
HAL Id: lirmm-03148271
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03148271

Submitted on 22 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Query Processing in a Polystore
Pavlos Kranas, Boyan Kolev, Oleksandra Levchenko, Esther Pacitti, Patrick

Valduriez, Ricardo Jiménez-Peris, Marta Patiño-Martinez

To cite this version:
Pavlos Kranas, Boyan Kolev, Oleksandra Levchenko, Esther Pacitti, Patrick Valduriez, et al.. Par-
allel Query Processing in a Polystore. Distributed and Parallel Databases, 2021, 39, pp.939-977.
�10.1007/s10619-021-07322-5�. �lirmm-03148271�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03148271
https://hal.archives-ouvertes.fr

1 LeanXcale, Madrid, Spain
{pavlos, bkolev, rjimenez}@leanxcale.com

2 Distributed Systems Lab at Universidad Politécnica de Madrid, Spain
pavlos.kranas@alumnos.upm.es, mpatino@fi.upm.es

3 Inria, University of Montpellier, CNRS, LIRMM, France
firstname.lastname@inria.fr

Parallel Query Processing in a Polystore

Pavlos Kranas1,2 · Boyan Kolev1,3 · Oleksandra Levchenko3 · Esther Pacitti3 ·
Patrick Valduriez3 · Ricardo Jiménez-Peris1 · Marta Patiño-Martinez2

Abstract The blooming of different data stores has made polystores a major topic in
the cloud and big data landscape. As the amount of data grows rapidly, it becomes crit-
ical to exploit the inherent parallel processing capabilities of underlying data stores and
data processing platforms. To fully achieve this, a polystore should: (i) preserve the
expressivity of each data store’s native query or scripting language and (ii) leverage a
distributed architecture to enable parallel data integration, i.e. joins, on top of parallel
retrieval of underlying partitioned datasets.

In this paper, we address these points by: (i) using the polyglot approach of the
CloudMdsQL query language that allows native queries to be expressed as inline scripts
and combined with SQL statements for ad-hoc integration and (ii) incorporating the
approach within the LeanXcale distributed query engine, thus allowing for native
scripts to be processed in parallel at data store shards. In addition, (iii) efficient optimi-
zation techniques, such as bind join, can take place to improve the performance of se-
lective joins. We evaluate the performance benefits of exploiting parallelism in combi-
nation with high expressivity and optimization through our experimental validation.

Keywords Database integration · Heterogeneous databases · Distributed and parallel
databases · Polystores · Query languages · Query processing

2

1 Introduction

A major trend in cloud computing and data management is the understanding that there
is no “one size fits all” solution [34]. Thus, there has been a blooming of different
NoSQL cloud data management infrastructures, distributed file systems (e.g. Hadoop
HDFS), and big data processing frameworks (e.g. Hadoop MapReduce, Apache Spark,
or Apache Flink), specialized for different kinds of data and tasks and able to scale and
perform orders of magnitude better than traditional relational DBMS. This has resulted
in a rich offering of services that can be used to build cloud data-intensive applications
that can scale and exhibit high performance. However, this has also led to a wide di-
versification of DBMS interfaces and the loss of a common programming paradigm,
which makes it very hard for a user to efficiently integrate and analyze her data sitting
in different data stores.

For example, let us consider a banking institution that keeps its operational data in a
SQL database, but stores data about bank transactions in a document database, because
each record typically contains data in just a few fields, so this makes use of the semi-
structured nature of documents. And because of the big volumes of data, both databases
are partitioned into multiple nodes in a cluster. On the other hand, a web application
appends data to a big log file, stored in HDFS. In this context, an analytical query that
involves datasets from both databases and the HDFS file would face three major chal-
lenges. First, in order to execute efficiently, the query needs to be processed in parallel,
taking advantage of parallel join algorithms. Second, in order to do this, the query en-
gine must be able to retrieve in parallel the partitions from the underlying data stores
and data processing frameworks (such as Spark). And third, the query needs to be ex-
pressive enough, so as to combine an SQL subquery (to the relational database) with
an arbitrary code in a scripting language (e.g. JavaScript), that requests a dataset from
the document database, and another script (e.g. in Python or Scala for Spark), that re-
quests a chain of transformations on the unstructured data from the HDFS log before
involving it into relational joins. Existing polystore solutions provide SQL mappings to
underlying data objects (document collections, raw files, etc.). However, this leads to
limitations of important querying capabilities, as the underlying schema may be very
far from relational and data transformations need to take place before being involved
in relational operations. Therefore, we address the problem of leveraging the underlying
data stores’ scripting (querying) mechanisms in combination with parallel data retrieval
and joins, as well as optimizability through the use of bind joins.

A number of polystores that have been recently proposed partially address our prob-
lem. In general, they provide integrated access to multiple, heterogeneous data stores
through a single query engine. Loosely-coupled polystores [11, 16, 17, 29, 30, 33] typ-
ically respect the autonomy of the underlying data stores and rely on a mediator/wrap-
per approach to provide mappings between a common data model with a query lan-
guage and each particular data store’s data model. CloudMdsQL [23, 26] with its MFR
(map/filter/reduce) extensions [9] even allows data store native queries to be expressed
as inline scripts and combined with regular SQL statements in ad-hoc integration que-
ries. However, even when they access parallel data stores, loosely-coupled polystores
typically do centralized access, and thus cannot exploit parallelism for performance.

3

Another family of polystore systems [1, 15, 20, 28, 39] uses a tightly-coupled approach
in order to trade data store autonomy and query expressivity for performance. In par-
ticular, much attention is being paid on the integration of unstructured big data (e.g.
produced by web applications), typically stored in HDFS, with relational data, e.g., in
a (parallel) data warehouse. Thus, tightly-coupled systems take advantage of massive
parallelism by bringing in parallel shards from HDFS tables to the SQL database nodes
and doing parallel joins. But they are limited to accessing only specific data stores,
usually with SQL mappings of the data stores’ query interfaces. However, according to
a recent benchmarking [25], using native queries directly at the data store yields a sig-
nificant performance improvement compared to mapping native datasets and functions
to relational tables and operators. Therefore, what we want to provide is a hybrid system
that combines high expressivity (through the use of native queries) with massive paral-
lelism and optimizability.

In this paper, we present a query engine that addresses the aforementioned chal-
lenges of parallel multistore query processing. To preserve the expressivity of the un-
derlying data stores’ query/scripting languages, we use the polyglot approach provided
by the CloudMdsQL query language, which also enables the use of bind joins [19] to
optimize the execution of selective queries. And to enable the parallel query processing,
we incorporated the polyglot approach within the LeanXcale1 Distributed Query Engine
(DQE), which provides a query engine with intra-query and intra-operator parallelism
that operates over a standard SQL interface. We validate the concept with various join
queries on four diverse data stores and scripting engines.

This paper is a major extension of [24]. The new material addresses the support of
distributed processing platforms such as Apache Spark by enabling the ad-hoc usage of
user defined map/filter/reduce (MFR) operators as subqueries, yet allowing for pushing
down predicates (e.g. for bind join conditions) and parallel retrieval of intermediate
results. We present the major challenges we face in supporting this (Section 3) and
introduce extended motivating examples (Section 5.1). We also apply our approach for
parallel integration with Spark, together with its architectural and implementation de-
tails (Section 5.5). The experimental evaluation has been also extended accordingly, to
address an example use case scenario, where unstructured data, stored in HDFS, must
go through transformations that require the use of programming techniques like chain-
ing map/reduce operations, which should take place before the data are involved in
relational operators. Related work has been extended as well.

The rest of this paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 presents the motivation and challenges and states the problem. Section 4 gives
an overview of the query language with its polyglot capabilities and discusses the dis-
tributed architecture of the LeanXcale query engine. Our major contribution is pre-
sented in Section 5, where we describe the architectural extensions that turn the DQE
into a parallel polystore system. Section 6 presents the experimental evaluation of var-
ious parallel join queries across data stores using combined SQL, MFR, and native
queries. Section 7 concludes.

1 http://www.leanxcale.com

4

2 Related Work

The problem of accessing heterogeneous data sources has long been studied in the con-
text of multidatabase and data integration systems [31, 36]. The typical solution is to
provide a common data model and query language to transparently access data sources
through a mediator, thus hiding data source heterogeneity and distribution. More re-
cently, with the advent of cloud databases and big data processing frameworks, multi-
database solutions have evolved towards polystore systems that provide integrated ac-
cess to a number of RDBMS, NoSQL, NewSQL, and HDFS data stores through a com-
mon query engine. Polystore systems can be divided between loosely-coupled, tightly-
coupled, and hybrid [10], which we discuss briefly later in this section. Since loosely-
and tightly-coupled systems address only partially our problem, we will focus in more
detail on hybrid systems as the state-of-the-art category where our work fits in. We also
add a fourth category of the recent parallel workflow management systems, which pro-
vide polystore support.

With respect to combining SQL and map/reduce operators, a number of SQL-like
query languages have been introduced. HiveQL is the query language of the data ware-
housing solution Hive, built on top of Hadoop MapReduce [35]. Hive gives a relational
view of HDFS stored unstructured data. HiveQL queries are decomposed to relational
operators, which are then compiled to MapReduce jobs to be executed on Hadoop. In
addition, HiveQL allows custom scripts, defining MapReduce jobs, to be referred in
queries and used in combination with relational operators. SCOPE [12] is a declarative
language from Microsoft designed to specify the processing of large sequential files
stored in Cosmos, a distributed computing platform. SCOPE provides selection, join
and aggregation operators and allows the users to implement their own operators and
user-defined functions. SCOPE expressions and predicates are translated into C#. In
addition, it allows implementing custom extractors, processors and reducers and com-
bining operators for manipulating rowsets. SCOPE has been extended to combine SQL
and MapReduce operators in a single language [40]. These systems are used over a
single distributed storage system and therefore do not address the problem of integrat-
ing a number of diverse data stores.

Loosely-coupled polystores are reminiscent of multidatabase systems in that they
can deal with autonomous data stores, which can then be accessed through the polystore
common interface as well as separately through their local API. Most loosely-coupled
systems support only read-only queries. Loosely-coupled polystores follow the media-
tor/wrapper architecture with several data stores (e.g. NoSQL and RDBMS). BigInte-
grator [29] integrates data from cloud-based NoSQL big data stores, such as Google’s
Bigtable, and relational databases. The system relies on mapping a limited set of rela-
tional operators to native queries expressed in GQL (Google Bigtable query language).
With GQL, the task is achievable because it represents a subset of SQL. However, it
only works for Bigtable-like systems and cannot integrate data from HDFS. QoX [33]
integrates data from RDBMS and HDFS data stores through an XML common data
model. It produces SQL statements for relational data stores, and Pig/Hive code for
interfacing Hadoop to access HDFS data. The QoX optimizer uses a dataflow approach
for optimizing queries over data stores, with a black box approach for cost modeling.

5

SQL++ [30] mediates SQL and NoSQL data sources through a semi-structured com-
mon data model. The data model supports relational operators and to handle efficiently
nested data, it also provides a flatten operator. The common query engine translates
subqueries to native queries to be executed against data stores with or without schema.
All these approaches mediate heterogeneous data stores through a single common data
model. The polystore BigDAWG [16, 17] goes one step further by defining “islands of
information”, where each island corresponds to a specific data model and its language
and provides transparent access to a subset of the underlying data stores through the
island’s data model. The system enables cross-island queries (across different data
models) by moving intermediate datasets between islands in an optimized way. In ad-
dition to typical loosely-coupled systems, some polystore solutions [11, 14, 22] con-
sider the problem of optimal data placement and/or selection of data source, mostly
driven by application requirements. Estocada [11] is a self-tuning polystore platform
for providing access to datasets in native format while automatically placing fragments
of the datasets across heterogeneous stores. For query optimization, Estocada combines
both cost-based and rule-based approaches. Estocada has been recently extended with
a novel approach for efficient cross-model query processing, using queries as material-
ized views and performing view-based query rewriting [3].

Tightly-coupled polystores have been introduced with the goal of integrating Ha-
doop or Spark for big data analysis with traditional (parallel) RDBMSs. Tightly-cou-
pled polystores trade autonomy for performance, typically operating in a shared-noth-
ing cluster, taking advantage of massive parallelism. Odyssey [20] enables storing and
querying data within HDFS and RDBMS, using opportunistic materialized views.
MISO [28] is a method for tuning the physical design of a multistore system
(Hive/HDFS and RDBMS), i.e. deciding in which data store the data should reside, in
order to improve the performance of big data query processing. The intermediate results
of query execution are treated as opportunistic materialized views, which can then be
placed in the underlying stores to optimize the evaluation of subsequent queries. JEN
[39] allows joining data from two data stores, HDFS and RDBMS, with parallel join
algorithms, in particular, an efficient zigzag join algorithm, and techniques to minimize
data movement. As the data size grows, executing the join on the HDFS side appears
to be more efficient. Polybase [15] is a feature of Microsoft SQL Server Parallel Data
Warehouse to access HDFS data using SQL. It allows HDFS data to be referenced
through external PDW tables and joined with native PDW tables using SQL queries.
HadoopDB [1] provides Hadoop MapReduce/HDFS access to multiple single-node
RDBMS servers (e.g. PostgreSQL or MySQL) deployed across a cluster, as in a shared-
nothing parallel DBMS. It interfaces MapReduce with RDBMS through database con-
nectors that execute SQL queries to return key-value pairs.

Hybrid polystore systems support data source autonomy as in loosely-coupled sys-
tems, and preserve parallelism by exploiting the local data source interface as in tightly-
coupled systems. They usually serve as parallel query engines with parallel connectors
to external sources. As our work fits in this category, we will briefly discuss some of
the existing solutions, focusing on their capabilities to integrate with MongoDB as a
representative example of a non-relational data store.

6

Spark SQL [6] is a parallel SQL engine built on top of Apache Spark and designed
to provide tight integration between relational and procedural processing through a de-
clarative API that integrates relational operators with procedural Spark code, taking
advantage of massive parallelism. Spark SQL provides a DataFrame API that can map
to relations arbitrary object collections and thus enables relational operations across
Spark’s RDDs and external data sources. Spark SQL can access a MongoDB cluster
through its MongoDB connector that maps a sharded document collection to a Data-
Frame, partitioned as per the collection’s sharding setup. Schema can be either inferred
by document samples, or explicitly declared.

Presto [32] is a distributed SQL query engine, running on a shared-nothing cluster
of machines, and designed to process interactive analytic queries against data sources
of any size. Presto follows the classical distributed DBMS architecture, which, simi-
larly to LeanXcale, consists of a coordinator, multiple workers and connectors (storage
plugins that interface external data stores and provide metadata to the coordinator and
data to workers). To access a MongoDB cluster, Presto uses a connector that allows the
parallel retrieval of sharded collections, which is typically configured with a list of
MongoDB servers. Document collections are exposed as tables to Presto, keeping
schema mappings in a special MongoDB collection.

Apache Drill [4] is a distributed query engine for large-scale datasets, designed to
scale to thousands of nodes and query at low latency petabytes of data from various
data sources through storage plugins. The architecture runs a so called “drillbit” service
at each node. The drillbit that receives the query from a client or application becomes
the foreman for the query and compiles the query into an optimized execution plan,
further parallelized in a way that maximizes data locality. The MongoDB storage al-
lows running Drill and MongoDB together in distributed mode, by assigning shards to
different drillbits to exploit parallelism. Since MongoDB collections are used directly
in the FROM clause as tables, the storage plugin translates relational operators to native
MongoDB queries.

Myria [38] is another recent polystore, built on a shared-nothing parallel architec-
ture, that efficiently federates data across diverse data models and query languages. Its
extended relational model and the imperative-declarative hybrid language MyriaL span
well all the underlying data models, where rewrite rules apply to transform expressions
into specific API calls, queries, etc. for each of the data stores. Non-relational systems,
such as MongoDB, are supported by defining relational semantics for their operations
and adding rules to translate them properly into the relational algebra, used by Myria’s
relational algebra compiler RACO.

Impala [5] is an open-source distributed SQL engine operating over Hadoop data
processing environment. As opposed to typical batch processing frameworks for Ha-
doop, Impala provides low latency and high concurrency for analytical queries. Impala
can access MongoDB collections through a MongoDB connector for Hadoop, designed
to provide the ability to read MongoDB data into Hadoop MapReduce jobs.

Parallel workflow management systems is a recent category of solutions for big
data processing that aims to decouple applications from underlying data processing
platforms. They typically facilitate applications by choosing the best platform to exe-
cute a particular workflow or task from a set of available platforms (e.g. Hadoop, Spark,

7

Giraph, etc.). Musketeer [18] achieves this through a model that breaks the execution
of a data processing workflow in three layers: first, the workflow is specified using a
front-end framework of user’s choice, e.g. SQL-like query or vertex-centric graphic
abstraction; then, the specification is transformed into an internal representation in the
form of a data-flow DAG; and finally, code is generated to execute the workflow
against the target platform. This saves the tedious work of manually porting workflows
across platforms in case some platform is found to be better suited for a particular work-
flow. More recently, RHEEM [2] enhanced the concept by allowing a particular subtask
of the workflow to be assigned to a specific platform, in order to minimize the overall
cost. It also introduces a novel cost-based cross-platform optimizer [27] that finds the
most efficient platform for a task and an executor that orchestrates tasks over different
platforms with intermediate data movement. Thus, RHEEM can integrate data from
different data stores (hence act as a polystore) by assigning different operators from the
query plan to different engines, e.g., perform selections on base tables and associated
joins at the RDBMS to exploit indexes, then ship intermediate data and perform other
joins at Spark to exploit parallelism. Teradata IntelliSphere [7] addresses the problem
of accessing multiple data stores (called “remote systems”) that may be heterogeneous,
but must have an SQL-like interface. Each remote system, however, can be a polystore
by itself. Teradata is responsible for building an SQL query plan and deciding where
each SQL operator (e.g. join or aggregation) will execute on one of the IntelliSphere’s
systems (either Teradata or a remote system). An important problem the system focuses
on is the cost estimation of SQL operators over remote systems. Machine learning tech-
niques are leveraged to train neural networks to approximate the execution time of an
operator based on characteristics of its input relation(s).

Comparative analysis. Table 1 summarizes the functionality of polystore systems
that enable parallel processing across diverse DBMS clusters (we will use for brevity
the term “parallel polystores”). We compare the systems with respect to the features
that we hereby address, mainly the parallel support of MongoDB, data processing plat-
forms, and optimizability of selective joins through semi joins across data stores. We
exclude loosely-coupled systems, as they do not provide parallel data integration.
Workflow managers dispatch the execution of a query/workflow plan to underlying
data processing platforms, hence can access MongoDB through the platforms, e.g.,
Spark using the Spark MongoDB connector. Tightly-coupled systems can perform par-
allel joins, but since they are focused only on the tight integration between RDBMS
and Hadoop stores, cannot be extended to support NoSQL stores. Hybrid systems (be-
sides LeanXcale) usually access document data stores through extended relational map-
pings, with the added support of flattening operators (UNNEST) to express queries over
nested documents. With respect to semi joins across data stores, only a few of the sys-
tems are capable. JEN and LeanXcale are applying semi-joins as an optimization tech-
nique – JEN with its efficient zigzag join that exchanges bloom filters between the
HDFS and RDBMS datasets and LeanXcale through bind joins. With other systems,
semi-joins may be supported, but must be explicitly programmed.

8

Table 1. Comparison of parallel polystores.
System Query

interface
Supported data
stores

Supports docu-
ment databases
(MongoDB)

Supports data
processing
platforms

Cross-plat-
form semi
joins

Exten-
sible

Tightly-coupled systems
Polybase SQL RDBMS, HDFS N N N N

HadoopDB SQL-like
(Hive QL)

RDBMS, HDFS N N N N

Odyssey/Miso SQL RDBMS, HDFS N N N N

JEN SQL RDBMS, HDFS N N Zig-zag bloom
join

N

Workflow managers

Musketeer SQL-like +
Graph queries;
extensible

RDBMS, HDFS,
NoSQL

Through underly-
ing platform, e.g.
Spark

Multiple, incl.
Spark

N Y

RHEEM RheemLatin
(imperative)

RDBMS, HDFS,
NoSQL

Through underly-
ing platform, e.g.
Spark

Multiple, incl.
Spark

Explicitly
programmed

Y

Teradata
IntelliSphere

SQL-like RDBMS, HDFS,
NoSQL

Through another
SQL-like polystore

Any, with SQL-
like interface

N Y

Hybrid polystores

SparkSQL SQL-like RDBMS, HDFS,
NoSQL

Relational
mappings

Spark,
natively

Explicitly
programmed

Y

Presto SQL-like RDBMS, HDFS,
NoSQL

Relational
mappings

N N Y

Apache Drill SQL-like RDBMS, HDFS,
NoSQL

Relational
mappings

N N Y

Myria MyriaL (rela-
tional model)

RDBMS, HDFS,
NoSQL

Relational
mappings

N N Y

Impala SQL RDBMS, HDFS,
NoSQL

Relational
mappings

N N Y

LeanXcale [24] SQL-like +
native queries

RDBMS, HDFS,
NoSQL

Native JavaScript N Bind join
optimization

Y

LeanXcale
[this]

SQL-like +
native queries +
MFR

RDBMS, HDFS,
NoSQL

Native JavaScript Spark, through
native Scala or
MFR

Bind join
optimization

Y

Concluding remarks. Although these systems enable parallel integration with data

clusters (like MongoDB), none of them supports the combination of massive parallel-
ism with native queries and the optimization of bind joins, which is addressed by the
LeanXcale distributed query engine. In particular, the parallel query processing with
bind joins through SQL queries is not supported by any of the hybrid systems. For
example, with Spark SQL it is possible to do a bind join, but this must be defined pro-
grammatically by a developer. This, however, limits the use cases, since a data analyst
cannot easily take advantage of this feature through an SQL query. With LeanXcale,
once the named tables (subqueries to data stores) are defined by the system developer
or administrator, they can be easily used and involved in joins (including bind joins)
through the SQL interface. Moreover, enabling native queries and scripts allows to fully
exploit the power of the underlying data stores, as opposed to using static mappings to
a common data model.

9

3 Motivation and Problem Statement

Existing parallel polystore query engines [4, 5, 6, 32, 38] address the problem of ac-
cessing in parallel partitions from tables, document collections, or arbitrary distributed
datasets, exploiting the parallel capabilities of a diverse set of underlying distributed
data stores and performing parallel joins on top. This is typically done by making a
number of query engine workers connect independently to data store shards. As an ex-
ample, elaborated in our previous work [24], we addressed the scenario of joining a
sharded document collection, residing in a MongoDB cluster, with a partitioned table
from a distributed relational database or a distributed HDFS dataset. This setup works
well when the underlying datasets can be logically mapped to relations, so that joins
can efficiently take place at the parallel polystore query engine. Even if the MongoDB
data has to undergo transformations, expressed through user-defined JavaScript func-
tions, this can still be handled in parallel by making each worker initiate the execution
of the custom JavaScript code against the MongoDB shard assigned to it and collect its
partition of the intermediate data.

In other cases, complex transformations may need to be applied to a distributed da-
taset (e.g. through specific map-reduce blocks that have no analogue in relational alge-
bra terms), before the data can be processed by means of relational operators. This
problem was addressed in [9], by allowing distributed data processing frameworks (in
particular Apache Spark) to be accessed as data stores and queried through the semi-
declarative MFR notation. To achieve this, the query engine creates a session at the
Spark driver, then translates the MFR subquery to code (in Scala or Python for Spark),
delegates this code to Spark for execution, and collects the intermediate data through
the same Spark driver session.

The limitation. However, the collection of this intermediate result set is centralized,
since the Spark driver simply merges the data from all the partitions of the final RDD
into a single non-partitioned result set. Thus, even a distributed query engine cannot
exploit parallelism in retrieving a Spark RDD, since only one worker will collect the
entire RDD through the Spark driver, which is the limitation we want to overcome in
this paper as an extended version of [24].

The challenge. This limitation comes from the fact that the query engine, like in
most, if not all, parallel polystores, is designed so that each of the involved parallel
workers initiates connection to a node of the underlying data management system and
pulls its partition of a dataset. However, in the case of Spark, there is no way to directly
access the data of an RDD partition. Therefore, the query engine would be forced to
use a single worker to retrieve the entire RDD through the Spark driver, serially. We
address this problem by introducing an architecture, where each RDD partition (more
precisely, the Spark worker that processes the partition) is instructed through generated
code to find and connect to a query engine worker and to push the partition data. Doing
this in parallel and uniformly across Spark and query engine workers is the major chal-
lenge of the current extension of our work.

Objectives. We can now summarize the objectives of our work as the following
requirements to our distributed query engine (DQE):

10

• Parallel data processing: DQE parallelizes the execution of every relational op-
erator.

• Parallel retrieval from data stores: DQE workers access independently data store
shards to retrieve partitioned data in parallel.

• Autonomy of data stores: DQE does not rely on full control over the data stores;
they can be used independently by other applications.

• Highly expressive queries: adopt he polyglot approach of the CloudMdsQL
query language to allow data store native queries or scripts to be expressed as
inline subqueries.

• Optimizability: incorporate optimization techniques, such as bind join and MFR
rewrite rules (see Section 4.2) to boost the performance of selective queries.

• Extensibility: allow for other parallel data stores to be added by implementing
adapters through a flexible programming interface (DataLake API, see Section
5.2).

• Parallel data push model: data store shards can connect to DQE workers inde-
pendently to push partitioned data in parallel. This allows for distributed data
processing frameworks, such as Spark, to be supported by the DQE.

While most of these requirements have already been addressed by other systems in the
literature, we emphasize on the combination of all of them and in this extended version
particularly pay attention to the last one.

Comparisons. To choose competitor systems to experimentally compare our solu-
tion with, we followed the criteria determined by our evaluation queries, i.e. parallel
joins between a sharded document collection and the partitioned result of a workflow
query to a distributed data processing platform. In particular, we want to stress on the
full parallelism to access the underlying datasets, in our case, a MongoDB collection
and a Spark RDD, in the context of expressive subqueries. Considering our comparative
analysis (Table 1), we exclude tightly-coupled systems since they do not support doc-
ument stores. Among hybrid systems, although Presto and Drill support well parallel
query processing across SQL and NoSQL stores, the only one that provides parallel
support of distributed data platforms is Spark SQL, as it uses Spark natively. As for
workflow managers, although they can orchestrate efficiently relational operators
across platforms, they do not provide query execution themselves; for example, a par-
allel join between MongoDB and Spark would be dispatched for execution at Spark by
both Musketeer and RHEEM, so we would consider this comparison as equivalent to
comparing with Spark. Therefore, we target Spark SQL as the only relevant system to
evaluate our contributions against.

4 Background

This section presents the concepts we consider towards the design our solution. We
start with an overview of the CloudMdsQL query language focusing on the polyglot
capabilities and optimization techniques. Then we discuss the distributed architecture
of the LeanXcale query engine, which we use to enable the parallel capabilities of our
polystore.

11

4.1 CloudMdsQL Query Language

The CloudMdsQL language [26] is SQL-based with the extended capabilities for em-
bedding subqueries expressed in terms of each data store’s native query interface. The
common data model respectively is table-based, with support of rich datatypes that can
capture a wide range of the underlying data stores’ datatypes, such as arrays and JSON
objects, in order to handle non-flat and nested data, with basic operators over such com-
posite datatypes.

The design of the query language is based on the assumption that the programmer
has deep expertise and knowledge about the specifics of the underlying data stores, as
well as awareness about how data are organized across them. Queries that integrate data
from several data stores usually consist of native subqueries and an integration
SELECT statement. A subquery is defined as a named table expression, i.e., an expres-
sion that returns a table and has a name and signature. The signature defines the names
and types of the columns of the returned relation. A named table expression can be
defined by means of either an SQL SELECT statement (that the query compiler is able
to analyze and possibly rewrite) or a native expression (that the query engine considers
as a black box and delegates its processing directly to the data store). For example, the
following simple CloudMdsQL query contains two subqueries, defined by the named
table expressions T1 and T2, and addressed respectively against the data stores rdb
(an SQL database) and mongo (a MongoDB database):
T1(x int, y int)@rdb = (SELECT x, y FROM A)
T2(x int, z array)@mongo = {*
 return db.A.find({x: {$lt: 10}}, {x:1, z:1});
*}
SELECT T1.x, T2.z FROM T1, T2
WHERE T1.x = T2.x AND T1.y <= 3

The two subqueries are sent independently for execution against their data stores in
order the retrieved relations to be joined at query engine level. The SQL table expres-
sion T1 is defined by an SQL subquery, while T2 is a native expression (identified by
the special bracket symbols {* *}) expressed as a native MongoDB API call or JavaS-
cript code. The subquery of expression T1 is subject to rewriting by pushing into it the
filter condition y <= 3, to increase efficiency.

CloudMdsQL also provides a CREATE NAMED EXPRESSION command that allows
an expression to be defined and stored in a global catalog in order to be referenced in
several queries, similarly to SQL views and stored procedures/functions. This can fa-
cilitate the work of data analysts who just need to run SQL queries on predefined views
over the underlying data stores, without the need to deeply understand the specifics of
the data technologies and data organization.

MFR extensions. To address distributed processing frameworks (such as Apache
Spark) as data stores, CloudMdsQL introduces a formal notation that enables the ad-
hoc usage of user-defined map/filter/reduce (MFR) operators as subqueries to request
data processing in an underlying big data processing framework [9]. An MFR statement
represents a sequence of MFR operations on datasets. In terms of Apache Spark, a da-
taset corresponds to an RDD (Resilient Distributed Dataset – the basic programming

12

unit of Spark). Each of the three major MFR operations (MAP, FILTER and REDUCE)
takes as input a dataset and produces another dataset by performing the corresponding
transformation. Therefore, for each operation there should be specified the transfor-
mation that needs to be applied on tuples from the input dataset to produce the output
tuples. Normally, a transformation is expressed with an SQL-like expression that in-
volves special variables; however, more specific transformations may be defined
through the use of lambda functions. Let us consider the following simple example
inspired by the popular MapReduce tutorial application “word count”. We assume that
the input dataset for the MFR statement is a text file containing a list of words. To count
the words that contain the string ‘cloud’, we write the following composition of MFR
operations:
T4(word string, count int)@spark = {*
 SCAN(TEXT, 'words.txt')
 .MAP(KEY, 1)
 .REDUCE(SUM)
 .FILTER(KEY LIKE '%cloud%')
*}

For defining map and filter expressions, the special variable TUPLE can be used,
which refers to the entire tuple. The variables KEY and VALUE are thus simply aliases
to TUPLE[0] and TUPLE[1] respectively.

To optimize this MFR subquery, the sequence is a subject to rewriting according to
rules based on the algebraic properties of the MFR operators [9]. In the example above,
since the FILTER predicate involves only the KEY, it can be swapped with the REDUCE,
thus allowing the filter to be applied earlier in order to avoid unnecessary and expensive
computation. The same rules apply for any pushed down predicates, including bind join
conditions.

4.2 Optimizations

To provide an optimal execution of selective queries, we consider two optimization
opportunities: bind join and MFR rewrite rules.

Bind join is a join method, in which the intermediate results of the outer relation
(more precisely, the values of the join key) are passed to the subquery of the inner side,
which uses these results to filter the data it returns. If the intermediate results are small
and index is available on the join key at the inner side, bindings can significantly reduce
the work done by the data store. [19]

To provide bind join as an efficient method for performing semi-joins across heter-
ogeneous data stores, CloudMdsQL uses subquery rewriting to push the join conditions.
For example, the list of distinct values of the join attribute(s), retrieved from the left-
hand side subquery (outer relation), is passed as a filter to the right-hand side (inner)
subquery. To illustrate it, let us consider the following CloudMdsQL query:
A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a)
B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b)
SELECT a.x, b.y FROM b JOIN a ON b.id = a.id

13

First, the relation B is retrieved from the corresponding data store using its query
mechanism. Then, the distinct values of B.id are used as a filter condition in the query
that retrieves the relation A from its data store. Assuming that the distinct values of
B.id are b1 … bn, the query to retrieve the right-hand side relation of the bind join uses
the following SQL approach (or its equivalent according to the data store’s query lan-
guage), thus retrieving from A only the rows that match the join criteria:
SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn)

The way to do the bind join counterpart for native queries is through the use of a
JOINED ON clause in the named table signature, like in the named table A below, de-
fined as a MongoDB script.
A(id int, x int JOINED ON id
 REFERENCING OUTER AS b_keys)@mongo =
{* return db.A.find({id: {$in: b_keys}}); *}

Thus, when A.id participates in an equi-join, the values b1,…,bn are provided to the
script code through the iterator/list object b_keys (in this context, we refer to the table
B as the “outer” table, and b_keys as the outer keys).

Using bind join can be subject to planning decision. To estimate the expected per-
formance gain of a bind join, the query optimizer takes into account the overhead a bind
join may produce. First, when using bind join, the query engine must wait for the left-
hand side B to be fully retrieved before initiating the execution of the right-hand side A.
Second, if the number of distinct values of the join attribute is large, using a bind join
may slower the performance as it requires data to be pushed into the subquery A. To
take this decision, the optimizer needs at least to estimate the cardinality of the join
keys of B, which can be easily solved if the data store exposes a cost model. However,
if B is a native query or no cost information is available, the decision can still be taken,
but at runtime: bind join is attempted and the retrieval of B initiated; then, if at some
point the number of join keys exceeds a threshold, the execution falls back to an ordi-
nary hash join. Nevertheless, the usage of bind join can be also explicitly requested by
the user through the keyword BIND (e.g. FROM b BIND JOIN a).

MFR rewrite rules are used to optimize an MFR subquery after a selection push-
down takes place. The goal in general is to make filters take place as early as possible
in the MFR sequence.

Rule #1 (name substitution): upon selection pushdown, an MFR FILTER is appended
to the MFR sequence and the filter predicate expression is rewritten by substituting
column names with references to dataset fields as per the mapping defined through the
MFR expression. After this initial inclusion, other rules apply to determine whether it
can be moved even farther. Example:
T1(a int, b int)@db1 ={* … *}
SELECT a, b FROM T1 WHERE a > b

is rewritten to:
T1(a int, b int)@db1 ={* … .FILTER(KEY > VALUE)*}
SELECT a, b FROM T1

14

Rule #2: REDUCE(<transformation>).FILTER(<predicate>) is equivalent to
FILTER(<predicate>).REDUCE(<transformation>), if predicate condition
is a function only of the KEY, because thus, applying the FILTER before the REDUCE
will preserve the values associated to those keys that satisfy the filter condition as they
would be if the FILTER was applied after the REDUCE.

Rule #3: MAP(<expr_list>).FILTER(<predicate1>) is equivalent to
FILTER(<predicate2>).MAP(<expr_list>), where predicate1 is rewritten to
predicate2 by substituting KEY and VALUE as per the mapping defined in
expr_list. Example:

MAP(VALUE[0], KEY).FILTER(KEY > VALUE) à

FILTER(VALUE[0] > KEY).MAP(VALUE[0], KEY)

Since planning a filter as early as possible always increases the efficiency, the planner
always takes advantage of moving a filter by applying rules #2 and #3 whenever they
are applicable. The greatest advantage of these rules can be observed when Rule #2 is
applicable, as it enables early filtering of the input to expensive REDUCE operators.
MFR rewrites can be combined with bind join in the sense that when a bind join con-
dition is pushed down the MFR subquery, it will be applied as early as possible, in
many cases reducing significantly the work done by REDUCE operators on the way.

4.3 LeanXcale Architecture Overview

LeanXcale is a scalable distributed SQL database management system with OLTP and
OLAP support and full ACID capabilities. It has three main subsystems: the query en-
gine, the transactional engine, and the storage engine, all three distributed and highly
scalable (i.e., to hundreds of nodes). The system applies the principles of Hybrid Trans-
actional and Analytical Processing (HTAP) and addresses the hard problem of scaling
out transactions in mixed operational and analytical workloads over big data, possibly
coming from different data stores (HDFS, SQL, NoSQL, etc.). LeanXcale solves this
problem through its patented technology for scalable transaction processing [21]. The
transactional engine provides snapshot isolation by scaling out its components, the en-
semble of which guarantees all ACID properties: local transaction managers (atomic-
ity), conflict managers (isolation of writes), snapshot servers (isolation of reads), and
transaction loggers (durability).

The LeanXcale database has derived its OLAP query engine from Apache Calcite
[8], a Java-based open-source framework for SQL query processing and optimization.
LeanXcale’s distributed query engine (DQE) is designed to process OLAP workloads
over the operational data, so that analytical queries are answered over real-time data.
This enables to avoid ETL processes to migrate data from operational databases to data
warehouses by providing both functionalities in a single database manager. The parallel
implementation of the query engine for OLAP queries follows the single-program mul-
tiple data (SPMD) approach [13], where multiple symmetric workers (threads) on dif-
ferent query instances execute the same query/operator, but each of them deals with
different portions of the data. In this section we provide a brief overview of the query
engine distributed architecture.

15

Fig. 1. DQE distributed architecture

Fig. 1 illustrates the architecture of LeanXcale’s Distributed Query Engine (DQE). Ap-
plications connect to one of the multiple DQE instances running, which exposes a typ-
ical JDBC interface to the applications, with support for SQL and transactions. The
DQE executes the applications' requests, handling transaction control, and updating
data, if necessary. The data itself are stored on a proprietary relational key-value store,
KiVi, which allows for efficient horizontal partitioning of LeanXcale tables and in-
dexes, based on the primary key or index key. Each table partition corresponds to a
range of the primary/index key and it is the unit of distribution. Each table is stored as
a KiVi table, where the key corresponds to the primary key of the LeanXcale table and
all the columns are stored as they are into KiVi columns. Indexes are also stored as
KiVi tables, where the index keys are mapped to the corresponding primary keys. This
model enables high scalability of the storage layer by partitioning tables and indexes
across KiVi Data Servers (KVDS). KiVi is relational in the sense that it has a relational
schema and implements all relational operators but join, so any relational operator be-
low a join can be pushed down to KiVi.

This architecture scales by allowing analytical queries to execute in parallel, based
on the master-worker model using intra-query and intra-operator parallelism. For par-
allel query execution, the initial connection (which creates the master worker) will start
additional connections (workers), all of which will cooperate on the execution of the
queries received by the master.

When a parallel connection is started, the master worker starts by determining the
available DQE instances, and it decides how many workers will be created on each
instance. For each additional worker needed, the master then creates a thread, which
initiates a TCP connection to the worker. Each TCP connection is initialized as a
worker, creating a communication endpoint for an overlay network to be used for intra-
query synchronization and data exchange. After the initialization of all workers the
overlay network is connected. After this point, the master is ready to accept queries to
process.

The master includes a state-of-the-art [31] query optimizer that transforms a query
into a parallel execution plan. The transformation made by the optimizer involves re-
placing table scans with parallel table scans, and adding shuffle operators to make sure
that, in stateful operators (such as Group By, or Join), related rows are handled by the
same worker. Parallel table scans will divide the rows from the base tables among all

in
de

pe
nd

en
t s

ca
le

 o
ut

in
de

pe
nd

en
t s

ca
le

 o
ut

KV Store
(KiVi)

KV Master
Server

KV Data
Server

KV Data
Server

KV Data
Server

Query Engine

QE
KVClient

QE
KVClient

QE
KVClient

QE
KVClient

OLAP
Application App

JDBC Drv

App
JDBC Drv

Txn Engine Txn Txn Txn

16

workers, i.e., each worker will retrieve a disjoint subset of the rows during table scans.
This is done by scheduling the obtained subsets to the different DQE instances. This
scheduling is handled by a component in the master worker, named DQE scheduler.
The generated parallel execution plan is broadcast to be processed by all workers. Each
worker then processes the rows obtained from subsets scheduled to its DQE instance,
exchanging rows with other workers as determined by the shuffle operators added to
the query plan.

Let us consider the query Q1 below, which we will use as a running example through-
out the paper to illustrate the different query processing modes. The query assumes a
TPC-H [37] schema.
Q1: SELECT count(*)
 FROM LINEITEM L, ORDERS O
 WHERE L_ORDERKEY = O_ORDERKEY
 AND L_QUANTITY < 5

Fig. 2. Query processing in parallel mode

This query is transformed into a query execution plan, where leaf nodes correspond
to tables or index scans. The master worker then broadcasts to all workers the generated
query plan, with the additional shuffle operators (Fig. 2a). Then, the DQE scheduler
assigns evenly all database shards across all workers. To handle the leaf nodes of the
query plan, each worker will do table/index scans only at the assigned shards. Let us
assume for simplicity that the DQE launches the same number of workers as KVDS
servers, so each worker connects to exactly one KVDS server and reads the partition of
each table that is located in that KVDS server. Then, workers execute in parallel the
same copy of the query plan, exchanging rows across each other at the shuffle operators
(marked with an S box).

To process joins, the query engine may use different strategies. First, to exchange
data across workers, shuffle or broadcast methods can be used. The shuffle method is
efficient when both sides of a join are quite big; however, if one of the sides is relatively
small, the optimizer may decide to use the broadcast approach, so that each worker has
a full copy of the small table, which is to be joined with the local partition of the other
table, thus avoiding the shuffling of rows from the large table (Fig. 2b). Apart from the

17

data exchange operators, the DQE supports various join methods (hash, nested loop,
etc.), performed locally at each worker after the data exchange takes place.

5 Parallel Polyglot Query Processing across Data Stores

LeanXcale DQE is designed to integrate with arbitrary data management clusters,
where data resides in its natural format and can be retrieved (in parallel) by running
specific scripts or declarative queries. These data management clusters can range from
distributed raw data files, through parallel SQL databases, to sharded NoSQL databases
(such as MongoDB, where queries can be expressed as JavaScript programs) and par-
allel data processing frameworks (such as Apache Spark, where data retrieval and/or
transformation can be requested by means of Python or Scala scripting). This turns
LeanXcale DQE into a powerful “big data lake” polyglot query engine that can process
data from its original format, taking full advantage of both expressive scripting and
massive parallelism. Moreover, joins across any native datasets, including LeanXcale
tables, can be applied, exploiting efficient parallel join algorithms. Here, we specifi-
cally focus on parallel joins across a relational table, the result of a JavaScript subquery
to MongoDB, and the result of an MFR/Scala subquery to Apache Spark, but the con-
cept relies on an API that allows its generalization to other script engines and data stores
as well. To enable ad-hoc querying of an arbitrary data set, using its scripting mecha-
nism, and then joining the retrieved result set at DQE level, DQE processes queries in
the CloudMdsQL query language, where scripts are wrapped as native subqueries.

5.1 High Expressivity: Motivation

To better illustrate the necessity of enabling user-defined scripts to MongoDB as
subqueries, rather than defining SQL mappings to document collections, let us consider
the following MongoDB collection orders that has a highly non-relational structure:
{order_id: 1, customer: "ACME", status: "O",
 items: [
 {type: "book", title: "Book1", author: "A.Z.",
 keywords: ["data", "query", "cloud"]},
 {type: "phone", brand: "Samsung", os: "Android"}
] }, ...

Each record contains an array of item objects whose properties differ depending on
the item type. A query that needs to return a table listing the title and author of all books
ordered by a given customer, would be defined by means of a flatMap operator in Ja-
vaScript, following a MongoDB find() operator. The example below wraps such a
subquery as a CloudMdsQL named table:
BookOrders(title string, author string,
 keywords string[])@mongo =
{*
 return db.orders.find({customer: "ACME"})
 .flatMap(function(v) {
 var r = [];
 v.items.forEach(function(i){

18

 if (i.type == "book")
 r.push({title:i.title, author:i.author,
 keywords:i.keywords});
 });
 return r; });
*}

And if this table has to be joined with a LeanXcale table named authors, this can
be expressed directly in the main SELECT statement of the CloudMdsQL query:
SELECT B.title, B.author, A.nationality
FROM BookOrders B, Authors A
WHERE B.author = A.name

Furthermore, we aim at processing this join in the most efficient way, i.e. in parallel,
by allowing parallel handling of the MongoDB subquery and parallel retrieval of its
result set.

In another example, a more sophisticated data transformation logic (such as a chain
of user-defined transformations over Apache Spark RDDs) needs to be applied to un-
structured data before processing by means of relational operators [9]. Let us consider
the task of analyzing the logs of a scientific forum in order to identify the top experts
for particular keywords, assuming that the most influencing user for a given keyword
is the one who mentions the keyword most frequently in their posts. We assume that
the forum application keeps log data about its posts in the non-tabular structure below,
namely in text files where a single record corresponds to one post and contains a fixed
number of fields about the post itself (timestamp, link to the post, and username in the
example) followed by a variable number of fields storing the keywords mentioned in
the post.
2014-12-13, http://..., alice, storage, cloud
2014-12-22, http://..., bob, cloud, virtual, app
2014-12-24, http://..., alice, cloud

The unstructured log data needs to be transformed into the tabular dataset below,
containing for each keyword the expert who mentioned it most frequently.
KW expert frequency
cloud alice 2
storage alice 1
virtual bob 1
app bob 1

Such transformation requires the use of programming techniques like chaining
map/reduce operations that should take place before the data is involved in relational
operators. This can be expressed with the following MFR subquery, with embedded
Scala lambda functions to define custom transformation logic:
Experts(kw string, expert string)@spark = {*
 SCAN(TEXT, 'posts.txt', ',')
 .MAP(tup=> (tup(2), tup.slice(3, tup.length)))
 .FLAT_MAP(tup=> tup._2.map((_, tup._1)))
 .MAP(TUPLE, 1)
 .REDUCE(SUM)
 .MAP(KEY[0], (KEY[1], VALUE))
 .REDUCE((a, b) => if (b._2 > a._2) b else a)

19

 .MAP(KEY, VALUE[0])
*}

In this sequence of operations, the first MAP takes a tuple (corresponding to a row
from the input file) as an array of string values (tup) and maps the username (tup(2))
to the keywords subarray (tup.slice(…)). Then, the FLAT_MAP emits (keyword,
user) pairs for each keyword. The following MAP and REDUCE count the frequencies of
each such pair. Then, after grouping by keyword, the last REDUCE selects, for each key-
word, the (user, frequency) pair that has the greatest value of frequency. The final MAP
selects the keyword and username for the final projection of the returned relation.

Now, the named table Experts can be joined to BookOrders, for example the fol-
lowing way:
SELECT B.title, B.author, E.kw, E.expert
FROM BookOrders B, Experts E
WHERE E.kw IN B.keywords

Optimization. For optimal execution of this query, both bind join and MFR rewrites
play their roles. The bind join condition (which involves only the kw column) can be
pushed down the MFR sequence as a FILTER operator, in this case FILTER(KEY IN
(<set_of_B_keywords>)). As per the MFR rewrite rules, this would take place im-
mediately after the FLAT_MAP operator, significantly reducing at early stage the amount
of data to be processed by the expensive REDUCE operators that follow. To build the
bind join condition, the query engine flattens B.keywords and identifies the list of
distinct values.

5.2 DataLake API

By processing such queries, DQE takes advantage of the expressivity of each local
scripting mechanism, yet allowing for results of subqueries to be handled in parallel by
DQE and involved in operators that utilize the intra-query parallelism. The query en-
gine architecture is therefore extended to access in parallel shards of the external data
store through the use of DataLake distributed wrappers that hide the complexity of the
underlying data stores’ query/scripting languages and encapsulate their interfaces under
a common DataLake API to be interfaced by the query engine.

Towards the design of a distributed wrapper architecture and its programming inter-
face, we consider the outlined in Section 3 requirements for our polystore. In particular,
we pay attention to the following desired capabilities:
• A DataLake wrapper must have multiple instances, each linked to a DQE

worker.
• A wrapper instance must be able to execute a native subquery or script against

a particular shard of the underlying data store cluster.
• The DQE scheduler must be able to retrieve (through one of the wrapper in-

stances) a list of “shard entries”, i.e. specifications of the available shards for an
underlying dataset. These specifications must be opaque, as the DQE scheduler
is agnostic to the specifics of the data store cluster.

• The scheduler must be able to assign shards to DQE workers and hence to the
corresponding DataLake wrapper instances.

20

These requirements make the concept generic in the sense that our polystore can be
easily extended to support any data management cluster as long as it provides means to
connect directly to database shards and retrieve in parallel dataset partitions. In the sub-
sequent subsections, we give details on how the process of parallel retrieval from Mon-
goDB and HDFS datasets is mapped to the methods of the generic DataLake API. We
also show that the same methods abstract well enough even the more sophisticated par-
allel data push model, necessary to support the parallel integration with Apache Spark,
as introduced in Section 3.

For a particular data store, each DQE worker creates an instance of the DataLake
wrapper that is generally used for querying and retrieval of shards of data. Each wrapper
typically uses the client API of the corresponding data management cluster and imple-
ments the following DataLake API methods to be invoked by the query engine in order
to provide parallel retrieval of shards (Fig. 3).

Fig. 3. Generic architecture extension for accessing external data stores

The method init(ScriptContext) requests the execution of a script to retrieve data
from the data store. It provides connection details to address the data store and the script
as text. It may also provide parameter values, if the corresponding named table is pa-
rameterized. Normally, the wrapper does not initiate the execution of the script before
a shard is assigned by the setShard method (see below).

After the initialization, the DQE selects one of the wrapper instances (the one created
by the master worker) as a master wrapper instance. The method Object[] listShards()
is invoked by the DQE only to the master wrapper to provide a list of shards where the
result set should be retrieved from. Each of the returned objects encapsulates infor-
mation about a single shard, which is implementation-specific, therefore opaque for the
query engine. Such an entry may contain, for example, the network address of the da-
tabase shard, and possibly a range of values of the partition key handled by this shard.
Since the query engine is unaware of the structure of these objects, the wrapper provides
additional methods for serializing and deserializing shard entries, so that DQE can ex-
change them across workers.

Having obtained all the available shards, the DQE schedules the shard assignment
across workers and invokes the method setShard(Object shard) to assign a shard to a
particular wrapper instance. Normally, this is the point where the connection to the data

21

store shard takes place and the script execution is initiated. This method might be in-
voked multiple times to a single wrapper instance, in case there are more shards than
workers.

Using the method boolean next(Object[] row), the query engine iterates through a
partition of the result set, which is retrieved from the assigned shard. When this iteration
is over, the DQE may assign another shard to the wrapper instance.

By interfacing wrappers through the DataLake API, the DQE has the possibility to
retrieve in parallel disjoint subsets of the result set, much like it does with LeanXcale
tables. A typical wrapper implementation should use a scripting engine and/or a client
library to execute scripts (client- or server-side) against the data store.

5.3 Implementation for MongoDB

In this section, we introduce the design of the distributed MongoDB wrapper. The con-
cept of parallel querying against a MongoDB cluster is built on the assumption that
each DQE worker can access directly a MongoDB shard, bypassing the MongoDB
router in order to sustain parallelism. This, however, forces the DQE to define certain
constraints for parallel processing of document collection subqueries, in order to guar-
antee consistent results, which is normally guaranteed by the MongoDB router. The full
scripting functionality of MongoDB JavaScript library is still provided, but in case par-
allel execution constraints fail, the execution falls back to a sequential one. First, the
wrapper verifies that the MongoDB balancer is not running in background, because
otherwise it may be moving chunks of data across MongoDB shards at the same time
the query is being executed, which may result in inconsistent reads. Second, the
subquery should use only stateless operators (Op) on document collections, as they are
distributive over the union operator. In other words, for any disjoint subsets (shards) S1
and S2 of a document collection C, Op(S1)ÈOp(S2) = Op(S1ÈS2) must hold, so that the
operator execution can be parallelized over the shards of a document collection while
preserving the consistency of the resulting dataset. In our current work, we specifically
focus on enabling the parallel execution of filtering, projection (map), and flattening
operators, by means of user-defined as JavaScript functions transformations.

The distributed wrapper for MongoDB comprises a number of instances of a Java
class that implements the DataLake API, each of which embeds a JavaScript scripting
engine that uses MongoDB’s JavaScript client library. To support parallel data re-
trieval, we further enhance the client library with JavaScript primitives that wrap stand-
ard MongoCursor objects (usually returned by a MongoDB JavaScript query) in Shard-
edCursor objects, which are aware of the sharding of the underlying dataset. In fact,
ShardedCursor implements all DataLake API methods and hence serves as a proxy of
the API into the JavaScript MongoDB client library. The client library is therefore ex-
tended with the following document collection methods that return ShardedCursor and
provide the targeted operators (find, map, and flat map) in user scripts.

The findSharded() method accepts the same arguments as the native MongoDB
find() operator, in order to provide the native flexible querying functionality, com-
plemented with the ability to handle parallel iteration on the sharded result set. Note

22

that, as opposed to the behavior of the original find() method, a call to find-
Sharded() does not immediately initiate the MongoDB subquery execution, but only
memorizes the filter condition (the method argument), if any, in the returned Shard-
edCursor object. This delayed iteration approach allows the DQE to internally manip-
ulate the cursor object before the actual iteration takes place, e.g., to redirect the
subquery execution to a specific MongoDB shard. And since an instance of Shard-
edCursor is created at every worker, this allows for the parallel assignment of different
shards.

In order to make a document result set fit the relational schema required by a Cloud-
MdsQL query, the user script can further take advantage of the map() and flatMap()
operators. Each of them accepts as argument a JavaScript mapper function that per-
forms a transformation on each document of the result set and returns another document
(map) or a list of documents (flatMap). Thus, a composition of findSharded and
map/flatMap (such as in the BookOrders example above) makes a user script ex-
pressive enough, so as to request a specific MongoDB dataset, retrieve the result set in
parallel, and transform it in order to fit the named table signature and further be con-
sumed by relational operators at the DQE level.
Let us consider the following modification Q1ML of query Q1, which assumes that the
LINEITEM table resides as a sharded document collection in a MongoDB cluster and
the selection on it is expressed by means of the findSharded() JavaScript method,
while ORDERS is still a LeanXcale table, the partitions of which are stored in the KV
storage layer.
Q1ML: LINEITEM(L_ORDERKEY int, …)@mongo = {*
 return db.lineitem.findSharded(
 {l_quantity: {$lt: 5}});
 *}

 SELECT count(*)
 FROM LINEITEM L, ORDERS O
 WHERE L_ORDERKEY = O_ORDERKEY

Let us assume for simplicity a cluster of equal numbers of: DQE workers, KVDS
servers, and MongoDB shards. Thus, each DQE worker gets exactly one partition of
both tables by connecting to one MongoDB shard (through a wrapper instance) and one
KVDS (Fig. 4).

The DQE initiates the subquery request by passing the script code to each wrapper
instance through a call to its init() method. At this point, the ShardedCursor object
does not yet initiate the query execution, but only memorizes the query filter object.
Assuming that W1 is the master worker, it calls the listShards() method of its wrap-
per instance WR1 to query the MongoDB router for a list of MongoDB shards (database
instances identified by host address and port), where partitions of the lineitem col-
lection are stored. The list of shards is then reported to the DQE scheduler, which as-
signs one MongoDB shard to each of the workers by calling the setShard() method.
Each worker then connects to the assigned shard and invokes the find() method to a
partition of the lineitem collection using the memorized query condition, thus re-
trieving a partition of the resulting dataset (if a flatMap or map follows, it is processed
for each document of that partition locally at the wrapper). The dataset partition is then

23

converted to a partition of an intermediate relation, according to the signature of the
LINEITEM named table expression. At this point, the DQE is ready to involve the par-
titioned intermediate relation LINEITEM in the execution of a parallel join with the na-
tive LeanXcale partitioned table ORDERS.

Fig. 4. Parallel join between sharded datasets: LeanXcale table and MongoDB collection.

5.4 Implementation for HDFS Files

The distributed HDFS wrapper is designed to access in parallel tables stored as HDFS
files, thus providing the typical functionality of a tightly-coupled polystore, but through
the use of the DataLake API. We assume that each accessed HDFS file is registered as
table in a Hive metastore. Therefore, a wrapper instance can use the Hive metastore
API to get schema and partitioning information for the subqueried HDFS table and
hence to enable iteration on a particular split (shard) of the table. Note that Hive is
interfaced only for getting metadata, while the data rows are read directly from HDFS.
To better illustrate the flow, let us consider another modification Q1HL of query Q1,
which assumes that the LINEITEM table is stored as file in a Hadoop cluster.
Q1HL: SELECT count(*)
 FROM LINEITEM@hdfs L, ORDERS O
 WHERE L_ORDERKEY = O_ORDERKEY

To schedule parallel retrieval of the LINEITEM table, the DQE redirects the subquery
to the HDFS wrapper, preliminarily configured to associate the @hdfs alias with the
URI of the Hive metastore, which specifies how the file is parsed and split. This infor-
mation is used by the master wrapper, which reports the list of file splits (instances of
Hive API’s InputSplit class) to the DQE scheduler upon a call to the
listShards() method. Then, the scheduler assigns a split to each of the workers,
which creates a record reader on it in order to iterate through the split’s rows (Fig. 5).

24

Fig. 5. Parallel join between LeanXcale and HDFS tables.

5.5 Implementation for Apache Spark

As stated in Section 3, the major challenge of supporting Apache Spark as an underly-
ing data management cluster is to enable parallel data movement from Spark workers
to DataLake wrappers. Since this necessitates that Spark workers find and connect to
DataLake wrapper instances, it results in a different, more complex architecture of the
distributed Spark wrapper. A discovery service is introduced through the special com-
ponent Spark Agent Registry that keeps information about available Spark wrapper in-
stances and dispatches them to the requesting Spark workers so that parallelism is fully
exploited in moving data from a Spark RDD to the DQE. In order to make the wrapper
instances collect in parallel partitions of the resulting RDD, the master wrapper ships
an additional code together with the user defined script, that makes each RDD partition
push its data directly to the assigned by the registry wrapper instance. This approach,
explained in detail hereafter, differs from the typical retrieval of sharded data, where
partitions of the underlying dataset can be directly accessed and pulled by wrapper in-
stances.

As the wrapper processes MFR expressions wrapped in native subqueries, it imple-
ments a subquery processor. It parses and interprets a subquery written in MFR nota-
tion; then, uses an MFR planner to find optimization opportunities; and finally trans-
lates the resulting sequence of MFR operations to a sequence of Spark methods to be
executed, expressed as Scala (in our focus for this paper) or Python script. The MFR
planner decides where to position the pushed down filter operations to apply them as
early as possible, using rules for reordering MFR operators that take into account their
algebraic properties (see Section 4.2). This preprocessing takes place at the master
wrapper instance.

To enable remote submission of the generated Scala script for Spark by the master
wrapper, our setup relies on Apache Livy2, which provides a REST service for easy
submission of Spark jobs and Spark context management. Fig. 6 gives a high-level il-
lustration of the processing of the query Q1SL, assuming a simple MFR subquery that

2 https://livy.apache.org

25

reads the LINEITEM table as a text file from the Hadoop cluster, but this time through
Spark.
Q1SL: LINEITEM(L_ORDERKEY int, …)@spark = {*
 {* SCAN(TEXT, 'lineitem.tbl', ',') *}
 SELECT count(*)
 FROM LINEITEM L, ORDERS O
 WHERE L_ORDERKEY = O_ORDERKEY

Fig. 6. Parallel join between LeanXcale and Spark.

Fig. 7 shows in detail the flow of operations for processing an MFR subquery by the
distributed Spark wrapper. Each wrapper instance is composed of PrepareScript and
SparkAgent components. PrepareScript is responsible for preparing the Scala script to
be submitted as a Spark job and is active only at the master wrapper for a particular
query. SparkAgent is the component, which accepts TCP connections from Spark ex-
ecutors to push RDD partition data. To initiate the subquery processing, the DQE sends
the user MFR expression to the master wrapper through a call to the init() method.
Then, the PrepareScript component of the master wrapper generates the Scala code that
corresponds to the MFR query, to initialize a variable named rdd:
val rdd = sc.textFile("lineitem.tbl")
 .map(_.split(","))

Next, the DQE calls the listShards() method of the master wrapper, which re-
turns the number of expected partitions of the result RDD. To figure out this number,
PrepareScript opens a Livy session, initializes the rdd variable using the above Scala
statement, and then calls rdd.getNumPartitions().

At this moment, the execution of the prepared Spark job gets initiated by calling
through the same Livy session the following foreachPartition action function that
makes each partition connect to an available wrapper instance and send its data:
rdd.foreachPartition { part =>
 val sock = connectSparkAgent()
 part.foreach(tup=> sock.write(serialize(tup)))
 sock.close()
}

26

Fig. 7. Architecture of the distributed Spark wrapper.

In this code, connectSparkAgent is a function that the master wrapper prelim-
inarily generates and defines in the Livy session. It requests from a common compo-
nent, named AgentRegistry, the address of an available SparkAgent (waiting for such
availability, if necessary) and makes a socket connection to it. serialize is another
function that serializes each entry of the RDD partition to a byte array in a format that
SparkAgent can interpret, which is then sent to the SparkAgent through the socket. This
function is also generated by the master wrapper, once the type of the RDD entries is
reported back through Livy after initialization of the rdd variable.

Upon a subsequent call of setShard() to a wrapper instance, the corresponding
SparkAgent reports to the AgentRegistry its availability to receive partition data for this
particular query. On the other hand, as described above, when processing a partition,
each Spark executor finds and sends to an available Spark agent all tuples of the parti-
tion. When tuples are received and deserialized, SparkAgent buffers them to a queue,
from where they are pulled by the query engine through calls of the next() method
of the wrapper instance.

6 Experimental Evaluation

The goal of our experimental validation is to assess the scalability of the query engine
when processing integration (join) queries across diverse data sources, as our major
objective is to be able to fully exploit both the massive parallelism and high expressiv-
ity, provided by the underlying data management technologies and their scripting
frameworks. We evaluate the scalability of processing a particular query by varying the
volume of queried data and the level of parallelism and analyzing the corresponding
execution times. In particular, we strive to retain similar execution times of a particular
query when keeping the level of parallelism (in number of data shards and workers)
proportional to the scale of data.

The experimental evaluation was performed on a cluster of the GRID5000 platform3.
Each node in the cluster runs on two Xeon E5-2630 v3 CPUs at 2.4GHz, 8 physical

3 http://www.grid5000.fr

27

cores per CPU (i.e., 16 per node), 128 GB main memory, and the network bandwidth
is 10Gbps. The highest level of parallelism is determined by the total number of cores
in the cluster. We performed the experiments varying the number of nodes from 2 to
32 and the number of workers from 32 to 512 (several workers per node). All the three
data stores and the query engine are evenly distributed across all the nodes, i.e. shards
of each data store and Spark workers are collocated at each node. The coordinating
components for the Spark subsystem, Livy and AgentRegistry, are running on one of
the nodes. For each experiment, the level of parallelism determines the number of data
shards, as well as the highest number of workers, in accordance with the total number
of cores in the cluster.

We performed our experiments in three general groups of test cases, each having a
distinct objective. The first group evaluates the scalability of the system in the context
of straightforward SQL mappings with the underlying data stores. The second group
adds higher expressivity to the subqueries, which cannot be easily achieved through
trivial SQL mappings, while still assessing the scalability. The third group evaluates
the benefit of performing bind join in the context of large-scale data and the same highly
expressive subqueries. All the queries were run on a cluster of LeanXcale DQE in-
stances, running the distributed wrappers for MongoDB, Hive, and Spark.

For comparison with the state of the art, the large-scale test case queries were also
performed on a Spark SQL cluster, where we used the MongoDB Spark connector to
access MongoDB shards in parallel. The choice of Spark SQL for a state-of-the-art
representative to compare our work with is justified by the fact that it supports most of
the features our approach targets and hereby evaluates, namely: (a) parallel MongoDB
subqueries through the use of the MongoDB connector that also supports native Mon-
goDB operators (e.g. aggregation pipelines), beyond the trivial SQL mappings; (b) par-
allel map/filter/reduce subqueries, done natively through Spark RDD transformations;
(c) parallel joins and scalability. What Spark SQL is not capable of is bind join through
SQL queries; to perform a bind join, one has to write a Spark program, which limits the
use cases. Therefore, we stress on our advantage of supporting this powerful optimiza-
tion technique.

6.1 General Scalability

The first group of test cases aims at generic evaluation of the performance and scala-
bility of joins across any pair of the four involved data stores. The data used was based
on the TPC-H benchmark schema [37], particularly for the tables LINEITEM,
ORDERS, and CUSTOMER. All the generated datasets were: loaded in LeanXcale as
relational tables; loaded in MongoDB as document collections; copied to the HDFS
cluster as raw CSV files, to be accessed through Hive as tables and through Spark by
means of scans expressed as simple MFR/Scala statements. To perform the tests on
different volumes of data, the datasets were generated with three different scale factors
– 60GB, 120GB, and 240GB. Note that here we focus just on the evaluation of joins;
therefore, our queries involve only joins over full scans of the datasets, without any
filters.

The six queries used for this evaluation are variants of the following:

28

Q1: SELECT count(*)
 FROM LINEITEM L, ORDERS O
 WHERE L_ORDERKEY = O_ORDERKEY

We will refer to them with the notation Q1XY, where X is the first letter of the data
store, from which LINEITEM is retrieved, while Y refers to the location of ORDERS.
For example, Q1ML joins LINEITEM from MongoDB with ORDERS from LeanXcale.
Subqueries to MongoDB are expressed natively in JavaScript. MFR subqueries to
Spark are defined as single SCAN operators, translated to Scala commands. Intermedi-
ate result sets from MongoDB, HDFS, and Spark are retrieved in parallel, as described
in Section 5.

Fig. 8. Execution times (in seconds) of Q1 queries on TPC-H data with different scales of data
(60, 120, and 240 GB) and different levels of parallelism (32, 64, 128, 256, and 512 workers).

Fig. 8 shows the performance measurements on queries of the first test case, execut-
ing joins between LINEITEM and ORDERS tables in any configuration of pairs be-
tween the three data stores.

In general, the execution speed is determined by the performance of processing the
LINEITEM side of the join, as this table is much larger than ORDERS. When
LINEITEM resides at LeanXcale, the performance is highest, as the query engine pro-
cesses it natively. For HDFS tables, some overhead is added, due to data conversions,
communication with the Hive metastore, and possibly accessing HDFS splits through
the network. For Spark result sets, this overhead is a bit higher, because of the additional

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
LM

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
ML

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
MH

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
HM

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
HL

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
LH

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
LS

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
MS

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
HS

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
SL

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
SM

60GB 120GB 240GB

0
50
100
150
200
250
300
350
400
450
500

32 64 128 256 512

Q1
SH

60GB 120GB 240GB

29

serialization/deserialization that takes place between Spark executors and SparkAgent
instances. MongoDB subqueries show lowest performance as data retrieval passes
through the embedded JavaScript interpreter at each worker.

All the graphs show reasonable speedup with increase of the parallelism level. More-
over, the correspondence between scale of data and parallelism level is quite stable. For
example, quite similar execution times are observed for 60GB with 64 workers, 120GB
with 128 workers, and 240GB with 256 workers. This means that, as the volume of data
grows, performance can be maintained by simply adding a proportional number of
workers and data shards.

6.2 High Expressivity and Scalability

The second group of test cases aims at the evaluation of highly expressive JavaScript
and MFR subqueries, such as the BookOrders and Experts examples from Section
5.1. The goal is to show that even with more sophisticated subqueries, scalability is not
compromised.

To evaluate BookOrders, we created a MongoDB nested document collection
named Orders_Items, where we combined the ORDERS and LINEITEM datasets as
follows. For each ORDERS row we created a document that contains an additional
array field items, where the corresponding LINEITEM rows were added as subdocu-
ments. Each of the item subdocuments was assigned a type field, the value of which
was randomly chosen between “book” and “phone”. Then, “title” and “author” fields
were added for the “book” items and “brand” and “os” – for the “phone” items, all filled
with randomly generated string values. Thus, the following BookOrders named table
was used in the test queries:
BookOrders(custkey int, orderdate date, title string, author string,
 keywords string[])@mongo =
{*
 return db.orders_items.findSharded()
 .flatMap(function(doc) {
 var r = [];
 doc.items.forEach(function(i){
 if (i.type == "book")
 r.push({custkey: doc.custkey, orderdate: doc.orderdate,
 title: i.title, author: i.author, keywords: i.keywords});
 });
 return r; });

*}

We ran two queries under the same variety of conditions – three different scale fac-
tors for the volume of data and varying the level of parallelism from 32 to 512. Query
Q2M evaluates just the parallel execution of the BookOrders script in MongoDB, while
Q2ML involves a join between MongoDB and the CUSTOMER table from the LeanXcale
data store:
Q2M: SELECT count(*) FROM BookOrders

Q2ML: SELECT count(*)
 FROM BookOrders O, CUSTOMER C
 WHERE O.CUSTKEY = C.C_CUSTKEY

30

Fig. 9 shows the performance measurements of Q2 queries that stress on the evalua-
tion of the parallel processing of highly expressive JavaScript queries, with and without
join with a LeanXcale table. Similar conclusions on performance and scalability can be
done, like for the Q1 queries.

Fig. 9. Execution times (in seconds) of Q2 queries on more sophisticated JavaScript MongoDB
subqueries with scales of data from 60 to 240 GB and levels of parallelism from 32 to 512.

To evaluate the Experts subquery, we generated a log file for posts with the
structure suggested in Section 5.1. The first and the second fields of each tuple are a
timestamp and a URL; they do not have impact on the experimental results. The third
field contains the author of the post as a string value. The remainder of the tuple line
contains 1 to 10 keyword string values, randomly chosen out of a set of 15,000 distinct
keywords. Data have been generated in three scale factors: 60GB (400 million tuples),
120GB (800 million tuples), and 240GB (1.6 billion tuples). The intermediate datasets
at the first shuffle, where (keyword, user) pairs are emitted, are about the same size
respectively.

Similarly to the previous test case, we ran two queries varying the level of parallel-
ism from 32 to 512. Query Q2S evaluates just the parallel execution of the Experts
MFR query on Spark, while Q2SL involves a join with the CUSTOMER table from the
LeanXcale data store:
Q2S: SELECT count(*) FROM Experts

Q2SL: SELECT count(*)
 FROM Experts E, CUSTOMER C
 WHERE E.expert = C.C_NAME

Fig. 10 shows the performance measurements of Q2 queries that stress on the evalu-
ation of the parallel processing of MFR/Scala queries against Spark, with and without
join with a LeanXcale table. In general, the execution of these queries is much slower,
as, at the Spark level, it involves shuffles of significant amounts of intermediate data.
The results show good scalability and speedup with increase of the parallelism level,
like for the Q1 queries.

0

50

100

150

200

250

300

350

32 64 128 256 512

Q2
ML

60GB 120GB 240GB

0

50

100

150

200

250

300

350

32 64 128 256 512

Q2
M

60GB 120GB 240GB

31

Fig. 10. Execution times (in seconds) of Q2 queries on complex MFR/Scala queries to Spark
with scales of data from 60 to 240 GB and levels of parallelism from 32 to 512.

6.3 Large Scale and Bind Joins

The third group of test cases evaluates the parallel polyglot query processing in the
context of much larger data. Q3 performs a join between a 600GB version of the Mon-
goDB collection Orders_Items (containing ~770 million documents and ~3 billion
order items) and a generated table CLICKS of size 1TB, containing ~6 billion click log
records. To make the CLICKS dataset accessible by both Spark and LeanXcale, it is
generated as an HDFS file.
Q3: SELECT O.CUSTKEY, O.TITLE, C.URL, O.ORDERDATE
 FROM CLICKS C, BookOrders O
 WHERE C.UID = O.CUSTKEY
 AND C.CLICKDATE = O.ORDERDATE
 AND C.IPADDR BETWEEN a AND b

The query assumes a use case that aims to find orders of books made on the same
day the customers visited the website. The predicate C.IPADDR BETWEEN a AND b filters
a range of source IP addresses for the web clicks, which results in selecting click data
for a particular subset of user IDs. This selectivity makes significant the impact of using
bind join within the native table BookOrders. The definition of the named table is
hence slightly modified, to allow for the bind join to apply early filtering to reduce
significantly the amount of data processed by the MongoDB JavaScript subquery:
BookOrders(... JOINED ON custkey REFERENCING OUTER AS uids)@mongo =
{*
 return db.orders_items.findSharded({custkey: {$in: uids}})
 .flatMap(function(doc) {...});
*}

The query executes by first applying the filter and retrieving intermediate data from
the CLICKS table, where a full scan takes place. The intermediate data are then cached
at the workers and a list of distinct values for the UID column is pushed to the MongoDB
wrapper instances, to form the bind join condition. We use the parameters a and b to
control the selectivity on the large table, hence also the selectivity of the bind join. We
ran experiments varying the selectivity factor SF between 0.02%, 0.2%, and 2%.

0

500

1000

1500

2000

2500

32 64 128 256 512

Q2
S

60GB 120GB 240GB

0

500

1000

1500

2000

2500

32 64 128 256 512

Q2
SL

60GB 120GB 240GB

32

Comparison with Spark SQL. To run an analogue of the BookOrders subquery
through the MongoDB connector for Spark SQL, we used the MongoDB aggregation
framework against the same sharded collection in our MongoDB cluster as follows:
db.orders_items.aggregate([{$unwind: "$items"},
 {$match: {"items.type": "BOOK"}}, ...])

Fig. 11 shows the times for processing Q3 queries: with Spark SQL, with LeanXcale
without using bind join, and with LeanXcale using bind join. The level of parallelism
for both storing and querying data is 512. Without bind join, Spark SQL shows a slight
advantage compared to LeanXcale DQE, which is explainable by the overhead of the
JavaScript interpreting that takes place at DQE wrappers for MongoDB. Predicate se-
lectivity does not affect significantly the query execution time, as full scans take place
on both datasets anyway. Performance benefits are noticeable when using LeanXcale
with bind join, where smaller values of the selectivity factor SF result in shorter lists of
outer keys for the bind join condition and hence faster execution of the BookOrders
subquery.

The last test case extends the Q3 query by adding another join with the result of the
Experts MFR subquery to Spark against the 240GB version of the generated posts log
file.

Thus, Q4 is defined as follows:
Q4: SELECT O.CUSTKEY, O.TITLE, C.URL, O.ORDERDATE, E.kw, E.expert
 FROM CLICKS C
 JOIN BookOrders O ON C.UID = O.CUSTKEY
 JOIN Experts E ON E.kw IN O.keywords
 WHERE C.CLICKDATE = O.ORDERDATE
 AND C.IPADDR BETWEEN a AND b

Fig. 11. Execution times (in seconds) of Q3 queries joining an expressive JavaScript MongoDB
subquery on a 600GB document collection with a 1TB click logs dataset. The level of parallelism
was set to 512, i.e. 512 MongoDB shards, 512 LeanXcale DQE instances, and 512 Spark execu-
tors. To assess bind join, SF varied between 0.02%, 0.2%, and 2%.

Using bind join, the query executes as follows: first, the join between CLICKS at
HDFS and BookOrders at MongoDB takes place, as in Q3; then, after flattening
O.keywords and identifying the list of distinct keywords, another bind join condition
is pushed to the Experts subquery to Spark, as described in Section 5.1, to reduce the

0

100

200

300

400

500

600

SF=0.02% SF=0.2% SF=2%

Q3 (LX+Mongo, 1.6TB data)

Spark SQL LeanXcale DQE
no bind join

LeanXcale DQE
with bind join

33

amount of data processed by Spark transformations. To use the same mechanism for
controlling the selectivity of the second join, the keywords for each book item in the
Orders_Items MongoDB collection are generated in a way that a selectivity factor
SF on the first join results in about the same SF on the second join.

Fig. 12 shows the times for processing Q4 queries, involving 2 joins: with Spark
SQL, with LeanXcale without using bind join, and with LeanXcale using bind join.
Similarly to the previous test case, the performance evaluation shows that the ability
for applying bind join that cannot be handled with Spark SQL gives our approach a
significant advantage for selective queries. This is very useful in a wide range of indus-
trial scenarios.

Fig. 12. Execution times (in seconds) of Q4 queries joining the result of Q3 queries (1TB
LeanXcale table joining 600GB MongoDB collection) with an MFR/Scala/Spark subquery
against 240GB HDFS file. The level of parallelism was set to 512, i.e. 512 MongoDB shards,
512 LeanXcale DQE instances, and 512 Spark executors. To assess bind join, SF varied be-
tween 0.02%, 0.2%, and 2%; this is applied at both joins.

7 Conclusion

In this paper, we introduced a parallel polystore system that builds on top of LeanX-
cale’s distributed query engine and processes queries in the CloudMdsQL query lan-
guage. This allows data store native subqueries to be expressed as inline scripts and
combined with regular SQL statements in ad-hoc integration statements.

We contribute by adding polyglot capabilities to the distributed data integration en-
gine that takes advantage of the parallel processing capabilities of underlying data
stores. We introduced architectural extensions that enable specific native scripts to be
handled in parallel at data store shards, so that efficient and scalable parallel joins take
place at query engine level. The concept relies on an API that allows its generalization
to multiple script engines and data stores. In our work, we focused on parallel joins
across a partitioned relational table, the result of a parallel JavaScript subquery to Mon-
goDB, and the result of a Spark/Scala script against an HDFS file.

Our experimental validation demonstrates the scalability of the query engine by
measuring the performance of various join queries. In particular, even in the context of

0

200

400

600

800

1000

1200

SF=0.02% SF=0.2% SF=2%

Q4 (LX+Mongo+Spark, 1.84TB data)

Spark SQL LeanXcale DQE
no bind join

LeanXcale DQE
with 2 bind joins

34

sophisticated subqueries expressed as JavaScript or Scala code, parallel join processing
shows good speedup with increase of the parallelism level. This means that, as the vol-
ume of data grows, performance can be maintained by simply extending the parallelism
to a proportional number of workers and data shards. This evaluation illustrates the
benefits of combining the massive parallelism of the underlying data management tech-
nologies with the high expressivity of their scripting frameworks and optimizability
through the use of bind join, which is the major strength of our work.

Acknowledgment

This research has been partially funded by the European Union's Horizon 2020 Pro-
gramme, project BigDataStack (grant 779747), project INFINITECH (grant 856632),
project PolicyCLOUD (grant 870675), by the Madrid Regional Council, FSE and
FEDER, project EDGEDATA (P2018/TCS-4499), CLOUDDB project TIN2016-
80350-P (MINECO/FEDER, UE), and industrial doctorate grant for Pavlos Kranas
(IND2017/TIC-7829).

Prof. Jose Pereira, Ricardo Vilaça, and Rui Gonçalves contributed to this work when
they were with LeanXcale.

References

1. A. Abouzeid, K. Badja-Pawlikowski, D. Abadi, A. Silberschatz, A. Rasin, “HadoopDB: an
architectural hybrid of MapReduce and DBMS technologies for analytical workloads”,
PVLDB, vol. 2, pp. 922-933 (2009)

2. D. Agrawal, S. Chawla, B. Contreras-Rojas, A. Elmagarmid, Y. Idris, Z. Kaoudi, S. Kruse,
J. Lucas, E. Mansour, M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz, N. Tang, S. Thirumuruga-
nathan, A. Troudi. RHEEM: enabling cross-platform data processing: may the big data be
with you! Proc. VLDB Endow. 11, 11, pp. 1414–1427 (2018)

3. R. Alotaibi, D. Bursztyn, A. Deutsch, I. Manolescu, “Towards Scalable Hybrid Stores: Con-
straint-Based Rewriting to the Rescue”, in ACM SIGMOD, pp. 1660-1677 (2019)

4. Apache Drill – Schema-free SQL Query Engine for Hadoop, NoSQL and Cloud Storage,
https://drill.apache.org/

5. Apache Impala, http://impala.apache.org/
6. M. Armbrust, R. Xin, C. Lian, Y. Huai, D. Liu, J. Bradley, X. Meng, T. Kaftan, M. Franklin,

A. Ghodsi, M. Zaharia, “Spark SQL: relational data processing in Spark”, in ACM SIGMOD,
pp. 1383-1394 (2015)

7. K. Awada, M. Eltabakh, C. Tang, M. Al-Kateb, S. Nair, G. Au, “Cost Estimation Across
Heterogeneous SQL-Based Big Data Infrastructures in Teradata IntelliSphere”, in EDBT,
pp. 534-545 (2020)

8. E. Begoli, J. Camacho-Rodriguez, J. Hyde, M. Mior, D. Lemire, “Apache Calcite: A Foun-
dational Framework for Optimized Query Processing Over Heterogeneous Data Sources”,
in ACM SIGMOD, pp. 221-230 (2018)

9. C. Bondiombouy, B. Kolev, O. Levchenko, P. Valduriez, “Multistore big data integration
with CloudMdsQL”, Transactions on Large-Scale Data and Knowledge-Centered Systems
(TLDKS), pp. 48-74. Springer (2016)

35

10. C. Bondiombouy, P. Valduriez. Query Processing in Multistore Systems: an overview. Int.
Journal of Cloud Computing, 5(4), pp. 309-346 (2016)

11. F. Bugiotti, D. Bursztyn, A. Deutsch, I. Ileana, I. Manolescu, “Invisible glue: scalable self-
tuning multi-stores”, in Conference on Innovative Data Systems Research (CIDR) (2015)

12. R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, J. Zhou, “SCOPE:
Easy and Efficient Parallel Processing of Massive Data Sets”, PVLDB, 1, 1265-1276 (2008)

13. F. Darema, “The SPMD model: Past, present and future”, in Recent Advances in Parallel
Virtual Machine and Message Passing Interface, vol. 2131, Springer (2001)

14. S. Dasgupta, K. Coakley, A. Gupta, “Analytics-driven data ingestion and derivation in the
AWESOME polystore”, in IEEE International Conference on Big Data, pp. 2555-2564
(2016)

15. D. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit, A. Avanes, M. Flasza,
J. Gramling, “Split query processing in Polybase”, in ACM SIGMOD, pp. 1255-1266 (2013)

16. J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson, S. Zdonik, “The BigDAWG polystore system”, SIGMOD Record,
vol. 44, no. 2, pp. 11-16 (2015)

17. V. Gadepally, P. Chen, J. Duggan, A. J. Elmore, B. Haynes, J. Kepner, S. Madden, T.
Mattson, M. Stonebraker, “The BigDawg polystore system and architecture”, in IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1-6 (2016)

18. I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor, A. Clement, S. Hand. 2015. Musket-
eer: all for one, one for all in data processing systems. In Proceedings of the Tenth European
Conference on Computer Systems (EuroSys '15). Article 2, pp. 1–16. ACM (2015)

19. L. Haas, D. Kossmann, E. Wimmers, J. Yang. Optimizing Queries across Diverse Data
Sources. Int. Conf. on Very Large Databases (VLDB), pp. 276-285 (1997)

20. H. Hacigümüs, J. Sankaranarayanan, J. Tatemura, J. LeFevre, N. Polyzotis, “Odyssey: a
multi-store system for evolutionary analytics”, PVLDB, vol. 6, pp. 1180-1181 (2013)

21. R. Jiménez-Peris, M. Patiño-Martinez, “System and method for highly scalable decentral-
ized and low contention transactional processing”, Filed at USPTO: 2011. European Patent
#EP2780832, US Patent #US9,760,597 (2011)

22. Y. Khan, A. Zimmermann, A. Jha, D. Rebholz-Schuhmann, R. Sahay, “Querying web pol-
ystores”, in IEEE International Conference on Big Data (2017)

23. B. Kolev, C. Bondiombouy, P. Valduriez, R. Jimenez-Peris, R. Pau, J. Pereira, “The Cloud-
MdsQL multistore system”, in ACM SIGMOD, pp. 2113-2116 (2016)

24. B. Kolev, O. Levchenko, E. Paciti, P. Valduriez, R. Vilaca, R. Goncalves, R. Jimenez-Peris,
P. Kranas, “Parallel Polyglot Query Processing on Heterogeneous Cloud Data Stores with
LeanXcale”, in IEEE International Conference on Big Data, pp. 1756-1765 (2018)

25. B. Kolev, R. Pau, O. Levchenko, P. Valduriez, R. Jimenez-Peris, J. Pereira, “Benchmarking
polystores: the CloudMdsQL experience”, in IEEE International Conference on Big Data,
pp. 2574-2579 (2016)

26. B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, J. Pereira, “CloudMd-
sQL: querying heterogeneous cloud data stores with a common language”, Distributed and
Parallel Databases, vol. 34, pp. 463-503. Springer (2015)

27. S. Kruse, Z. Kaoudi, B. Contreras-Rojas, S. Chawla, F. Naumann, J.-A. Quiané-Ruiz.
RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems. The VLDB
Journal (2020). https://doi.org/10.1007/s00778-020-00612-x

28. J. LeFevre, J. Sankaranarayanan, H. Hacıgümüs, J. Tatemura, N. Polyzotis, M. Carey,
“MISO: souping up big data query processing with a multistore system”, in ACM SIGMOD,
pp. 1591-1602 (2014)

36

29. Z. Minpeng, R. Tore, “Querying combined cloud-based and relational databases”, in Int.
Conf. on Cloud and Service Computing (CSC), pp. 330-335 (2011)

30. K. W. Ong, Y. Papakonstantinou, and R. Vernoux, “The SQL++ semi-structured data model
and query language: a capabilities survey of SQL-on-Hadoop, NoSQL and NewSQL data-
bases”, CoRR, abs/1405.3631 (2014)

31. T. Özsu, P. Valduriez, Principles of Distributed Database Systems, 4th ed. Springer, 700
pages (2020)

32. Presto – Distributed Query Engine for Big Data, https://prestodb.io/
33. A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal, “Optimizing analytic data flows for

multiple execution engines”, in ACM SIGMOD, pp. 829-840 (2012)
34. M. Stonebraker, U. Cetintemel, “One size fits all: an idea whose time has come and gone”,

in ICDE, pp. 2-11 (2015)
35. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, R.

Murthy, “Hive - A Warehousing Solution Over a Map-Reduce Framework”, PVLDB, vol.
2, 1626-1629 (2009)

36. A. Tomasic, L. Raschid, P. Valduriez, “Scaling access to heterogeneous data sources with
DISCO”, IEEE Trans. On Knowledge and Data Engineering, vol. 10, pp. 808-823 (1998)

37. TPC-H. http://www.tpc.org/tpch/
38. J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes, B. Howe, D. Hutchison, S. Jain,

R. Maas, P. Mehta, D. Moritz, B. Myers, J. Ortiz, D. Suciu, A. Whitaker, S. Xu, “The Myria
big data management and analytics system and cloud service”, in Conference on Innovative
Data Systems Research (CIDR) (2017)

39. T. Yuanyuan, T. Zou, F. Özcan, R. Gonscalves, H. Pirahesh, “Joins for hybrid warehouses:
exploiting massive parallelism in hadoop and enterprise data warehouses”, in EDBT/ICDT
Conf., pp. 373-384 (2015)

40. J. Zhou, N. Bruno, M. Wu, P. Larson, R. Chaiken, D. Shakib. SCOPE: Parallel Databases
Meet MapReduce. PVLDB, vol. 21, 611-636 (2012)

