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How Frequency Injection Locking Can Train
Oscillatory Neural Networks to Compute in Phase
Aida Todri-Sanial, Stefania Carapezzi, Corentin Delacour, Madeleine Abernot, Thierry Gil, Elisabetta Corti,

Siegfried F. Karg, Juan Nunez, Manuel Jimenez, Maria J. Avedillo, Bernabe Linares-Barranco

Abstract—Brain-inspired computing employs devices and ar-
chitectures that emulate biological functions for more adaptive
and energy efficient systems. Oscillatory neural networks are
an alternative approach in emulating biological functions of
the human brain and suitable for solving large and complex
associative problems. In this work, we investigate the dynamics of
coupled oscillators to implement such oscillatory neural networks.
By harnessing the complex dynamics of coupled oscillatory
systems, we forge a novel computation model – information is
encoded in the phase of oscillations. Coupled interconnected
oscillators can exhibit various behaviors due to the strength of the
coupling. Here, we present a novel method based on subharmonic
injection locking (SHIL) for controlling the oscillatory states of
coupled oscillators that allow them to lock in frequency with
distinct phase differences. Circuit-level simulation results indicate
SHIL effectiveness and its applicability to large-scale oscillatory
networks for pattern recognition.

Index Terms—oscillatory neural networks, subharmonic injec-
tion locking, oscillator dynamics, pattern recognition

I. Introduction

INNOVATIONS in CMOS technology and the continuous
scaling roadmap of transistors outlined by Moore’s predic-

tion have enabled today’s powerful computers and handheld
devices. Mere miniaturization of devices was initially sufficient
to reduce transistors’ area and power requirements, yet scaling
for sub-100nm technology nodes was not enough [1], [2], [3],
[4]. Two main paths were taken to change the device materials
to reduce its parasitics, and change the device geometry for
better channel control.
Nevertheless, despite advancements in the transistor device

and fabrication technologies, CMOS faces physical barriers –
as scaling is approaching a fundamental physical limit with
the transistor channel length becoming comparable to the size
of a handful of atoms. Such channel lengths lead to significant
leakage currents and suffer from lower yield due to high
process variations. Consequently, this would translate to more
power consumption and more expensive chips, which would
be an overkill to what Moore’s law has been promising so far.
Despite the ongoing research on novel device geometries

and channel materials, there is a tremendous effort to explore
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Fig. 1. Illustration of the proposed phase-based computation via coupled
oscillators for implementing an oscillatory neural network (ONN).

innovative non-Von Neumann computing architectures to meet
the requirements of data-centric applications [5], [6], [7].
In the classical von Neuman architecture, data moves from
memory to the processor, which for processing large datasets
becomes infeasible as a large amount of power is consumed in
data movement, hence, the memory-wall problem arises [5].
This problem is exacerbated for more data-centric applications,
such as image segmentation and pattern recognition that re-
quire online training and learning, such as in the autonomous
car technology or edge computing in IoTs [6].
Non-Von Neumann architectures like brain-inspired archi-

tectures based on neural networks have drawn a lot of interest
as we gained more understanding of how the brain and neurons
work. Neural networks aim to mimic the parallelism of the
brain and their implementation in resource-intensive hardware
such as CPUs, GPUs and TPUs have revolutionized AI ap-
plications [7]. For example, current CMOS implementations
of neural networks such as Google’s Tensor Processing Unit
can offer up 86X more computations per watt [8]. Even though
these systems are more power-efficient than a CPU due to their
architecture, the CMOS implementations of neural networks
will eventually face the problems described earlier (power
consumption and memory-wall problems). Thus, ideally, one
needs devices, materials, and computing architecture that offer
the advantages of the biological system [11].
Novel brain-inspired neuromorphic architectures such as

oscillatory neural networks (ONNs) [10] and coupled os-
cillator networks [22] have emerged as an alternative and
energy-efficient architecture (Fig. 1), especially for associative
memory applications [11]. They are inspired by neuroscience
and understanding of brain activity – neurons in the human
brain fire periodically [23] and synchronization of neurons
might correspond to recognize faces or to learn of words
and music [24], [25]. Highly inspired from Hopfield neural

www.neuronn.eu
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networks [9], ONNs compute based on the coupling weights
connected among oscillators which also serves as its memory.

Mathematical concepts to computing with oscillators have
been established since the late 90s [10], [12], [13]. The main
attribute of ONN is its suitability for associative memory
problems such as pattern recognition. However, ONNs have
drawn a lot of interest in recent years due to their low-power
computing capability, and it is being explored for other types
of applications. Others have investigated ONNs for building
Ising Machines [20], [21] or solving NP-hard combinatorial
optimization problems, such as traveling salesman problem
[19]. Moreover, ONNs have been experimentally validated for
other applications such as image saliency detection [14], graph
coloring [15], as digital filters for speeding up computations
in convolutional neural networks [16], implementing Hopfield
neural networks for pattern recognition applications [17], [18],
and deep associative neural network implementation [51].

In this work, we investigate the dynamics of coupled
oscillators as remarkably, such networks can implement a
wide range of mathematical functions relating input states
to output states. Furthermore, we introduce a subharmonic
injection method which, when associated with learning rules
for unsupervised learning such as Hebbian learning rules,
ONN can learn efficiently by allowing oscillators to lock
and synchronize. Our contributions can be summarized as 1)
development of an analytical platform for deriving coupled
oscillator dynamics, 2) development and implementation of
subharmonic injection method for inducing oscillators to lock
in the same frequency with distinctive phase differences, 3)
reporting on ONN learning capability on various benchmarks
for pattern recognition applications. These results will incite
further investigations to study ONN scalability, capacity, and
their specialized hardware implementations.

II. Introduction of Oscillatory Neural Networks

A. ONN Computing Principle
ONNs are inspired by the synchronization behavior of

oscillators found in nature, such as in the human brain [11],
[25]. Regularly firing (or spiking) neurons can be described
as oscillators. At the level of large neuron ensembles, the
synchronized activity of a large number of neurons gives rise
to macroscopic oscillations, which can be observed as brain
waves on electroencephalogram (EEG) [12], [13], [27]. By
emulating neurons as oscillators, we investigate the frequency
domain dynamics between neurons or the phase relations
between oscillators.

ONNs differ from artificial neural networks (ANNs) or
spiking neural networks (SNNs). In ANNs, information is
encoded on the voltage amplitude of the neuron activation by
calculating the weighted sum of the states of pre synapses [43].
In contrast, in SNNs, the time of individual spikes constitutes
the basis of information encoding [44], [45], [46], [47], [48],
[49]. An in-depth review on ANN and SNNs can be found in
[50]. Alternatively, in an ONN, the information is encoded on
the phase difference between oscillating neurons. Computing
in phase allows for ultra-low power computing, as the signal
voltage amplitude can be low [35], [36], [17]. To illustrate,

phase difference 0o between any two oscillators means they
are in-phase, or their logic value is 0. When an oscillator has a
phase difference of 180o with respect to a reference oscillator,
then the oscillator is out-of-phase, or it has a logic value 1.
Stable phase relations are obtained from the synchronization

of the coupled oscillator dynamics. Stable phase patterns
correspond to the memorized patterns in the network [11].
Oscillators synchronize at the same switching frequency and
converge to a phase-locked pattern [11], [12], [27]. But to
exploit such a computing principle, ideally, one needs uni-
form oscillators switching at the same frequency. Although
at a small-scale ONN, oscillator uniformity can be somewhat
attained depending on the oscillator design; however, to im-
plement large-scale ONN and exploit its functionality, a robust
method is needed to allow oscillators to lock and enable ONN
learning. In the following subsections, we describe the building
blocks of ONN, such as the implementation of the oscillator,
coupling elements, and parameters used in this work.

B. Neuron – Oscillator Implementation
In literature, there are various approaches for implementing

artificial neurons based on oscillating principle [11], [12],
[27]. Spin-torque oscillators [28], [29], [30], [31], in which
the magnetization of thin ferromagnetic layer is induced into
sustained oscillations through the application of bias current
or external magnetic field, have been shown to be capable
of frequency locking, enabling the path toward neuromorphic
computing. Other approaches are based on implementing mi-
cro electro-mechanical-systems (MEMS) resonators that are
configured to self-oscillate as the oscillating element in the
neural networks [32]. Digital architectures based on CMOS-
based ring oscillators were developed by [35], [36] for pattern
recognition. Alternatively, analog ONN architectures based on
phase-locked loops (PLLs) as neurons were developed by [37].
Alternatively, novel devices and materials are explored to

emulate biological oscillatory behavior. Oscillators based on
phase change materials such as vanadium oxide (VO2) have
been recently developed. VO2 relaxation oscillators, which
rely on a precise switching between metallic and insulating
states, have been successfully synchronized using resistive
and capacitive coupling to implement associative memory
operations and image recognition [17], [18], [39]. VO2 device
acts as a hysteresis resistor with two states, insulating and
metallic, which changes phase around a critical temperature of
68oC. In this work, we model such oscillators fabricated with
phase change material VO2 as in [18]. Devices have a 50-nm
thick layer of VO2 grown on top of 1 µm thermal S iO2 on a
silicon substrate. A two-terminal device is realized by etching
rectangles into the VO2 and depositing two Ni/Au contacts at
both ends. The size of the VO2 devices has 0.2 µm channel
length and 1 µm channel width. The resistivity of the VO2 in
the insulator state was of ρins = 10 Ω cm, while in the metallic
state was of ρmet = 0.8 Ω cm.

C. Synapse – Coupling Element Implementation
Precise modulation of the coupling conductance between

neurons has a significant role in efficiently representing the
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Fig. 2. Illustration of (a) VO2 device with a resistor in series, RS , (b) I-
V characteristic of device, (c) VO2 device with NMOS transistor in series,
and (d) I-V characteristics with transistor’s loadline. Gate voltage of transistor
can be used to bias the VO2 device at various current levels at the negative
differential resistance (NDR) region allowing more oscillatory states.

synaptic weights in oscillatory neural networks. Several ap-
proaches have been explored, from metal-oxide resistive de-
vices (RRAM), phase change memristors to novel memristor
devices based on 1D/2D materials. In [33], memristive synap-
tic architectures have been proposed that showed their feasibil-
ity and effectiveness for both spiking and non-spiking neural
networks. Phase change memory devices have been widely
explored to implement the synaptic weights. In [34], RRAM-
based oscillators and synapses are used to implement the ana-
log functionality of ONNs. An ONN with programmable resis-
tive synapses was implemented in a 28nm CMOS technology
node for pattern recognition [38]. Alternatively, the coupling
between oscillators can be realized by either, capacitive C
coupling only, resistive R coupling only, or both resistive and
capacitive, RC coupling [11], [17], [18], [39].

In this work, we focus on coupled oscillators to study their
dynamics and oscillatory stable states in ONN for pattern
recognition application. In biological neurons, the coupling
has been measured by electrophysiological observation where
the postsynaptic potential is less than 1 mV (i.e., representing a
weak coupling) and the action potential is approximately 100
mV (i.e., representing a strong coupling) [11], [12]. In this
work, we investigate RC coupling to understand the dynamics
of coupled oscillators and their phase differences. Table 1 gives
the list of parameters and their respective values that are used
in this work.

III. Controlling the Dynamics of Coupled Oscillators
A. Analytical formulation

Here, we present our analytical method for deriving the
phase dynamics of coupled oscillators. First, we illustrate the

TABLE I
List of parameters used for simulations in this work.

Parameter Value
VDD 2.5 V
VG 2.5 V peak-to-peak (1.25 V DC)
Fosc 700 kHz (natural frequency)
Tosc 1/Fosc
Rins 100.2 kΩ
Rmet 0.99 kΩ
VH 1 V
Vth 1.99 V
CP 100 pF
CC 0.05 pF
RC vary from 1 kΩ to 1MΩ

NMOS (W,L) HSPICE default values (1e-04 m)
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Fig. 3. Illustration of (a) sub-harmonic injection locking (SHIL) technique,
where wo is the natural frequency of oscillator, and (b) SHIL applied to
VO2 oscillator where the output signal oscillates at the half frequency of VG
sinusoidal signal when w = wo.

necessary mathematical formulations for a single oscillator,
and then we turn to networks of coupled oscillators as the
central focus. We describe how the concept of encoding in
phase can be applied to oscillatory networks. We describe
i) initialization or oscillator initial switching time and ii)
frequency locking via load transistor gate voltage VG for
investigating ONN synchronization and phase dynamics.
Coupled oscillators can exhibit attractive dynamics that

represent synchronized states. In Fig. 2a, the concept of driving
the oscillator dynamics via supply voltage VDD initialization
with a resistive load [17], [18], [39] is illustrated. Note that
oscillations happen when the voltage across the VO2 device
increases above a threshold voltage Vth and the device changes
from insulating to metallic state with resistance Rmet. When
the voltage decreases below a lower threshold voltage, VH ,
it changes back to the insulating state with resistance Rins.
The external capacitance CP to the device ensures gradual
transition (i.e., charging and discharging) of the voltage across
the device. The series resistance with the VO2 device provides
the load line VDD/RS as shown in Fig.2b. The output voltage
oscillates when the load line resides in the negative differential
resistance (NDR) region. But, in contrast to previous works
that control the supply voltage VDD to initiate oscillations, we
use an NMOS transistor where its gate voltage dynamically
controls the load resistance, as illustrated in Fig. 2c. Control-
ling the load line via NMOS transistor’s gate voltage enables
us to explore more oscillatory states, hence, more states to
encode information in an ONN (as shown in Fig. 2d).
An important feature of an oscillator that we exploit is

how its phase responds to external signals – in this study,
the NMOS transistor gate voltage VG. External signals can be
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unwanted, such as noise, jitter, or wanted, as in our case, where
we inject a sinusoidal signal at the gate voltage for locking
oscillators at the same frequency regardless of their individual
non-uniform switching frequencies. Thus, we harness the VG

signal as the controlling knob for oscillatory states that enables
oscillators to lock in the same frequency with distinct phases.
In other words, we perform sub-harmonic injection locking
(SHIL) via VG to encode information on ONN and obtain
the output as the phase differences among oscillators. Fig.
3 illustrates the sub-harmonic injection locking technique
to drive oscillatory states through the signal applied at the
transistor’s gate voltage. The oscillation dynamics of a single
oscillator (as in Fig. 2c) can be explained by the transition
between two conductive states of the VO2 device – insulating
and metallic state. Therefore, the resistance Rvo2 of the VO2
device alternates between two values:

Rvo2 =

Rvo2
met (charging)

Rvo2
ins (discharging)

(1)

By applying Ohm’s law, we can analyze the dynamics of
the oscillator output voltage in the two different states:

Cp
dVout

dt
=


VDD−Vout

Rvo2
met
− Inmos (charging)

VDD−Vout

Rvo2
ins
− Inmos (discharching)

(2)

In the case of two coupled oscillators with resistance RC and
capacitance CC (as in Fig. 4c), oscillations can be explained
by the complementary transitions between the oscillators –
one oscillator is in the metallic state while the other is in the

insulating state, causing continuous charging and discharging
of the external capacitors. This can be described as:

CP1
dVout1

dt
=


VDD1−Vout1

Rvo2
met1

− Inmos1 + ic1 (charging)
VDD1−Vout1

Rvo2
ins1

− Inmos1 + ic1 (discharching)
(3)

CP2
dVout2

dt
=


VDD2−Vout2

Rvo2
met2

− Inmos2 + ic2 (charging)
VDD2−Vout2

Rvo2
ins2

− Inmos2 + ic2 (discharching)
(4)

where ic1 and ic2 are the currents flowing through the RC
coupling element and described as:

ic1 = −ic2 =
Vout2 − Vout1

RC
+ (

dVout2

dt
−

dVout1

dt
)CC (5)

We are using the NMOS transistors in strong inversion
(VGS ≥ VT ) and either in saturation or linear regime, depend-
ing on the DC gate bias as shown in (6) and (7). By neglecting
the short channel effects, the current flowing in the NMOS
transistor i ∈ {1, 2} can be expressed in saturation regime as:

Vouti ≥ VGS i − VT =⇒ Inmosi =
1
2
µnCox

W
L

(VGS i − VT )2 (6)

or in linear regime as:

Vouti < VGS i − VT =⇒ Inmosi = µnCox
W
L

(VGS i − VT )Vouti (7)

where W and L are the width and length geometries of the
NMOS transistor. Cox is the oxide capacitance and VT is the
transistor threshold voltage. The voltage VGS can be described
by the injected wave signal with SHIL as:

VGS 1 = VG1 = VG0 + A1sin(2πw1
ot) (8)

VGS 2 = VG2 = VG0 + A2sin(2πw2
ot) (9)

where VG0 is the DC gate bias voltage, A1, A2, w1
o and w2

o
are the amplitudes and frequencies of the sinusoidal signals
injected at the gate voltages of each NMOS transistor. In this
work, we apply SHIL to all NMOS transistors by injecting
the same sinusoidal signal. Hence, VGS i signals have the same
amplitude and frequency while their phases can differ.
As expressed in (1), VO2 device resistance alternates be-

tween two values, metallic and insulating state. We choose
to represent VO2 resistance in time dependency as Rvo2

1 (t)
and Rvo2

2 (t), respectively. Then, equations (3) and (4) can be
formulated in a matrix form as:

C
dV
dt

= GA(t)V + GB(t)VDD − I (10)

where

GA(t) =

− 1
Rvo2

1 (t) −
1

RC

1
RC

1
RC

− 1
Rvo2

2 (t) −
1

RC

 (11)

GB(t) =

 1
Rvo2

1 (t) 0

0 1
Rvo2

2 (t)

 (12)
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C =

[
CP1 + CC −CC

−CC CP2 + CC

]
(13)

VDD =

[
VDD1
VDD2

]
; I =

[
Inmos1
Inmos2

]
; V =

[
Vout1
Vout2

]
(14)

For a system of n coupled oscillators, GA(t) and GB(t) are n-
by-n conductance matrices, C is the n-by-n capacitance matrix,
VDD and I are n-by-1 vectors representing the voltage and
current biases of the oscillators. V is the n-by-1 vector that
contains the output node voltages of the oscillatory network.
Note that if the NMOS transistors are biased in linear regime
(7), I is proportional to V and can be rewritten as:

I =

[
µnCox

W
L (VGS 1 − VT ) 0

0 µnCox
W
L (VGS 2 − VT )

] [
Vout1
Vout2

]
(15)

To obtain the output voltages, we solve the nonlinear system
in (10). Solving the set of equations when subjected to a
sinusoidal input voltage, oscillators lock in frequency which
is close to the oscillator’s natural (or free-running) frequency,
wo = 1/To. The output voltages will be in the form [40] of:

Vouti (t) = Aicos(2πwo(t + θi(t))) (16)

where Ai is the oscillation amplitude and θi(t) is the instan-
taneous phase. To compute in phase, we determine the phase
differences between oscillators. For example, once frequency
locking occurs, we compute the phase difference between
oscillator Vout1 and Vout2 as θ2(t)−θ1(t) to represent the encoded
output as either a logic 0 or 1. For example, as illustrated in
Fig. 4a and Fig. 4b, a logic 0 is obtained when the phase
difference between oscillators is close to 0, whereas a logic
1 is obtained when the phase difference between oscillators
is 180o. But oscillator dynamics and phase difference depend
on several parameters, such as i) uniformity or variability of
oscillators and their respective Rmet, Rins VH , Vth, ii) applied
supply voltages, VDD, iii) coupling elements RC and CC to
induce either weak or strong coupling, iv) applied gate voltage
VG frequencies, and v) applied learning rules and algorithm
to train ONN. In section IV, we answer these questions by
studying ONN dynamics for pattern recognition application.

B. ONN Numerical Solver
The system of equations (10) is difficult to solve analytically

because of the VO2 nonlinear behavior. However, it can be
solved numerically (such as in Matlab) by approximating the
derivative at time t = k dt with integration time step of 1 ns:

dV(t)
dt
≈

V
(
k dt

)
− V

(
(k − 1) dt

)
dt

(17)

The insulating-metal transition (IMT) thresholds of the VO2
device can be expressed as:Vth+ = VDD − VH

Vth− = VDD − Vth
(18)

To emulate the IMT behavior of VO2 devices while solving
the problem numerically, we keep track of the state of each

a) HSPICE b) MATLAB

c) HSPICE vs MATLAB

a) HSPICE b) MATLAB

c) HSPICE vs MATLAB d) 

Fig. 5. Two coupled oscillators are simulated with a resistive load of 20 kΩ (as
in Fig. 2a) and with RC = 100 kΩ. The second oscillator is turned on 1 µs after
the first one. a) HSpice simulations. b) Matlab simulations with integration
time step of 1 ns. c) Comparison between the HSpice and Matlab waveforms.
The transient dynamics and the phase relations at steady-state match whereas
the frequencies do not. Matlab simulation shows a frequency deviation of 4.5
% with respect to the steady-state frequency f = 206.2 kHz computed with
HSpice. d) Discrepancy between HSpice vs. Matlab for different size ONN.

device i ∈ {1, 2} and update its resistance value. More precisely,
we test the following sets of conditions:

Vouti [k] − Vouti [k − 1] ≥ 0
Vouti [k] ≥ Vth+

=⇒ Rvo2
i [k + 1] = Rvo2

ins (19)

Vouti [k] − Vouti [k − 1] ≤ 0
Vouti [k] ≤ Vth−

=⇒ Rvo2
i [k + 1] = Rvo2

met (20)

If none of these conditions is fulfilled, then the VO2 device
stays in the same resistive state as Rvo2

i [k + 1] = Rvo2
i [k]. It is

important to note that this approach ignores many features
of the VO2 device, such as its intrinsic time constant to
switch from one state to another. Therefore, the frequency
of oscillators differs from circuit simulations (i.e., HSpice).
The frequency deviation of the numerical solver vs. circuit
simulation is around 4.5% difference. Nevertheless, our model
accurately captures the transient oscillatory dynamics and the
exact phase difference between oscillators (Fig. 5), which are
also the most important characteristics for computing with
ONNs.

IV. Controlling the Dynamics of Oscillatory Neural
Networks

The thrust of this work is to use a network of driven coupled
oscillators to recognize stored patterns based on their collective
behavior and phase dynamics. First, we present a network of
two coupled oscillators as a case study to illustrate how to
compute with phase and highlight the importance of coupling
parasitics, the initial state of the network (input delays) and
learning rules. Second, we describe how the SHIL method can
be injected via VG to lock oscillators for pattern recognition.
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Fig. 6. Two coupled oscillator simulation. a) Initialization of oscillators.
The second oscillator is initialized with an initial switching delay after the
first oscillator. b) Schematic of two coupled oscillators with RC=100 kΩ and
CC=0.05 pF. c) Oscillation cycles depicting the time for oscillators to settle
and lock. Once the frequency is locked, then the phase difference between
oscillators is obtained. d) Image representation of the phase difference.
Oscillator with a phase difference of 180o, the first oscillator is logic 0 (or
white pixel), whereas the second oscillator is logic 1 (or black pixel).

A. Initialization of Oscillators

Initialization is the switching start time of oscillators. At first
glance, one can think to start all the oscillators simultaneously,
but this leads to incorrect or even chaotic ONN dynamics.
Therefore, the switching start time of oscillators plays an
important role in the ONN dynamics as it represents the
input test pattern. Thus, the start of oscillators switching time
represents the phases of the encoded test pattern. For example,
in Fig. 6a, for two-coupled oscillators, the first oscillator
turns on at T1=0. The second oscillator turns on at T2=230
ns representing 10% of oscillator period Tosc=2.3 µs and
corresponding to an input test pattern of a phase of 0o for
the first oscillator and 36o for the second oscillator. In other
words, a white pixel for the first oscillator and a light-gray
pixel for the second oscillator. Hence, the switching start time
of oscillators must be set as an input switching delay, S W as a
fraction of the oscillator period (0 to 50% Tosc) corresponding
to an input phase θ = S W

Tosc
360o. Once oscillator dynamics settle

in a few cycles, the output phase difference can be measured.
The first oscillator has an output phase of 0o (white pixel) and
the second oscillator has a phase of 180o (black pixel).

Initialization impacts the time needed for the oscillators to
reach steady-state (i.e., settling time), but also it affects the
final phase difference between oscillators, hence the success
of identifying the correct stored pattern. Both initialization and
coupling weights (resistive and capacitance coupling) can alter
ONN settling time and final output phase. Fig. 7a represents
the impact of initialization of two oscillators when an input
switching delay of 10% Tosc is introduced. We observe cycle-
by-cycle changes in the phase difference between the two
oscillators until they reach a steady-state. The final oscillator
waveforms are in 180o phase difference, indicating the correct
identification of the stored pattern. Fig. 7b shows the evolution
of instantaneous phase differences between the two oscillators
when varying the coupling resistance RC , which shows the
interdependence between initialization and coupling.

Frequency locked, phase stabilized
Settling 
time

starting phase

Output phase 180o

Number of cycles 
increase with RC

For fixed input delay SW=10%Tocs
If Rc < 20k then Output phase 0o

If Rc ≥ 31k then Output phase 180o

b)

a)

Fig. 7. a) The instantaneous phase difference between the two oscillators for
each cycle. The second oscillator starts with an initial delay corresponding to
10% of oscillator period Tosc or an initial phase of 36o. b) The instantaneous
phase difference between the two oscillators for each cycle with varying
coupling resistance RC from 1k Ω to 101 kΩ.

B. Impact of Coupling
Coupling between oscillators can vary in topology (such

as all-connected or subset of connected oscillators) and type
of coupling (such as resistive-only, capacitive-only, or both
resistive and capacitive). In this work, we investigate RC
coupling between oscillators, as illustrated in Fig.6. The
capacitive coupling is set to 0.05pF for all coupling, while
the resistance coupling is varied to represent weak or strong
coupling. Typically, the weak coupling is a large resistance
value, whereas a strong coupling has a low resistance value.
Fig. 8a shows the output phase difference between the two
oscillators when resistive coupling varies from 1 kΩ to 100 kΩ

– such range represents a strong coupling between oscillators.
We notice for small resistance values (< 20 kΩ), oscillators are
in-phase (phase difference 0o) but with coupling resistances >
20 kΩ oscillators turn out-of-phase (phase difference 180o).
Simultaneously, we also vary the input switching delay of the
second oscillator (i.e., switching delay (SW) from 10% to 40%
of Tosc) while varying resistance coupling, as shown in Fig.
8b. We observe that with the increase of input switching delay,
oscillators require a lower coupling resistance to change from
in-phase to out-of-phase.
We also investigate large coupling resistance values from

100 kΩ to 1 MΩ – such range represents weak coupling
between oscillators. Fig. 9a shows the output phase differences
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Fig. 9. a) Output phase difference with weak coupling of resistance values 100
kΩ to 1 MΩ for various switching delays. Phase dynamics differ with weak
coupling providing more possibilities to encode different phase configurations
between 0o to 180o that can enable various shades of grey for images. b)
Overall phase difference evolution with resistive coupling (from strong to
weak coupling) while varying input switching delay of the second oscillator.

between the two oscillators with resistance coupling values
from 100 kΩ to 1 MΩ and various input switching delays.
Interestingly, we observe that various output phases can be ob-
tained for different input switching delays. Such weak coupling
enables to encode more distinct and subtler phase differences
such as 150o, 100o, or 60o to allow more possibility to encode
various phase configurations such as shades of grey in an
image. The overall impact of resistance coupling is represented
in Fig. 9b.

C. Sub-harmonic Injection Frequency Locking
Injection locking (IL) is an attractive phenomenon in non-

linear coupled oscillators as it enables frequency locking
among oscillators [29]. When an external signal is applied
to an oscillator, the oscillator locks on to the external signal
frequency whose frequency is close to the oscillator’s natural
frequency, also termed as fundamental harmonic IL. It is also
possible for an oscillator to lock at a frequency that is an exact
sub-multiple frequency of the externally applied signal – or
sub-harmonic injection locking. In this work, we apply the sub-
harmonic injection locking as an effective method to facilitate
frequency locking among oscillators to reach steady-state so
phase differences can be computed. We apply the external
frequency signal to the gate voltage of the NMOS transistor.
For a single oscillator case, we use the same configuration as
in Fig. 2c with VDD=2.5 V and Cp=100 pF. Fig. 10 shows
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Fig. 10. Output voltage waveform for a single oscillator case. The output
frequency follows the natural frequency of the oscillator of 250 kHz, whereas
applied VG is 500 kHz.
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Fig. 11. Map of oscillatory states and output phase difference (o) between two
oscillators with VG frequency injection locking from 100kHz to 900kHz as a
function of input switching delay (0% to 50%) on the second oscillator with
coupling resistance RC=100 kΩ. The boxes with a value of -1 represent the
chaotic oscillatory states where phase dynamics are unstable. VG frequency
tuning allows to identify the oscillatory states that retrieve the memorized
pattern.

the output voltage waveform for a single oscillator where the
applied VG is of 2.5 V peak-to-peak (1.25 V DC level) at 500
kHz frequency. The output voltage oscillates with 250 kHz
frequency, half of the VG input frequency, as expected based
on the SHIL method.
In the case of two coupled oscillators (Fig. 6b), we apply

the same sinusoidal external signal at the gate terminals of
both NMOS transistors. To understand the SHIL method, we
vary the applied sinusoidal signal frequency from 100 kHz
to 900 kHz while introducing an input switching delay to the
second oscillator from 0% to 50% of Tosc. Both oscillators
lock in frequency, which is a sub-multiple of the input VG

frequency. Measured phase differences are shown in Fig. 11.
We observe at low frequencies, even though the oscillators
lock in frequency, the correct pattern is not found as the
phase differences are less than 180o. We also notice oscillatory
states with unstable phase differences from cycle to cycle, and
they are marked with ’-1’. We notice several cases where the
correct pattern is found at higher frequencies, such as 700
kHz or 800 kHz. It is also important to note that SHIL can
also be used as a frequency tuning method to find the correct
pattern, such as when the second oscillator has an input delay
of 10% Tosc. Overall, the SHIL method allows oscillators to
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Fig. 12. Relationship between coupling resistance, phase encoding and
Hebbian learning coefficients.

lock and gives a wide range of oscillatory states (with incorrect
and correct patterns). Next, we explore how to use the SHIL
method together with learning rules to lead to oscillatory states
with stored patterns only.

D. Learning Rules
We apply Hebbian learning to ONN, which is one of the

most commonly used learning rules based on the dynamics of
biological systems [41], [42]. The learning rules can memorize
black-and-white images represented in a vectorized form as
ξk=(ξk

1, ξ
k
2,..., ξ

k
n) where k=1,...,m, and m is the number of

stored patterns. ξk
i represents the oscillatory state of ith neuron.

If two oscillators should oscillate in-phase such as ξk
i =ξ

k
j , then

their phase difference is zero or θi=θ j, and if ξk
i =-ξ

k
j means

oscillators are out-of-phase or θi=θ j+180o. The connection
matrix element ci j [10], [11], [12] using the Hebbian learning
rule can be derived as:

ci j =
1
n

m∑
k=1

ξk
i ξ

k
j (21)

where n is the number of neurons or oscillators. By inter-
twining the SHIL method with Hebbian learning rules, we
develop an ONN system that allows oscillators to collectively
lock in frequency (sub-multiple of input VG frequency) with
distinct phase relations. Determining the coupling weights via
Hebbian learning rules together with injection locking adds
plasticity to the ONN system; in a sense, the system can
change its parameters to learn the frequencies of the periodic
input signal. The interest in combining injection locking with
Hebbian learning is that the whole learning process is dynamic
and does not require any external signal processing. It means
that ONN can adapt its frequency to any periodic input. As
shown in the next section, ONN can learn, achieve frequency
locking with distinct phases and retrieve memorized patterns.
Such learning shares similarities with the learning in biological
neural networks [44].

Stored 
images/patterns

Vectorize images

Compute Hebbian 
Coefficients

Apply Mapping
Hebbian Coefficient conversion to 

Coupling Weights

Apply SHIL on ONN (HSPICE)   
Obtain Oscillator Voltage Waveforms

Compute Cycle-by-Cycle 
Oscillators Phase Differences

Initialize ONN 
(fuzzy pattern)

Pattern Recognition –
Display Found Image/Pattern

Fig. 13. Description of the pattern recognition flow for ONN based on phase
dynamics. The pattern recognition flow is based on the sub-harmonic injection
locking method with Hebbian learning rules.

To apply the learning rule to ONN, we must translate or
map the Hebbian coefficients ci j to resistive coupling values.
To do so, we rely on our simulation insights from two-coupled
oscillators to deduce a one-to-one mapping between Hebbian
coefficients and resistance coupling. Thorough simulations
with varying resistive coupling values (as in Fig. 9b) prompt
a direct mapping approach between Hebbian coefficients and
resistive coupling values. Fig. 12 depicts the relationship be-
tween the coupling resistance (i.e., strong and weak coupling),
phase encoding (white for 0o phase difference, black for 180o

phase difference) and learning Hebbian coefficients. As we
are interested in encoding only black or white patterns, we
apply non-complex Hebbian coefficients. Coefficients for out-
of-phase encoding (or black) are represented in the range of
30 kΩ to 100 kΩ, and coefficients for in-phase (or white)
encoding are represented in the range of 1 kΩ to 30 kΩ.

V. Pattern Recognition with ONN
We have developed a pattern recognition flow for ONN

based on the sub-harmonic injection locking method applied
with Hebbian learning rules. The flow includes several steps as
described in Fig. 13. The first step is to construct a vectorized
image of the stored pattern in the ONN. The number of
stored patterns in ONN can vary with ONN size. Once the
patterns are vectorized, the Hebbian learning rule (15) is
applied to obtain the connection matrix with coefficients, ci j.
Based on the obtained Hebbian coefficients, a direct mapping
is applied to translate the Hebbian coefficients to resistive
coupling values. The initialization of the ONN is applied
based on the pattern to be recognized, such as a fuzzy pattern
or image. We apply a sub-harmonic injection method to the
ONN circuit and obtain each oscillator waveform. We post-
process each oscillator waveform in Matlab to get the phase
difference among oscillators. The first oscillator serves as a
reference, and the phase differences are measured with respect
to the first oscillator. The recognized pattern or image is
reconstructed from the computed phase differences. In the
following subsections, we describe ONN pattern recognition
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Input Delay SW=0% Input Delay SW=10%

Input Delay SW=20% Input Delay SW=30%

Input Delay SW=40% Input Delay SW=50%

Memorized patterns

Osc1 Osc2 Osc3

Fig. 14. Simulations of three coupled oscillator network. First oscillator
switches at T1=0, third oscillator switches at T3=50% Tosc (Tosc=1.42 µs),
whereas the initialization of the second oscillator varies from 0% to 50% of
Tosc. The restored pattern for each initialization case while VG input frequency
is varying 100 kHz to 900 kHz. Both memorized patterns are restored, but
for some states, phase differences are not completely 180o, hence the grey
states.

on ONN circuits with three coupled oscillators and 10x6
coupled oscillators.

A. Three Coupled Oscillators Study
To illustrate the phase dynamics in an ONN for pattern

recognition, we study three-coupled oscillators, where all
oscillators are identical. The list of parameters is in Table I.
There are two stored patterns (as shown on the top of Fig.
14) and the Hebbian coefficients are derived as c12=0, c13=-
1 and c23=0, where white (in-phase) is encoded as ’1’ and
black (out-of-phase) as ’-1’. We apply the same sinusoidal
input signal to VG for each oscillator. Initialization is applied
to all three oscillators, such as the first oscillator switches at
T1=0, third oscillator switches at T3=50% Tosc, whereas the
initialization of the second oscillator varies from 0% to 50%
of Tosc. Fig. 14 shows the restored patterns while frequency
tuning is applied using VG with frequency from 100 kHz
to 900 kHz. As both VG frequency and switching delay are
varied, the stored patterns are successfully retrieved for most
cases. All the restored patterns are valid as either one of
the memorized patterns is recognized, even though the phase
differences are not entirely 180o (grey pixels). We suspect that
the applied direct mapping method for converting Hebbian
coefficients to resistive coupling values could be the primary
reason for such variance. We illustrate one of these restored
patterns. The input conditions are shown in Fig. 15a, and
the output voltage waveforms for each oscillator are plotted
in Fig. 15b. Frequency locking (Fig. 15c) at 150 kHz, final
phase differences and restored pattern (Fig. 15d) and frequency
harmonics via Fourier transform (Fig. 15e) are shown. We
observe that the initial cycles are unstable, hence the settling

Osc2

Osc1

Osc3

a)

b)

Settling time

c) d)

Phase measuredFrequency locked

e)

Input Delay SW=0% Tosc on Osc1
Input SHIL VG frequency 
400kHz on all oscillatorsInput Delay SW=20% Tosc on Osc2

Input Delay SW=50% Tosc on Osc3

Output pattern:

Fig. 15. a) Initialization of three coupled oscillators. b) Voltage waveform of
oscillators showing their settling time. c) Frequency harmonics of oscillators
showing they are locked at 150 kHz. d) Phase difference of oscillator per each
cycle of simulation and output pattern, e) Fourier transform showing locked
frequency harmonics of three oscillators.

time needed for oscillators to lock in the same frequency
and reach a steady state. Once all three oscillators lock in
frequency, they achieve distinct phases of 155o for the second
oscillator and 150o for the third oscillator. The stored patterns
are retrieved with distinct phase differences up to 155o but not
fully 180o (or black pixel), hence, they are represented in dark
grey pixel.

B. 10x6 Coupled Oscillators Study
Here we implement a 10x6 oscillatory neural network. Five

patterns are stored with the digits 0, 1, 2, 3, and 4 (Fig. 16)
and parameters used are in Table I. By applying the Hebbian
learning rule, we obtain coefficients (with values -1 to 1) that
we map to resistance coupling values (Fig. 12). The switching
time of oscillators (or initialization) is applied to represent
the test pattern (or a fuzzy digit). For example, as shown in
Fig. 17, switching input delays on each oscillator are applied
to show the fuzzy digit 0 as a start image. The applied VG

sinusoidal input signal at each oscillator has a frequency of
1.2 MHz. Such frequency is chosen based on our preliminary
assessment with VG frequency tuning from 200 kHz to 2 MHz.
The applied frequency 1.2 MHz provides stable oscillations
(not in a chaotic regime); however, other suitable frequencies
such as 900 kHz or 1 MHz can also be used. The phase
difference is computed relative to the first oscillator (top left-
hand corner). This also explains that some restored images
have an inverse color (white digit on black background) due
to the phase difference with respect to the first oscillator. The
cycle-by-cycle evolution of the restored digit 0 is represented
in Fig. 17. We observe that the digit 0 is almost restored,
although some oscillators (on top and bottom) did not settle
at 180o phase difference, hence, they are grey pixels.
Similarly, we also investigate the other stored digits and their

restored patterns, as shown in Fig. 18. Overall, we notice that
the memorized digits were restored, but some oscillators still
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Fig. 16. Stored images of the digits 0, 1, 2, 3, and 4 on the 10x6 ONN.

Start image Frequency locked by IL. Cycle-by-cycle pattern recognition.

cycle 1 cycle 41 cycle 101 cycle 151 cycle 201 cycle 239

Fig. 17. Cycle-by-cycle representation of the pattern restoration process for
digit 0. Sub-harmonic injection locking allows oscillators to lock in frequency,
while phase varies from cycle to cycle, oscillator settle and pattern is restored.

do not achieve a complete either in-/out-of-phase state. From
our assessment, we find that the mapping process of deter-
mining the resistive coupling values plays a crucial role in the
coupling between oscillators and requires further optimization.
Nevertheless, the proposed method of frequency locking with
Hebbian learning rules shows promising results in training
60 oscillators and restoring memorized patterns. Additionally,
we measure the accuracy of the 10x6 ONN by varying the
number of noisy input pixels from 0 to 50%. It is important
to note that 50% is the maximum noise as more noise would
revert the image (such as black pixels into white and vice
versa). For example, a 60% noise would mean a reverted image
with 10% noise. We randomly choose noisy pixels with values
from -1 to +1 according to a uniform random distribution. We
measure the number of correct output pixels after 5, 10, 20
cycles without SHIL, where data points are obtained after 30
trials each. We observe that accuracy decreases with time as
oscillators’ phases drift without SHIL. Phase drift means that
the phase difference between oscillators changes from cycle
to cycle. If phase measurements are done after 5, 10, or 20
cycles, phase drifts among oscillators increase. In contrast,
when we apply SHIL to ONN, accuracy is improved, and
no phase drifting is observed. This is because SHIL allows
keeping oscillators locked once they are settled. Fig. 19 shows
the accuracy and settling time vs. noise input pixels.

C. SHIL on ONN Hardware Experimental Results
To validate our proposed SHIL on ONN approach, we

developed a small scale ONN hardware on a printed circuit
board (PCB) with off-the-shelf components. We test the SHIL
method with four single-ended coupled oscillators (Fig. 20).
ONN PCB is composed of four oscillators, six fully connected
synapses (coupling elements) and an FPGA to interface the
PCB with Matlab to issue commands and read the phases.

1) Two coupled oscillators experiment results: We couple
two oscillators with a 100 k Ω resistor to assess if oscillators

Fig. 18. 10x6 coupled oscillators network and phase difference with
VG frequency injection locking. Both memorized patterns are found and
depending on the VG frequency and chosen resistive coupling values.

Fig. 19. a) The number of correct ouput pixels measured after 5, 10, 20
cycles without SHIL. Phase drifts induces a decrease in accuracy with time.
(b) ONN settling time vs. noise pixels.

can lock to both 0o and 180o phase states. We notice that
the 180o phase state is less stable than the 0o phase state.
In Fig. 21a, we observe that oscillators do not lock to 180o

phase after initialization. We believe the type of waveform,
noise, and variability impact the 180o phase state stability. To
mitigate this problem, we apply SHIL by injecting a high-
frequency signal like in Fig. 21b, and the two oscillators lock
to the desired 180o phase state.
2) Four coupled oscillators experiment results: We perform

a simple pattern recognition experiment using four coupled
oscillators, as in Fig. 22. As in the two coupled oscillators
experiment, we observe that the four oscillators do not lock to
180o phases without SHIL due to oscillator non-uniformities
and variabilities. We apply SHIL and ONN locks to either 0o

and 180o phase states and retrieves the correct pattern. This
shows that the SHIL method will be important to use in ONN
hardware implementation where oscillator non-uniformities
and variabilities are present.

VI. Discussion and Future Work
The research presented here started with a mathematical

puzzle: How can we collectively control the dynamics of
oscillators in an oscillatory neural network to learn and
recognize in phase? In the course of addressing this issue
with oscillatory neural networks, we found that the sub-
harmonic injection locking mechanism can boost the ONN’s
ability to lock in frequency and by applying Hebbian learning
rules, ONNs can learn patterns (by distinct phase differences
between oscillators). We also observed that the initialization
of the oscillator switching time has a strong impact on
the ONN synchronization and learning. As such, this work
can further incite research to the new found puzzle of how
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Fig. 20. a) Custom PCB design to test SHIL on 4 coupled oscillators. FPGA
controls oscillatorsâĂŹ initialization and reads output phases. ONN is fully
connected with 6 synapses. b) Op-amp relaxation oscillator is based on an
inverting Schmitt trigger. We apply the SHIL signal to the gate of Q1. c)
Example of two training patterns and corresponding synaptic values obtained
using the Hebbian rule. (o.c. stands for open circuit).

Fig. 21. a) Two oscillators coupled by R=100kΩ. a) Without SHIL, the
two oscillators do not converge to a 180o phase state. b) we apply SHIL
by injecting a high-frequency signal @ 120 kHz enables 180o phase locking
between the two oscillators.

sub-harmonic controlled oscillations in ONN contribute to
learning. The challenge is now to follow up the preliminary
results presented here with a more detailed assessment of
how the basic principle of the ONN learning algorithm (sub-
harmonic injection locking with Hebbian or other learning
rules) and more importantly, the mapping of Hebbian learning
coefficients translate to resistance coupling weights can shed
light on mathematical [52], oscillatory neural network learning
and efficient ONN hardware implementation [53].

VII. Conclusion

In this work, we have shown that the phase dynamics of
oscillators can be exploited to achieve pattern recognition with
oscillatory neural networks. We have presented a new learning
algorithm that leverages sub-harmonic injection locking and
Hebbian learning rules to train oscillatory neural networks.
Injecting a periodic input signal to the oscillators can be used
to lock them in the same periodic or sub-periodic frequency,
which can be used to compute phase differences among os-
cillators. We apply Hebbian learning rules to update coupling
weights and translate the obtained Hebbian coefficients into
resistance coupling values. The value of resistive coupling
varies as a function of the sign of Hebbian coefficients. A

Fig. 22. ONN inference with a noisy input image. Without SHIL, ONN
converges towards a wrong pattern. Oscillators do not converge towards 180o

phase due to oscillators non-uniformity. With SHIL applied at 2x fosc, 180o

phase can be achieved and ONN retrieves the correct pattern.

challenge remains on mapping more accurately the Hebbian
coefficients to resistive coupling values. As a consequence, the
mapping problem appears as a crucial parameter during the
ONN design and training. Our study has shown that the new
learning algorithm can recognize a large number of correlated
input patterns based on the phase difference among oscillators,
and it displays a good recognition capability on various size
ONNs.
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