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Abstract

Limitations in current DBMSs prevent their wide adoption in scientific
applications. In order to make them benefit from DBMS support, enabling
declarative data analysis and visualization over scientific data, we present
an in-memory array DBMS called SAVIME. In this work we describe the
system SAVIME, along with its data model. Our preliminary evaluation
show how SAVIME, by using a simple storage definition language (SDL)
can outperform the state-of-the-art array database system, SciDB, during
the process of data ingestion. We also show that it is possible to use
SAVIME as a storage alternative for a numerical solver without affecting
its scalability, making it useful for modern ML based applications.

Keywords: Scientific Data Management, Multidimensional Array, Machine

Learning
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1 Introduction

Due to the increasing computational power of HPC environments, vast amounts
of data are now generated in different research fields, and a relevant part of this
data is best represented as array data. Geospatial and temporal data in climate
modeling, astronomical images, medical imagery, multimedia and simulation
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data are naturally represented as multidimensional arrays. To analyze such
data, DBMSs offer many advantages, like query languages, which eases data
analysis and avoids the need for extensive coding/scripting, and a logical data
view that isolates data from the applications that consume it.

The efficient execution of ad-hoc heavy-weight analytical queries is still an
open problem, especially when efficiency means as fast as possible [18]. It is
reasonable to expect that finding the best model to represent the data structures
one is working with may lead to better results than trying to build a single
general-purpose data model fit to every problem. For instance, benchmark
experiments have shown a performance improvement of orders of magnitude
when using array data models to analyze scientific data in a DBMS compared
to more traditional models [37]. Furthermore, an appropriate DBMS data model
provides a semantically richer data representation, which simplifies the creation
of analytical queries and visualizations.

Despite their advantages, DBMSs are often inefficient for data management
in many scientific domains due to the impedance mismatch problem, i.e., the
incompatibilities between the representation formats of the source data and the
DBMS, as pointed by [9] and [15]. This impedance mismatch yields costly con-
versions between formats, which adds prohibitive overhead during data analysis.
Therefore, scientific file formats such as HDF [39] and NetCDF [31], special li-
braries, such as Paraview Catalyst [2] and I/O interfaces, such as ADIOS [19]
and GLEAN [40] are preferred for maintaining and analyzing scientific datasets.
However, although efficient, this low-level approach lacks the powerful analytic
capabilities found in a DBMS.

Our previous study on the usage of DBMSs to manage numerical simulation
data [22] highlighted many difficulties regarding scientific array data represen-
tation. We concluded that the idiosyncrasies of this kind of data are not well
represented by current array data models. Also, to perform visualization with
data stored in current DBMSs, it is necessary to retrieve the attributes of in-
terest, copying large datasets between memory spaces and carrying out another
costly data conversion for the output visualization format. Therefore, as a step
towards solving the problem, we proposed an extension of the array data model
[23], named TARS (Typed Array Schema), to cope with array data features and
to allow a more efficient representation for scientific data.

As the next step in our research agenda to manage scientific array data, we
have developed the array DBMS named SAVIME, which implements the TARS
data model. SAVIME is an in-memory DBMS designed to analyze complex
multidimensional datasets produced by simulations. SAVIME can be coupled
to simulations for analysis running in post-processing and in-transit modes [34].
Also, SAVIME incorporates the Paraview Catalyst library, which enables pow-
erful visualization of simulation results, a fundamental tasks performed during
scientific simulations.

The multidimensional array data model of SAVIME is an adequate repre-
sentation for modern machine learning (ML) based applications. Indeed, the
use of ML techniques to analyze data both in scientific research and industrial
applications is becoming increasingly important, due to their power to capture



patterns represented by complex data correlations that are not easily captured
by traditional models, in many different and diverse tasks [7], [8], [10]. There-
fore, as pointed out in [29], not only the management but also the understanding
of the data becomes a crucial task. The integration of ML-based analytics into
the DBMS may lead to powerful performance improvements since different parts
of the ML process may be treated as operators of the query plan, providing new
opportunities for optimization. Therefore, to cope with the growing need for
ML support in scientific research, we have implemented into SAVIME an ML
extension through communication with the Tensorflow Extended (TFX) plat-
form [6], integrating the ML process into the DBMS. Such extension enables
SAVIME to evaluate any ML algorithm supported by TFX.

To further integrate SAVIME into this process, we have also developed a
library that allows the execution of SAVIME queries from the Python environ-
ment. These queries results are returned as multidimensional arrays NumPy
[27], which are popular structures widely used in scientific data analysis as well
as supported by ML libraries and frameworks like PyTorch, scikit-learn, and
Tensorflow.

Compared to the current array DBMSs, SAVIME brings the following ad-
vantages:

1. Fast data ingestion without impedance mismatch, i.e., the ability to cope
with data as it is generated without carrying out costly data conversions
during data ingestion.

2. Implementation of a data model that offers an elegant representation for
array data and allows SAVIME to take advantage of the preexisting data
partitioning and sorting to process queries efficiently

3. Incorporation of the library Paraview Catalyst, which enables the analysis
and visualization code to harvest data directly from SAVIME’s memory
space, avoiding the overhead of creating a separate application to query
the DBMS and convert query results to the visualization file format.

4. Integration of the ML process into the DBMS, enabling optimizations
that would not be possible when treating ML analytics as independent
processes.

In this article, we present SAVIME and the TARS data model, along with
a performance evaluation in which we compare SAVIME with SciDB [38], the
state-of-the-art array DBMS. We also demonstrate how SAVIME can be easily
integrated into the ML process, by presenting a library for communication from
a Python environment, and a performance comparison with NumPy arrays.

This paper is an extended version of the work presented in [21], and includes
the ML feature not covered in the original. It is organized as follows. In Section
2 we discuss the TARS data model implemented in SAVIME. In Section 3 we
present SAVIME, its execution model and its DDL, SDL and DML, along with
visualization and ML support. In Section 4 we show the results of our evaluation
comparing SAVIME and SciDB and embedding SAVIME with a real application,



and we also present experiments relating to the ML functionality. In Section 5,
we discuss the related work and finally in Section 6 we conclude.

2 Typed Array Data Model

Scientific data is usually represented as multidimensional arrays. Multidimen-
sional values are a data pattern that emerges in scientific experiments and mea-
surements and can also be generated by simulations. From a data management
and representation perspective, the definition of the array data model is pre-
sented in [26]. In short, an array is a regular structure formed by a list of
dimensions. A set of indexes for all dimensions identifies a cell or tuple that
contains values for a set of array attributes.

If carefully designed, arrays offer many advantages when compared to simple
bi-dimensional tables. Cells in an array have an implicit order defined by how
the array data is laid out in linear storage. We can have row-major, column-
major, or any other arbitrary dimension ordering. Array DBMSs can quickly
lookup data and carry out range queries by taking advantage of this implicit
ordering. If the data follows a well behaved array-like pattern, using arrays saves
a lot of storage space, since dense arrays indexes do not need to be explicitly
stored. Furthermore, arrays can be split into subarrays, usually called tiles or
chunks. These subarrays are used as processing and storage data units. They
help to answer queries rapidly and enforce a coherent multidimensional data
representation in linear storage.

However, current array data model implementations, e.g., SciDB [38] and
RasDaMan [4], have limitations, preventing an efficient representation of simu-
lation datasets. In SciDB for instance, it might be necessary to preload multi-
dimensional data into a unidimensional array and then rearrange it during data
loading. RasDaMan requires either the creation of a script or the generation of
compatible file formats for data ingestion. This may also require costly ASCII to
binary conversion (since numerical data is likely to be created in binary format)
for adjusting the data to the final representation on disk. In both cases, the
amount of work for loading the dataset alone is proportional to its size, mak-
ing it impractical for the multi-terabyte data generated by modern simulation
applications.

Furthermore, the array data model does not explicitly incorporate the exis-
tence of dimensions whose indexes are non-integer values. In some simulation
applications, the data generated follows an array-like pattern, but one of the
identifiable dimensions can be a non-integer attribute. For instance, in 3D rec-
tilinear regular meshes, we have points distributed in spatial dimensions whose
indexes or coordinate values are usually floating point numbers. To address
this issue, we need to map non-integer values into integer indexes that specify
positions within the array. Array DBMSs like SciDB or RasDaMan, in their
current versions, do not support this kind of functionality.

Arrays can be sparse, meaning that there are no data values for every single
array cell. Data may also have some variations in their sparsity from a portion



of the array to another. This is the case for complex unstructured meshes
geometry (with an irregular point distribution in space) when directly mapped to
arrays. SciDB provides support to sparse arrays, but since it splits an array into
chunks (equally sized subarrays), it is very hard to define a balanced partitioning
scheme, because data can be distributed very irregularly. RasDaMan is more
flexible in this aspect and allows arrays to be split into tiles or chunks with
variable sizes.

Another characteristic of complex multidimensional data representation is
the existence of partial functional dependencies concerning the set of indexes.
Partial dependencies occur in constant or varying mesh geometries and topolo-
gies, or any other kind of data that does not necessarily vary along all array
dimensions. For instance, when researchers create mathematical and physical
models for simulating transient problems, the time is a relevant dimension to
all data, i.e., model predictions vary over time. However, the mesh, which is
the representation of the spatial domain, may not change in time, meaning that
the coordinate values and topology incidence remain the same throughout the
entire simulation. Another possibility is the usage of the same mesh for a range
of trials, and another mesh for another range. In both cases, there is a mesh
for every single time step (an index in the array time dimension) or trial, but
actually, only one mesh representation needs to be stored for an entire range of
indexes.

Asides from that, simulation and uncertainty quantification applications in-
volve very specific data semantics for various data attributes. These semantical
annotations can be incorporated into the data model allowing the definition of
special purpose algebraic operators that are useful for creating complex analysis
and visualization.

Finally, much effort has been devoted to implementing ML into relational
DBMSs, but few array DBMSs implement such support in some way. In Ras-
DaMan, ML models must be implemented as UDFs within the system, being
invoked as rasQL queries. In the case of SciDB, the user needs to implement
the algorithm using the linear algebra operators provided by the system, but
there’s no way to easily integrate pre-built ML models as part of the system.
This integration could reduce the complexity of scientific analysis and give room
to many optimizations, such as query planning, lazy evaluation, materialization,
and operator optimization, as pointed out by [11].

2.1 Data Model Overview

In this section, we briefly recall the TARS data model [23] and give a detailed
description of how it is implemented in SAVIME.

Given the lack of flexibility in the current array DBMSs in supporting sim-
ulation data, as described in Section 2, we propose the TARS data model to
cope with the aforementioned issues. A TAR Schema contains a set of Typed
ARrays (TARs). A TAR has a set of dimensions and attributes. A TAR cell is
a tuple of attributes accessed via a set of indexes. These indexes define the cell
location within the TAR. A TAR has a type, formed by a set of roles. A role in



a type defines a special purpose data element with specific semantics.

In TARS (Figure 1), we define mapping functions as a way to provide support
for sparse arrays, non-integer dimensions, and heterogeneous memory layouts.
With TARS, it is possible to combine array data from different sources, differ-
ent storage layouts, and even with different degrees of sparsity by associating
different mapping functions to different subarrays, or as we call them, subTARs.
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Figure 1: TARS data model

A subTAR covers an n-dimensional slice of a TAR. Every subTAR is defined
by the TAR region it represents and two mapping functions: position mapping
function and data mapping function. The position mapping function reflects
the actual data layout since it defines where every TAR cell within a given sub-
TAR ended in linear storage. Therefore, the position mapping function should
implement the multidimensional linearization technique used for the data. The
data mapping functions translate a linear address into data values. In a simple
scenario, this function does a lookup into a linear array that stores the data.

In a more complex scenario, it could compute a derived value from the actual
subTAR data.

2.2 Physical Specification

In this section, we describe how the TARS data model is implemented in SAV-
IME. TARS structures are created in SAVIME with the use of the supported
SDL and DDL. Users can define TARs, datasets, and types. Once a TAR is
defined and a series of datasets are loaded into the system, it is possible to
specify a subTAR by attaching datasets to it. A dataset is a collection of data
values of the same type, like a column in a column-store DBMS (SAVIME uses
vertical partitioning). A dataset can contain data for a TAR attribute within a



TAR region specified by a subTAR.

TAR dimensions indexes form a domain of values that are represented in
SAVIME in two main forms. It can be an implicitly defined range of equally
spaced values, in which case, all the user must specify is the lower and upper
bounds, and the spacing between two adjacent values. It is called implicit
because these indexes do not need to be explicitly stored. For instance, the
domain Di = (0.0,,2.0,4.0,6.0,8.0,10.0) is defined by the lower bound 0.0, the
upper bound 10.0 and all values are equally spaced in 2.0 units.

Dimensions whose indexes do not conform with these constraints have an
explicit definition. In this case, the user provides a dataset specifying the di-
mension indexes values. For instance, consider the following domain De =
(1.2,,2.3,4.7,7.9,13.2). Tt has a series of values that are not well-behaved and
equally spaced, and thus, cannot be represented implicitly.

The data representation within the subTAR requires the combination be-
tween the dimension domain and the dimension specifications. All subTARs
in a TAR have a list of dimension specifications, one for each dimension in
the TAR. These dimension specifications define the TAR region the subTAR
encompasses, but they also are a fundamental part in the implementation of
the mapping functions. These functions are defined conceptually in the model,
but are implemented considering six possible configurations between dimension
specifications (ORDERED, PARTIAL and TOTAL) types and dimension types
(IMPLICIT and EXPLICIT).

An ORDERED dimension specification indicates that the indexes for the
cells in that dimension are dense and sorted in some fashion. A PARTIAL
dimension implementation, indicates that there are some holes in the datasets,
meaning that some cells at given indexes are not present. Finally the TOTAL
representation indicates that data is fully sparse and that all indexes must be
given for every cell, in other words, it means that we have a degenerated array
that is basically tabular data.

3 The SAVIME system

SAVIME has a component-based architecture common to other DBMSs, con-
taining modules such as an optimizer, a parser, and a query processing engine,
along with auxiliary modules to manage connections, metadata and storage. A
SAVIME client communicates with the SAVIME server by using a simple pro-
tocol that allows both ends to exchange messages, queries, and datasets. All
modules are currently implemented as a series of C++ classes, each one of them
with an abstract class interface and an underlying concrete implementation.

3.1 Languages DDL, SDL and DML

SAVIME’s DDL supports operators to define TARS and Datasets. Listing 1 for
instance, presents some of these commands: initially, we issue a CREATE_TAR
command to create a TAR named FooTAR. It has 2 dimensions (I and J) whose



indexes are long integers. These are implicit dimensions, whose domains are
integers equally spaced by 1 unit from 1 to 1000. This TAR also has a single
attribute named attrib whose type is a double precision real number.

CREATE_TAR("FooTAR", "x", "Implicit, I, long, 1, 1000, 1
Implicit, J, long, 1, 1000 , 1",
"attrib, double");

CREATE_DATASET ("FooBarDS1:double","ds1_data_source") ;
CREATE_DATASET ("FooBarDS2:double", "ds2_data_source") ;
LOAD_SUBTAR("FooTAR", "Ordered, I, 1, 100 |

Ordered, J, 1, 100",

"attrib, FooBarDS1") ;
LOAD_SUBTAR("FooTAR", "Ordered, J,101, 200 |

Ordered, I, 1, 100",
"attrib, FooBarDS2") ;

Listing 1: DDL examples

After that we create 2 datasets named FooBarDS1 and FooBarDS2, they are
double typed collections of values in a data source (usually a file or memory-
based file). Finally, we issue 2 LOAD_SUBTAR commands to create 2 new subtars
for the TAR FooTAR, the first one encompasses the region that contains the
cell s whose indexes are in [1,100] x [1,100] for dimension I and J respectively.
In both cases, we have an ordered representation indicating that data is dense
and ordered first by the I index and second by J index. The second subtar,
however, encompasses the cells whose indexes are in [1,100] x [101,200] but
instead ordered first by J index and second by the I index. It is an example of
how the SDL works, since users can express and consolidate data sources with
different ordering layouts into a single TAR. The final part of the command
indicates that datasets FooBarDS1 and FooBarDS2 are attached to the attrib
attribute, meaning that the data for attrib in the cells within each subTAR
region can be found in these datasets.

SAVIME also supports a functional DML with operators similar to the ones
implemented in SciDB, for operations such as filtering data based on predicates,
calculating derived values, joins and aggregations. Listing 2 is an example of a
query in SAVIME. This DML query consists of three nested operators. Initially,
a new attribute called attrib2 is created by the operator DERIVE and its value
is defined as the square of the attribute attrib. After that, the WHERE operator
is called, it filters data according to the predicate, in this case, it returns a TAR
whose cells have the value for attrib2 set between 2 and 10. Finally, we use the
AGGREGATE operator to group data by dimension I indexes and sum the value
for attrib2 creating the sum attrib2, the resulting TAR will present only one



AGGREGATE(
WHERE (
DERIVE(FooTAR, attrib2, attrib*attrib),
attrib2 >= 2.0 and
attrib2 <= 10.0
),

sum, attrib2, sum_attrib2, I

Listing 2: Example of Aggregate Query

dimension (I) and a single attribute sum attrib2 whose values are the result
of the sum of the attrib2 accross dimension J.

3.2 Catalyst Support and Visualization

Visualization is one of the main activities that scientists execute with data
generated by simulations. In this context, viz tools and libraries, such as VITK
and Paraview Catalyst [2] are widely used to allow researchers to gain insights
about scientific datasets.

SAVIME is able to generate VTK data files to be directed imported by Par-
aview, or even to execute Catalyst analytical scripts. Visualization in SAVIME
is done with the use of a special purpose operator named CATALYZE, shown
in Figure 2, which gets the resulting TARs of a query, converts it to the VTK
structures and optionally executes a Catalyst script with the query output.

catalyze(
FIELD_DATA_TAR,
GEOMETRY_TAR, |:
TOPOLOGY_TAR,

)

Figure 2: Visualization query using Catalyze operator

In order to implement this operator and visualize data, SAVIME needs to
be aware of which parts of the dataset represent the geometry and the topology
of the mesh, and how the field data is laid out in this schema and then create



the respective VTK structures. The TARS data model enables this semantic
representation by defining special TAR types for topologies, geometries and field
data, see Figure 3. For instance, a Cartesian Geometry type has a mandatory
role id for identifying points, and other roles for x, y and z coordinates. There
is also the same optional roles time step and trial. A mesh geometry can change
or evolve during the same trial, in a scenario in which the application domain
is deformable, or a different mesh can be used for every simulation run.

Field Geometry Types Topology Types
i Cartesian | Spherical | Cylindrical Incident | Adjacency
-field_value, Mandatory Mandatory Mandatory Mandatery Mandatory
-field_value; -point_id -point_id -point_id incidentee_id -adj y._dim:
T -x_coordinate ~radial_di: -radial_di: incide fji y_dim2
-field_value, -y_coordinate -polar_angle -angular_coord -incident:

-element_type -z_coordinate -azimuthal_angle | -height -

S — Optional
Optional .
-frf;':‘l:‘;tep Optional Optional Optional Optianat ::T'_"a;’ step
_trial -time step -time step -time step -time step

-trial -trial -trial -trial

Figure 3: TAR types for data visualization

Data related to the mesh topology requires special types, such as the Inci-
dent Topology and Adjacency Topology. The Incident Topology type captures
the semantics of topologies specified as a series of incident relationships and
the Adjacency topology type captures topologies represented as an adjacency
matrix. Since the mesh can be different in every time step for the same run, or
for different runs of the same model, the optional roles time step and trial are
also present.

Since Catalyst is embedded in SAVIME, it is possible to create visualization
files and even run scripts with data harvested directly from SAVIME’s memory
space. Without such support, users would need to move data out of SAVIME’s
memory space and convert it before being able to visualize it, which is very
inefficient. The SAVIME characteristic presented as an advantage (3) in Section
1 is directly related to this feature implemented in SAVIME.

3.3 Machine Learning Support

Another important aspect of scientific applications is the increasing adoption of
ML models for predictions [36][30]. This phenomena points towards extending
DBMS systems with the capability of invoking ML models as part of a query
expression, so that data preparation and their input to ML models can be jointly
optimized. In this context, to provide ML support, SAVIME allows multiple
trained models to be registered and used for a given problem. It is also possible
to compose the response of different models, evaluated in different regions of the
same dataset. To do that, SAVIME counts with a DML operator that receives
as input a set of data in an existing TAR and returns as a response, in the
form of a new TAR, the result of the execution of a given ML model. This
functionality allows the use of models previously defined by the user, simply

10



by registering them in the system. SAVIME utilizes the Tensorflow Extended
platform, a tool for invoking ML models in the form of services. Thus, the
extension of SAVIME towards Machine Learning supports any ML algorithm
that can be run in the background framework. Future work will extend this
feature to other ML frameworks as well. We highlight the fact that because
SAVIME only executes trained models, the task of model training must be
delegated to other specialized frameworks such as Tensorflow or Pytorch.

In the example depicted in Listing 3, initially, a model is registered in SAVIME

REGISTER_MODEL (exampleModel,
"inputDimA-10|inputDimB-10",
"outputDimA-5|outputDimB-5",
"targetAttribute"

);

PREDICT(

SUBSET (inputTAR,
inputDimA, 10, 19,
inputDimB, 10, 19
), exampleModel
);

Listing 3: Using SAVIME query language to register and invoke a ML model

by using the REGISTER_MODEL operator, which receives a model identifier on
the system, the input and output dimensions, and a target attribute. Then,
by means of the SUBSET operator, in a nested query, a slice of the inputTAR is
selected, according to the specified bounds: 10-19:10-19. The output is finally
used as input for the registered model, by using the PREDICT operator. We
emphasize that the focus of this work is to briefly present SAVIME along with
its data model and Machine Learning support. We refer the interested reader
to the work of [20] where the details about SAVIME operators and internals are
described. In the particular code depicted in Listing 1, the SUBSET is a logical
operator, similar to a selection operation in Relational Algebra but enforcing a
filtering range condition over dimensions. Its results comprehend a new array
with the cells pertaining the dimension range specification.

To provide an easy integration between popular ML analysis tools and SAV-
IME, we also developed a Python interface named PySAVIME. This interface
is a library, written in Python and Cython, that allows the execution of queries
in the DBMS from a Python environment. The results of these queries are re-
turned to the environment in the form of multidimensional NumPy arrays. In
fact, in order to minimize the overhead caused by the addition of a new layer
between the DBMS and the user, the developed library makes extensive use of
memory views in Cython. These are envelopes for data buffers that aim to min-
imize the number of unnecessary copies between data from different programs,
in the case of PySAVIME, between the DBMS C++ Client and the library.

Figure 4, to the left, demonstrates a query invoking the SUBSET operator into
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import pysavime.define
import pysavime.operator

def select_tar_subset_query()
dim_A = define.implicit_tar_dimension(
'dimA', 'int32', O,
— dimA_length)
dim_B = define.implicit_tar_dimension(
'dimB', 'int32', O,
<« dimB_length)

dimensions = [dim_A, dim_B]

attribute = define.tar_attribute('attribute',

< 'double')

attributes_list = [attr_air_temperature]

tar_definition = define.tar('values_tar',
dimensions, attributes)

query = operator.subset(tar_definition,
dim_A.name, 40, 47,
dim_B.name, 304, 305)
return query

with pysavime.Client(host=savime_host,

port=savime_port) as client:

response =
— client.execute(select_tar_subset_query())

DIM A | DIM_B | Attribute
40 304 298.2
a1 304 298.1
12 304 298.1
43 304 298.2
11 304 298.3
15 304 298.0
16 304 298.2
a7 304 298.7
10 305 297.6
a1 305 296.9
12 305 297.3
43 305 297.6
14 305 297.6
15 305 297.4
16 305 299.0
a7 305 298.8

Figure 4: An example of a subset query executed using PySAVIME

SAVIME, by using the PySAVIME library. The tar_definition, contains in-
formation about the name of the target-tar, its dimensions and attribute values,
and is is created using the PySAVIME command define. The operator subset
command is defined using the PySAVIME class Operator. Finally, the query
can be run using the command client.execute. Once executed, its result is

returned as a NumPy array, as illustrated in Figure 4, to the right.
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3.4 Query Processing

As presented in the previous section, a SAVIME query contains a series of
nested operators. Most of them expect one or more input TARs and originate a
newly created output TAR. Unless a special operator is called to materialize the
query resulting TAR, it is generated as a stream of subTARs, sent to the client,
and then discarded. SAVIME operates TARs as a subTARs stream pipelined
across operators. SubTARs are processed serially or in parallel with OpenMP
constructs.

During query processing, when a subTAR for a TAR holding intermediated
results is generated and passed on to the next operator, it is maintained in a
temporary subTARs cache. These subTARs contain their own group of datasets
that could require a lot of storage space or memory. Therefore, once a subTAR
is no longer required by any operator, it must be removed from memory. An
operator implementation is agnostic regarding its previous and posterior opera-
tions in the pipeline and does not know when to free or not a subTAR. All the
operators’ implementation needs to establish when it will no longer require a
given subTAR. When this happens, the operator notifies the execution engine
that it is done with a given subTAR and it is then discarded

However, since the same subTAR can potentially be input into more than
one operator during a query, freeing it upfront is not a good idea, because it
might be required again. In this case, SAVIME would have to recreate it. To
solve this problem, every subTAR has an associated counter initially set to the
number of operators that have its TAR as their input. When an operator notifies
the engine that it no longer needs that specific subTAR, the respective counter
is decreased. Once the counter reaches zero, all operators possibly interested
in the subTAR are done, and now it is safe to free the subTAR. This approach
always frees the used memory as soon as possible and never requires a subTAR
to be created twice. However, some operators might require many subTARs
to be kept in memory before freeing them. In an environment with limited
memory, it would not be feasible to cope with very large TARs in this case. A
solution then would be the adoption of a more economical approach, trading off
space with time by freeing and regenerating the subTARs whenever memory is
running low.

4 Experimental Evaluation

We ran a series of experiments in order to validate SAVIME as an efficient system
for simulation data management. First, we compare SAVIME with SciDB and
evaluate how SAVIME affects the performance of the actual simulation code.
Then we demonstrate how SAVIME can be a feasible tool integrated into the
ML process by comparing its execution time with the equivalent procedure using
NumPy arrays.
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4.1 SAVIME vs SciDB

In this section, we compare SAVIME, SciDB (version 16.9), and a third ap-
proach based on the usage of NetCDF files (version 4.0). We provide a NetCDF
comparison only as a baseline, since it does not offer all benefits that a DBMS
does (see Section 5). All scripts, applications, and queries used in our evaluation
are available at github.com/hllustosa/savime-testing.

We employ two datasets, a dense and a sparse one, based on data from the
HPC4e BSC seismic benchmark [12] in our experiments. The dense dataset
contains 500 trials (one dataset for each) for a 3D regular mesh with dimensions
201x501x501 containing a velocity field. In total, we have over 30 billion array
cells and more than 120 GB of data. All data is held in a single 4D structure
(TAR in SAVIME, array in SciDB and in a single NetCDF file) containing the
X, Y, and Z dimensions, and an extra trial dimension to represent all 500 trials.
Both structures have the same tiling configuration, i.e., the same number of
chunks/subTARs (500 of them, one for each trial) with the same extents.

The sparse dataset is also a 4D structure with 500 simulation trials, but only
a subset of the cells are present (around 24% of the dense dataset). It comprises
almost 8 billion array cells and over 30 GB of data. We used a sparse 4D
array/TAR in SciDB and SAVIME, and a 2D dense array in NetCDF. NetCDF
lacks the ability to natively represent sparse data, thus we indexed the x, vy,
and z values and represented them as a single dimension and stored coordinate
values as variables.

The computational resource used is a fatnode from the cluster Petrus at
DEXLab. This fatnode has 6 Intel(R) Xeon(R) CPU E5-2690 processors amount-
ing to 48 cores and over 700 GB of RAM. Data is kept in a shared-memory file
system to simulate an in-transit data analysis, in which data is not kept on disk
(for both SAVIME and SciDB). Initially, we evaluate the loading time of 500
tiles/chunks in all three approaches, considering that data is being transferred
and continually appended to a single array/TAR/file as it is being generated by
a solver.

As we can see in Figure 5 on the left graph, the ingestion time taken by
SciDB is almost 20 times longer than the time taken by SAVIME, due to costly
rearrangements needed on data to make it conform with the underlying storage
configuration. Besides, there is an extra overhead during the lightweight data
compression done by SciDB, which makes the dataset roughly 50% smaller when
stored but increased loading time prohibitively. In contrast, SAVIME does not
alter or index the data during the process of data ingestion, therefore the loading
process is computationally much cheaper.

We evaluate the performance considering ordinary and exact window queries.
Ordinary Window queries consist of retrieving a subset of the array defined by
a range in all its dimensions. The performance for this type of query depends
on how data is chunked and laid out. High selectivity queries, which need to
retrieve only a very small portion of the data tends to be faster than full scans.
Therefore, we compared low and high selectivity queries, filtering from a single
to all 500 tiles. We also considered the performance of exact window queries,
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which is the easiest type of Window Query. They consist of retrieving data for
a single tile or chunk, meaning the system has close to zero work filtering out
the result.

We implement these queries as specific operators in SAVIME and SciDB and
with the help of a custom OpenMP application using the NetCDF library. The
experimental results are shown in Figure 5 on the right graph. The average
time of 30 runs is presented. We considered window queries with low selectivity
(over 70% of all cells in a tile) and high selectivity (around 20% of all cells in a
tile), and intersecting with only 1, 100, or even the total 500 tiles.

It is noticeable that SAVIME either outperforms SciDB or is as efficient
as it in all scenarios. The most important observation is that, even without
any previous data preprocessing, SAVIME is able to simply take advantage of
the existing data structure to answer the queries efficiently, which validates the
model as a feasible alternative to existing implementations. The results show
that, for any storage alternative in both dense and sparse formats, the subsetting
of a single tile is very efficient. The differences shown for the exact window query
and for low and high selectivity window queries that touch a single tile are very
small. SciDB takes a few seconds in most cases, while SAVIME takes on average
1 second. NetCDF is the most efficient in this scenario, retrieving desired data
in less than a second.

However, for queries touching 100 or 500 chunks, we can see the differences
between querying dense and sparse arrays. The dense dataset is queried more
efficiently since it is possible to determine the exact position of every cell and
read only the data of interest. It is not possible for sparse data since one is not
able to infer cell positions within the tiles. In this case, every single cell within
all tiles that intersect with the range query must be checked

In dense arrays, we can observe a reduced time for retrieving data in high
selectivity queries in comparison with low selectivity queries. The execution
time of window queries should depend only on the amount of data of interest
since cells can be accessed directly and thus, no extra cells need to be checked.
The execution times considering 100 or 500 tiles in SAVIME and NetCDF are in
accordance with this premise. However, SciDB shows poorer performance, being
up to 8 times slower. It is very likely that SciDB needs to process cells outside of
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the window of interest depending on the compression technique and the storage
layout adopted. SciDB seems to be more sensible to tiling granularity, requiring
fine-grained tiles that match the window query to have a performance similar
to the NetCDF approach.

There is not much to be done for querying sparse arrays except for going
through every cell in the tiles intersecting the window specified by the query.
The query time for sparse data in all alternatives shows very similar perfor-
mance. The main difference is that for achieving this result with NetCDF,
an OpenMP application needed to be written, while the same result could be
obtained with a one-line query in SAVIME and SciDB.

Our conclusion is that the regular chunking scheme imposed by SciDB not
only slows down the ingestion process significantly as it has no real impact in
improving performance for simple operations as SAVIME using a more flexible
data model can solve similar queries presenting a compatible performance.

4.2 Integration with a numerical solver

In this section, we evaluate the amount of overhead imposed on the simulation
code when integrating with SAVIME. We use the simulation tools based on the
MHM numerical method [14] as a representative numerical simulation applica-
tion. We compare three approaches. In the first approach, SAVIME is used
IN-TRANSIT, in a single node (fatnode) while the simulation code runs in a
different set of nodes, and thus data needs to be transferred. In the second
approach, SAVIME is used IN-SITU, with individual SAVIME instances run-
ning on each node, the same used by the simulation code. In this scenario, the
data does not need to be transferred, since it is maintained in a local SAVIME
instance that shares the same computational resources used by the simulation
code. In the third approach, SAVIME is not used, but instead, the data is stored
in ENSIGHT files (the standard file format used by MHM), and analyzes are
performed by an ad-hoc Message Passing Interface application in Python. This
last scenario serves as a baseline implementation, thus we call it the baseline
approach. The computational resource used is the Petrus cluster at DEXLab,
with 8 nodes, each with 96 GB of RAM and 2 Intel(R) Xeon(R) CPU E5-2690
processors.

Preliminarily, we start the evaluation by measuring the overhead of loading
data in a remote node running SAVIME. In Figure 6 we can see the time of
running the simulation and discarding the data, which is the time to solely carry
out the computations without any I/O whatsoever and the time to transfer and
load data into SAVIME. We vary the size of the MHM meshes, which impact
on the level of detail of the simulation. The larger the mesh size is, the more
realistic and complex the simulation is, and also, more resources (time and
memory) are consumed.

Results show that for very small meshes, which are computationally cheap,
the time to load data is more significant, and thus there is some overhead
(around 40%) in storing data in SAVIME. However, as meshes get larger, the
time taken to compute them increases in a manner that the transfer and load-
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ing time is negligible in comparison to the time taken to compute the solution.
The transfer and loading time is masked by the dominant process of solving the
systems of equation. Therefore, this shows that, for large enough problems, it is
possible to load data into SAVIME without compromising the simulation code
performance. However, under an impedance mismatch scenario, as observed
with SciDB, the loading time would be significant, impacting on the simulation
cost.

To evaluate the integration between SAVIME and a simulation tool based
on the MHM solver, we use a 2D transport problem over a mesh with 1.9
million points. We run the simulation up to the 100th time step, and store
either in SAVIME (approaches 1 and 2) or in an ENSIGHT file (approach 3),
data from 50% of all the computed time steps. In both cases, data is always
kept in a memory based file system, and never stored on disk. Once data has
been generated, it is analyzed with a PARAVIEW pipeline that carries out the
computation of the gradient of the displacement field of the solution. This part is
either done by a special operator in SAVIME, or by an AD-HOC MPI Python
application using the Catalyst library (baseline), depending on the approach
being run. Additionally, we measure the cost of running the simulation without
any further analysis, to highlight the simulation only cost

Figure 5 shows the results when running the three approaches, varying the
amount of MPI processes spawned or the number of cores used by the MHM
simulation code. In this experiment, the simulation code runs and produces
its results, and then, the simulation output data is read and processed in the
analysis step. The plot shows, for each evaluated number of MPI processes,
the simulation time and the analysis time as stacked bars. The graph shows
that the cost of the analysis process is significantly smaller than the cost of
computing the simulation. Moreover, as the Simulation Only run shows, the
overhead introduced by storing the data in SAVIME or as an ENSIGHT file
is negligible, which confirms the claim that SAVIME can be introduced into
the simulation process without incurring in extra overhead. From the point of
view of the effect of SAVIME on simulation scalability, the storage of data in
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SAVIME does not impair the capability of the simulation code to scale up to
16 cores.

The IN-TRANSIT approach differs from the other two approaches since it
uses a separate computational resource to execute the analysis step. As we
see in Figure 6, even when we increase the number of cores the simulation
code uses, the analysis time does not change, because the analysis step is done
in the fatnode, and always uses the same number of cores (16) independently
from the actual number of cores used by the simulation code. The IN-TRANSIT
approach illustrates a scenario in which all data is sent to a single computational
node and kept in a single SAVIME instance. This approach offers some extra
overhead and contention since all data is sent to a single SAVIME instance,
but this enables posterior analysis that transverse the entire dataset without
requiring further data transfers.

The SAVIME IN-SITU approach uses the same computational resources
used by the simulation code. When we increase the number of cores used by
the simulation code, we also increase the numbers of cores used by SAVIME
for analysis. The same is true for the baseline approach, meaning that the AD-
HOC application also uses the same number of cores the simulation code uses.
Even though the SAVIME IN-SITU approach is slightly slower than the baseline
approach, we see that both are able to scale similarly. The difference observed
in performance between using SAVIME and coding a specialized application
becomes less significant as we increase the number of cores being used during
the analysis phase. Nevertheless, the small performance loss in this case might
be justified by the convenience of using a query language to express analysis
instead of the extensive and error prone process of coding other applications to
execute the analysis.

4.3 Integration with Tensorflow Extended

To demonstrate how SAVIME is a viable alternative in terms of performance
when applied to the ML process, we compared the execution time of a predic-
tion query run in the system with the equivalent procedure invoking Tensorflow
Extended from a Python environment using only NumPy arrays. In our exper-
iment, we used NumPy version 1.18.5, and Python version 3.6.9. To perform
these experiments, we used a subset of the Climate Forecast System Reanalysis
(CFSR) dataset [33] containing air temperature observations registered every
6 hours from January 2010 to December 2012, with a spatial resolution of 0.5
degrees.

To perform the predictions, we used three spatio-temporal deep learning
models whose inputs are a list of fixed size frames. Given an input, the model’s
output is a list of frames of the same size as the input. The models have an
input frame spatial size of 10x10 for model A, 10x20 for model B, and 10x30 for
model C, and were trained in different regions of the dataset. The architecture
we adopted in the experiments is the ConvLSTM.

As the input size of the models differs, we performed three different input
queries, selecting a range of the dataset corresponding to the coordinates of
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5S:14S, 62W:53W for the first model A, 5S:14S, 62W:43W for the second one
B and 5S:14S, 62W:33W to the last model C.

To invoke TFX, the models’ input must first be converted to a JSON format
and sent to the server. After the model is executed, the response must also be
converted back to the original format. We performed the experiments 10 times
and evaluated the average runtime of each of these steps, both in SAVIME and
by using NumPy arrays.

B NUMPY [ SAVIME
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Figure 7: Execution time of the prediction query using SAVIME and using
NumPy (in milliseconds)

The summary of our experimental results can be seen in Figure 7, and in
Figure 8. In Figure 7, we can see that the total execution time of the predic-
tion query when using SAVIME is 1.8, 1.85, and 1.4 times the total execution
time of the equivalent operation when using NumPy, for models A, B, and C
respectively. In Figure 8 we can see the time taken to execute each step.
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Figure 8: Detailed execution time of the prediction query in SAVIME for three
different models

While the process using SAVIME still incurs some overhead when compared
to the same process when using NumPy arrays, this overhead can be compen-
sated by different optimizations that become possible by integrating the ML
model as part of the DBMS. Furthermore, as already demonstrated in previous
sections, the ingestion time when using SAVIME is very much faster than using
other array DBMSs, being only a subset of the dataset necessary to run the

query.
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5 Related Work

The definition of the first array data models and query languages dates back
to the works of Baumann [3], and Marathe [24] [25]. The oldest known array
DBMS is RasDaMan [5], which adds complete array queries capabilities on top of
a relational DBMS. Nowadays, the most popular array DBMS implementation is
SciDB [13]. However, both array models implemented of RasDaMan and SciDB
have limitations that hamper the representation of scientific datasets, like those
originated by simulations.

Due to the fact that ingesting data into these systems is not an easy task,
other arrays systems, such as ArrayBridge [41] and ChronosDB [42] have been
developed. ArrayBridge works over SciDB, and gives it the ability to work di-
rectly with HDF5 files. ChronosDB works over many file formats in the context
of raster geospatial datasets. SAVIME has a similar goal to ease data ingestion,
however, it does so by enabling seamless data ingestion considering many dif-
ferent array data source by supporting a SDL and a flexible data model, which
makes it different from ArrayBridge. SAVIME also offers its own DML, while
ChronosDB makes use of existing applications to process data. SAVIME is also
different from TileDB [28], which is not exactly a DBMS with a declarative
query language, but a library that deals with array data. In addition, SAVIME
is a specialized in-memory solution, while the rest of these systems are usually
more disk oriented solutions

Another issue is related to the impedance mismatch problem. The underly-
ing data models and storage schemes of a DBMS might differ greatly from the
source format the data is initially generated, which forces users to convert their
datasets to a compatible representation in order to load them into the system.
This problem is common in scientific application domains. For instance, loading
and indexing simulation datasets into a DBMS can incur high overhead, thus
preventing scientists from adopting any DBMS at all. Instead, scientists typi-
cally rely on I/O libraries that provide support for multidimensional arrays, e.g.,
HDF [39]. and NetCDF [31]. These libraries give users more control over their
data without incurring the performance penalties for data loading in a DBMS
[9] [15]. They are also flexible, allowing users to specify how their data (pro-
duced by simulations) is laid out and avoid the expensive conversions performed
by the DBMS during data ingestion.

However, 1/0 libraries do not offer all benefits that a full-fledged DBMS
does. These benefits include, but are not limited to features, such as query
languages, data views, and the isolation between data and applications that
consume data. NoDB [1] is a first attempt to bridge the gap between DBMS
high ingestion costs and I/O libraries access efficiency for relational DBMSs.
The approach advocates that the DBMS should be able to work with data as laid
out by the data producer, with no overhead for data ingestion and indexing. Any
subsequent data transformation or indexing performed by the DBMS in order to
improve the performance of data analyses should be done adaptively as queries
are submitted. We believe that even though NoDB is currently implemented on
top of a RDBMS and lacks support for multidimensional data, its philosophy
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can be successfully applied for array databases as well. In this context, SAVIME
provides means for fast data ingestion free from costly data conversions common
to other array DBMSs. The TARS data model allows huge memory chunks that
contain arrays of numerical values output from solvers of linear systems to be
efficiently ingested into the system without any type of rearrangements.

From a data model perspective, the challenges of representing simulation
data efficiently have been tackled in many works [32] [16] [17]. Some particular
data models have been proposed, but none of them was established as a standard
for simulation data. In general, arrays are considered the most common format
for scientific data. Scientific databases and the aforementioned I/O libraries
support arrays. Even scientific visualization libraries, such as VTK [35], which
allows the most varied grids to be represented and visualized, has arrays (called
VTKArrays) as its underlying data structure.

In SAVIME, the idiosyncrasies of simulation data are captured through the
usage of specially defined arrays with associated semantical annotations. These
or typed arrays conform with a defined type that represents some aspect of grid
data, such as geometries topologies or field data.

6 Conclusion

The adoption of scientific file formats and I/O libraries rather than DBMSs for
scientific data analysis is due to a series of problems concerning data representa-
tion and data ingestion in current solutions. To mitigate these problems, and to
also offer the benefits of declarative array processing in memory, we propose a
system called SAVIME. We showed how SAVIME, by implementing the TARS
data model, does not impose the huge overhead present in current database
solutions for data ingestion, while also being able to take advantage of preex-
isting data layouts to answer queries efficiently. We also showed SAVIME’s ML
support, demonstrating how it is a viable tool on the ML process.

We compared SAVIME with SciDB and a baseline approach using the NetCDF
platform. The experimental results show that SciDB suffers from the aforemen-
tioned problems, not being an ideal alternative and that SAVIME enables faster
data ingestion while maintaining similar performance during window queries ex-
ecution. We showed that SAVIME can also match the performance of NetCDF
for loading and querying dense arrays while providing the benefits of a query
language processing layer.

We also assess SAVIME’s performance when integrating with simulation
code. In this evaluation, we showed that storing data in SAVIME does not
impair the scalability of the solver. In addition, results also show that it is
possible to retrieve SAVIME data and generate viz files efficiently by using the
special purpose visualization operator.

SAVIME is available at github.com/dex1llab/Savime. Future work might
focus on the improvement and optimization of current operators and on the
development of new special purpose TAR operators. It might also focus on the
ML feature. Since SAVIME treats the ML prediction as an operator of the query
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plan, there is a vast opportunity for optimizations that can be implemented in
the system, e.g. optimizing the query plan, performing lazy evaluation.
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