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Design parameters influence on the static
workspace and the stiffness range of a tensegrity
mechanism

G. M. Cruz-Martinez1, J-C Avila Vilchis2, A. Vilchis Gonzalez2, S. Abdelaziz1

and P. Poignet1

Abstract This paper deals with the impact of the design parameters on the static
workspace and the stiffness range of a planar 3-DoF tensegrity mechanism. The
static model is established through the energetic approach and the stiffness is de-
rived analytically along the 3-DoF of the mechanism. The design parameters con-
sidered here are the spring stiffness and the location of the mechanism attachment
points to the base. Results on the impact of these parameters are finally analyzed.
This analysis constitutes a first step towards the geometric optimization of tensegrity
mechanisms.
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1 Introduction

The term tensegrity was created by Richard B. Fuller as a union of ‘tensional’ and
‘integrity’ [6]. A tensegrity structure is formed entirely by a combination of rigid
and flexible elements. Its configuration stands by itself and maintains its form solely
because its structural members (struts) are suspended in a network of tensional ele-
ments (cables or springs) [13]. Tensegrity structures are characterized by being light,
deployable and of variable stiffness [1]. Working with these structures has been of
interest for engineers and researchers since tensegrity applications range from mo-
bile robotics [5], manipulators [7, 14] and robots in medical applications [3].

Developing mathematical models (a kinematic one, for instance) for tensegrity
mechanisms is challenging [11, 12, 18] and requires to know the extension of flex-
ible elements at all time so as to establish a relationship between the joint and the
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cartesian variables. If the measurement of these extensions is not available, static
modeling is considered. Several methods have been proposed in the literature to
determine the equilibrium configurations of tensegrity mechanisms [8, 15]. Static
workspace computation, using a continuous approach, has been proposed by [2] for
a 2-DoF tensegrity mechanism.

For the tensegrity mechanism reported in this paper, a potential energy approach
is considered in order to determine stable equilibrium configurations based on the
stiffness analysis. This paper is an attempt to understand the influence of one geo-
metric parameter on static workspace and the stiffness range. The geometric param-
eter under observation concerns the mechanism attachment points. This analysis
constitutes the first step towards the geometric optimization of tensegrity mecha-
nisms.

This paper is organized as follow. The 3-DoF planar tensegrity mechanism is
described in section 2. The respective static and stiffness models are presented in
subsection 2.1. These models are synthesized using an energetic approach. The com-
putation of the static workspace and stiffness range are presented in subsection 2.2.
The impact of the design parameters on the static workspace and the stiffness range
is finally discussed in section 3.

2 Mechanism Description

Fig 1 shows a 1-bar planar tensegrity mechanism driven by 4 actuators. According
to the classification proposed by Skelton [17], this mechanism is a class-1 tenseg-
rity system. The actuators are connected to the bar, of length 2b, using cables and
springs. The springs are considered here identical of stiffnesses k. The cables, at-
tached to the bar on p1, are enrolled on pulleys fixed on A1 and A2 and are connected
to springs before being enrolled on pulleys mounted on the actuators 1 and 2. The
other two cables, attached to p2, are enrolled on pulleys fixed on A3 and A4 and are
enrolled on pulleys mounted on the actuators 3 and 4.
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Fig. 1 Planar tensegrity mechanism

2.1 Problem formulation

As depicted in Fig. 1, the position of the center of mass P of the bar is de-
fined by P = [x, y]T in the reference frame R0 = (O,x0,y0). A mobile frame
Rm = (Om,xm,ym), is attached to the bar’s center of mass. The angle θ defines the
bar’s orientation. The coordinates of four attachment points A1,A2,A3 and A4 are
defined, respectively, with respect to the inertial reference frame by position vectors
a1 = [0,−a]T ,a2 = [0,a]T ,a3 = [0,na]T ,a4 = [0,−na]T , with n-factor allowing
to change locations of attachment points A3 and A4 where 0.1≤ n < 1.

The coordinates of nodes p1 and p2 are defined with respect to the mobile frame
Rm = (Om,xm,ym) by vectors mp1 = [−b,0]T ,m p2 = [b,0]T while with respect to
the inertial frame R0 = (O,x0,y0) their coordinates are defined by equation 1 with
i = 1,2.

pi = P+Rm
mpi (1)

with Rm =

(
cosθ −sinθ

sinθ cosθ

)
Let’s define `1 = ‖a1−p1‖, `2 = ‖a2−p1‖, `3 = ‖a3−p2‖ and `4 = ‖a4−p2‖

as the distances between the bar’s attachment points and the different nodes.
The system initial configuration is defined when the position of the bar’s center

of mass coincides with the origin of the inertial reference frame and θ = 0. Initial
tensions in the cables/springs have minima values. Initial lengths are determined
according to equation 2.

`0g = `0(g+1) =

{√
a2 +b2 g=1 for cables 1 and 2√
(na)2 +b2 g=3 for cables 3 and 4

(2)
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Due to the presence of springs and in order to determine the static configuration
of the mechanism, an energetic approach is considered. It means that the first and
second derivatives of the potential energy of the system U are used to establish the
stable static equilibrium points. Equation 3 defines the total potential energy.

U =
4

∑
h=1

1
2

ke2
h (3)

where eh is the elongation of the spring h that can be computed as in equation 4.

eh = ρh + `h− `0h for h=1,2,3,4 (4)

with ρh being the displacement of the cable h. It is computed as ρh = rαh, where
r is the radius of the actuator’s pulley and αh is the angular position of the actuator h.

The static equilibrium of the bar is obtained by, simultaneously, solving the equa-
tions 5.

∂U
∂x

= 0,
∂U
∂y

= 0,
∂U
∂θ

= 0 (5)

A stable equilibrium configuration must satisfy inequalities in equation 6.

∂ 2U
∂x2 > 0,

∂ 2U
∂y2 > 0,

∂ 2U
∂θ 2 > 0 (6)

2.2 Characterization of the Static workspace and the Stiffness
range

The static workspace of a tensegrity system is defined as the set of all stable equi-
librium configurations that its end-effector is able to reach [2], while taking into
account the unilateral nature of the cables, i.e. The tensions in all the cables must
remain positive.

Each point in the workspace has a minimum and maximum stiffness value. The
range of stiffness for each point is computed by subtracting the maximum and the
minimum stiffness values. In order to analyze the static workspace as well as the
stiffness range of a tensegrity mechanism, as a function of design parameters, the
tensions limits are considered identical in all the study.

The static equilibrium of the mechanism can be expressed in a similar way as for
cable-driven parallel manipulators [9, 10] in accordance with equation 7

Wτ = f (7)

where W represents a 3× 4 wrench matrix that depends on the mechanism po-
sition P and its orientation θ . The tensions in the cables are identified by vector
τ = [τ1,τ2,τ3,τ4]

T . The vector f represents the wrench applied to the mechanism by
means of the cables tensions. The wrench matrix W is computed by Equation 8.
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W =

[
u1 u2 u3 u4

p1×u1 p1×u2 p2×u3 p2×u4

]
(8)

where uh represents the unit vector. Its direction is defined as the cable direction (cf.
Fig 1).

The tension in the cables must remain in between a minimum and a maximum
values, respectively τmin and τmax. The stiffness range for a given stable equilibrium
configuration is computed by varying the tensions in the cables without affecting
the position and orientation of the mechanism. These tensions are computed as:

τ = W+f+Hλ (9)

where WWW+ is the Moore-Penrose generalized inverse of W [16]. H is a vector of
dimension 4×1 whose column span the null space of W. λ is an arbitrary scalar. To
keep a stable equilibrium configuration, the wrench f is considered equal to a null
vector. The bounds of λ can be obtained by solving the inequality 10.

τmin ≤Hλ ≤ τmax (10)

The bounds λmin and λmax allowing to compute two vector tensions solutions that
enable to keep the equilibrium:

τmin = Hλmin

τmax = Hλmax
(11)

Using the vectors τmin and τmax, one can compute the minimum and maximum
springs elongations. Solving the equation 4, can be calculated ρmin and ρmax both
are vectors that contain the set of minimum and maximum displacements for each
actuators. Now the minimum and maximum stiffness are computed using the equa-
tion 12 at a given pose of the mechanism (P, θ) considering ρmin and ρmax.

Kmin
x =

∂ 2U(P,θ ,ρmin)

∂x2 , Kmin
y =

∂ 2U(P,θ ,ρmin)

∂y2 , Kmin
θ =

∂ 2U(P,θ ,ρmin)

∂θ 2

Kmax
x =

∂ 2U(P,θ ,ρmax)

∂x2 , Kmax
y =

∂ 2U(P,θ ,ρmax)

∂y2 , Kmax
θ =

∂ 2U(P,θ ,ρmax)

∂θ 2

(12)

3 Discussion of the results

This section show the estimation of the static workspace and stiffness range. The
static workspace of the system describes the pose of the end-effector in the x,y
coordinates and the orientation along z axis. The parameters of the mechanism that
are used were: a = 0.1m, b = 0.1m, τh ∈ [4,10]N and ρh ∈

[ 4
k ,

10
k

]
m.
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The Fig. 2 shows the relationship between the size of the workspace and the
spring stiffness values k. The first column shows the static workspace of the mech-
anism with n = 1 and k = 270 N/m and the second column shows the static
workspace when n = 1 and k = 80 N/m. The black dots represent the end-effector
in a stable equilibrium configuration that the mechanism can reach, the red line
shows the mechanism’s boundary of static workspace with k = 270 N/m. In the
second column the green line shows the boundary of static workspace with k = 80
N/m and the red line is superimposed to highlight how the workspace is affected in
relationship with the modification of the stiffness springs, noting that the value of k
is inversely proportional to the static workspace.

Fig. 2 Relationship between static workspace and variation of k

In order to analysis the influence of the geometrical parameters on the static
workspace and stiffness range, here is presented the results when n = 1 (Fig. 1),
n= 0.5 (Fig.3a) and n= 0.1 (Fig. 3b). These variation of n causes that the symmetry
in the y-axis be lost because the nodes A3,A4 reducing the distance between them.
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Fig. 3 A) Tensegrity mechanism with n=0.5, B) Tensegrity mechanism with n=0.1

The Fig. 4 illustrates the static workspace for the mechanism when n = 1,0.5 and
0.1. The workspace for n = 1 has ranges from x ∈ (−0.2,0.2)m, y ∈ (−0.2,0.2)m
and θ ∈ (−1.5,1.5)rad. The shape is modified throughout the changes of n, this
changes are described by the projections on the planes xy,yθ ,xθ . The black dots
represent the center of mass in a stable equilibrium configuration that the mechanism
can reach, the red line shows the mechanism’s boundary of static workspace with
n = 1 and the green line shows the boundary of static workspace for n = 0.5 and
n = 0.1 respectively. As the Fig. 4 pictures the workspace in xy is decreased as n
decreases and is shifted to the other side where the attachment points joint. However
for the workspace xθ who is showed in row 2 increases as n decreases. The largest
workspace in the plane yθ is in the configuration with n = 0.5.

Fig. 4 Static workspace when n = 1, 0.5 and 0.1

The analysis of the stiffness range is shown below. The Fig. 5 shows the stiffness
range for Kx, the Fig. 6 shows the stiffness range for Ky and the Fig. 7 shows the
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stiffness range for Kθ . The workspace is depicted as a volume. In order to observe
the behavior of stiffness, it has been discretized in layers. The first column of each
figure represents the minimum stiffness and the second column shows the stiffness
range, each point in the workspace has a color according to its stiffness value. The
black line represents the boundary of the workspace with n = 1 and it is superim-
posed on all the graphs to show how the workspace changes.

Fig. 5 The stiffness ranges Kx n = 1, 0.5 and 0.1

Fig. 6 The stiffness ranges Ky with n = 1, 0.5 and 0.1
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Fig. 7 The angular stiffness ranges Kθ with n = 1, 0.5 and 0.1

This tensegrity mechanism could be used as a puncture assistance robot [3, 4]
because it allows stiffness modulation. The procedure requires that the effector has
to be rigid when a needle is inserted in the body and in other moment it has to be
soft allowing to follow the physiological movements such as breath.

To illustrate the application of the computation of the figures 5, 6 and 7, two de-
sired stiffness ranges are selected according to a specific application: Kx ≥ 30 N/m
and Ky ≥ 75 N/m. The Fig.8 illustrates the workspace that satisfies the desired stiff-
ness range, the first row shows Kx with n = 1,0.5 and 0.1 and the second row shows
the workspace for Ky desired with n= 1,0.5 and 0.1. The workspace for the range Kx
is greater with n = 0.5 since it allows reach higher orientation values. The same be-
havior happens in the workspace for the range Ky but the increase is more notorious
in the mobility orientation with n = 0.5. Concluding that the biggest workspace that
satisfies the design conditions for the application is with the geometrical parameter
n = 0.5.
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Fig. 8 Workspace using Kx=30 N/m and Ky= 75 N/m

4 Conclusion

This paper shows the influence of the design parameters on the static workspace as
well as in the stiffness range of a 3-DoF planar tensegrity mechanism. An extension
of the approach analysis can be applied for tensegrity mechanism with more degrees
of freedom. The analysis will help to design a geometric optimization approach that
allows to define the location of the attachment points and to select the adequate
springs in order to satisfy a required static workspace with a desired stiffness range.
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