b 2 g=1
for cables 1 and 2 (na) 2 + b 2 g=3 for cables 3 and 4

(2)

Due to the presence of springs and in order to determine the static configuration of the mechanism, an energetic approach is considered. It means that the first and second derivatives of the potential energy of the system U are used to establish the stable static equilibrium points. Equation 3 defines the total potential energy.

U = 4 ∑ h=1 1 2 ke 2 h ( 3 
)
where e h is the elongation of the spring h that can be computed as in equation 4.

e h = ρ h + h -0h for h=1,2,3,4 (4) 
with ρ h being the displacement of the cable h. It is computed as ρ h = rα h , where r is the radius of the actuator's pulley and α h is the angular position of the actuator h.

The static equilibrium of the bar is obtained by, simultaneously, solving the equations 5.

∂U ∂ x = 0, ∂U ∂ y = 0, ∂U ∂ θ = 0 (5) 
A stable equilibrium configuration must satisfy inequalities in equation 6.

∂ 2 U ∂ x 2 > 0, ∂ 2 U ∂ y 2 > 0, ∂ 2 U ∂ θ 2 > 0 (6)

Characterization of the Static workspace and the Stiffness range

The static workspace of a tensegrity system is defined as the set of all stable equilibrium configurations that its end-effector is able to reach [START_REF] Boehler | Definition and computation of tensegrity mechanism workspace[END_REF], while taking into account the unilateral nature of the cables, i.e. The tensions in all the cables must remain positive.

Each point in the workspace has a minimum and maximum stiffness value. The range of stiffness for each point is computed by subtracting the maximum and the minimum stiffness values. In order to analyze the static workspace as well as the stiffness range of a tensegrity mechanism, as a function of design parameters, the tensions limits are considered identical in all the study.

The static equilibrium of the mechanism can be expressed in a similar way as for cable-driven parallel manipulators [START_REF] Gagliardini | Determination of a dynamic feasible workspace for cable-driven parallel robots[END_REF][START_REF] Gouttefarde | Wrench-feasible workspace of parallel cable-driven mechanisms[END_REF] in accordance with equation 7

Wτ = f (7) 
where W represents a 3 × 4 wrench matrix that depends on the mechanism position P and its orientation θ . The tensions in the cables are identified by vector τ = [τ 1 , τ 2 , τ 3 , τ 4 ] T . The vector f represents the wrench applied to the mechanism by means of the cables tensions. The wrench matrix W is computed by Equation 8.

W = u 1 u 2 u 3 u 4 p 1 × u 1 p 1 × u 2 p 2 × u 3 p 2 × u 4 (8)
where u h represents the unit vector. Its direction is defined as the cable direction (cf. Fig 1). The tension in the cables must remain in between a minimum and a maximum values, respectively τ min and τ max . The stiffness range for a given stable equilibrium configuration is computed by varying the tensions in the cables without affecting the position and orientation of the mechanism. These tensions are computed as:

τ = W + f + Hλ (9) 
where W W W + is the Moore-Penrose generalized inverse of W [START_REF] Roberts | On the inverse kinematics, statics, and fault tolerance of cable-suspended robots[END_REF]. H is a vector of dimension 4 × 1 whose column span the null space of W. λ is an arbitrary scalar. To keep a stable equilibrium configuration, the wrench f is considered equal to a null vector. The bounds of λ can be obtained by solving the inequality 10.

τ min ≤ Hλ ≤ τ max (10) 
The bounds λ min and λ max allowing to compute two vector tensions solutions that enable to keep the equilibrium:

τ min = Hλ min τ max = Hλ max (11) 
Using the vectors τ min and τ max , one can compute the minimum and maximum springs elongations. Solving the equation 4, can be calculated ρ min and ρ max both are vectors that contain the set of minimum and maximum displacements for each actuators. Now the minimum and maximum stiffness are computed using the equation 12 at a given pose of the mechanism (P, θ ) considering ρ min and ρ max .

K min x = ∂ 2 U(P, θ , ρ min ) ∂ x 2 , K min y = ∂ 2 U(P, θ , ρ min ) ∂ y 2 , K min θ = ∂ 2 U(P, θ , ρ min ) ∂ θ 2 K max x = ∂ 2 U(P, θ , ρ max ) ∂ x 2 , K max y = ∂ 2 U(P, θ , ρ max ) ∂ y 2 , K max θ = ∂ 2 U(P, θ , ρ max ) ∂ θ 2 (12)
3 Discussion of the results

This section show the estimation of the static workspace and stiffness range. The static workspace of the system describes the pose of the end-effector in the x,y coordinates and the orientation along z axis. The parameters of the mechanism that are used were: a = 0.1m, b = 0.1m, τ h ∈ [4, 10]N and ρ h ∈ 4 k , 10 k m.

The Fig. 2 shows the relationship between the size of the workspace and the spring stiffness values k. The first column shows the static workspace of the mechanism with n = 1 and k = 270 N/m and the second column shows the static workspace when n = 1 and k = 80 N/m. The black dots represent the end-effector in a stable equilibrium configuration that the mechanism can reach, the red line shows the mechanism's boundary of static workspace with k = 270 N/m. In the second column the green line shows the boundary of static workspace with k = 80 N/m and the red line is superimposed to highlight how the workspace is affected in relationship with the modification of the stiffness springs, noting that the value of k is inversely proportional to the static workspace. In order to analysis the influence of the geometrical parameters on the static workspace and stiffness range, here is presented the results when n = 1 (Fig. 1), n = 0.5 (Fig. 3a) and n = 0.1 (Fig. 3b). These variation of n causes that the symmetry in the y-axis be lost because the nodes A 3 , A 4 reducing the distance between them. The Fig. 4 illustrates the static workspace for the mechanism when n = 1, 0.5 and 0.1. The workspace for n = 1 has ranges from x ∈ (-0.2, 0.2)m, y ∈ (-0.2, 0.2)m and θ ∈ (-1.5, 1.5)rad. The shape is modified throughout the changes of n, this changes are described by the projections on the planes xy, yθ , xθ . The black dots represent the center of mass in a stable equilibrium configuration that the mechanism can reach, the red line shows the mechanism's boundary of static workspace with n = 1 and the green line shows the boundary of static workspace for n = 0.5 and n = 0.1 respectively. As the Fig. 4 pictures the workspace in xy is decreased as n decreases and is shifted to the other side where the attachment points joint. However for the workspace xθ who is showed in row 2 increases as n decreases. The largest workspace in the plane yθ is in the configuration with n = 0.5. The analysis of the stiffness range is shown below. The Fig. 5 shows the stiffness range for K x , the Fig. 6 shows the stiffness range for K y and the Fig. 7 shows the stiffness range for K θ . The workspace is depicted as a volume. In order to observe the behavior of stiffness, it has been discretized in layers. The first column of each figure represents the minimum stiffness and the second column shows the stiffness range, each point in the workspace has a color according to its value. The black line represents the boundary of the workspace with n = 1 and it is superimposed on all the graphs to show how the workspace changes. This tensegrity mechanism could be used as a puncture assistance robot [START_REF] Boehler | Experiments on a variable stiffness tensegrity mechanism for an mr-compatible needle holder[END_REF][START_REF] Bricault | Light puncture robot for ct and mri interventions[END_REF] because it allows stiffness modulation. The procedure requires that the effector has to be rigid when a needle is inserted in the body and in other moment it has to be soft allowing to follow the physiological movements such as breath.

To illustrate the application of the computation of the figures 5, 6 and 7, two desired stiffness ranges are selected according to a specific application: K x ≥ 30 N/m and K y ≥ 75 N/m. The Fig. 8 illustrates the workspace that satisfies the desired stiffness range, the first row shows K x with n = 1, 0.5 and 0.1 and the second row shows the workspace for K y desired with n = 1, 0.5 and 0.1. The workspace for the range K x is greater with n = 0.5 since it allows reach higher orientation values. The same behavior happens in the workspace for the range K y but the increase is more notorious in the mobility orientation with n = 0.5. Concluding that the biggest workspace that satisfies the design conditions for the application is with the geometrical parameter n = 0.5. 

Conclusion

This paper shows the influence of the design parameters on the static workspace as well as in the stiffness range of a 3-DoF planar tensegrity mechanism. An extension of the approach analysis can be applied for tensegrity mechanism with more degrees of freedom. The analysis will help to design a geometric optimization approach that allows to define the location of the attachment points and to select the adequate springs in order to satisfy a required static workspace with a desired stiffness range.
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 1 Fig 1 shows a 1-bar planar tensegrity mechanism driven by 4 actuators. According to the classification proposed bySkelton [17], this mechanism is a class-1 tensegrity system. The actuators are connected to the bar, of length 2b, using cables and springs. The springs are considered here identical of stiffnesses k. The cables, attached to the bar on p 1 , are enrolled on pulleys fixed on A 1 and A 2 and are connected to springs before being enrolled on pulleys mounted on the actuators 1 and 2. The other two cables, attached to p 2 , are enrolled on pulleys fixed on A 3 and A 4 and are enrolled on pulleys mounted on the actuators 3 and 4.
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