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1 Summary

The present deliverable surveys a number of metrics found in literature, which are considered as
relevant for assessing performance and energy consumption during our studies conducted within the
CONTINUUM project. These metrics are summarized in the following table:

Metric Description
CPU time CPU execution time (cycles, seconds)
Miss rate Number of misses per total cache access
Hit rate Number of hits per total cache access

Misses per instruction Number of misses per instruction
Number of cycles per instruction Time required for an instruction to be executed (cycles, sec-

onds)
Miss penalty Number of cycles consumed while a cache miss occurs (cy-

cles, seconds)
Branch miss prediction rate Frequency of untaken branches

Average memory access time Average latency to access a data (cycles, seconds)
Access per cycle Num. of memory accesses per cycle at certain level, e.g. L1

Energy Total energy consumption (Joules)
Power Energy per unit of time (Watts, Joules/second)

Energy Delay Product Figure of merit correlated with the energy efficiency
Activity level at a given time Number of instructions executed at a given point in time

Resynchronization time Time required for a resource to get back from sleep state to
active state (cycles, seconds)

Read/Write ratio Read/Write ratio in a memory
Number of stores Number of write operations on a memory
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2 Introduction

Today, high-performance computation has become appealing for scientific/intensive applications that
are running on high performance microprocessors. The number of cores and processors frequency
have been increasing through the last years. Frequency and energy consumption are two proportional
terms related by the supplied voltage of a processor, i.e., the energy consumption in CMOS circuit has
a direct relationship with working frequency f and the square of the supplied voltage V , as defined
in the following relation: P = CV 2f , where P is the power and C is capacitance. P is expressed in
Watts. Hence, increasing the frequency leads to increase the power consumption of the processor. Let
us recall that power is the rate at which energy is consumed or produced. In the context of calculus,
power is the derivative of energy, while the latter is the integral of power (see Figure 1).

Figure 1: Energy as the integration of power over time: Energy =
∫ b

a
P (t)dt

Energy consumption and power dissipation became an important design constraint in today’s high-
performance microprocessors. The gap existing between processor performance and memory per-
formance makes memory-access an influencing performance factor in high-end computing. Several
researchers [2, 15] have identified the memory components as the energy bottleneck of an entire
system. For that reason, different memory hierarchies have been proposed to reduce the energy con-
sumption of memory’s subsystems and the most famous ones are SRAM caches and scratchpad
memories.

Nevertheless, SRAM caches suffer from high leakage power, which dominates the total energy
consumption in the on-chip memory system. To mitigate this problem, new non-volatile memory
technologies such as phase-change RAM (PRAM) and spin-torque transfer magnetoresistive RAM
(STT-RAM) have seen the light of day. They are prominent technologies that are used as alternative
on-chip memories with the advantages of low leakage and high density. Yet, non-volatile memories
are also suffering from their limited endurance, higher write latency and energy.

On the other hand, compilers, traditionally, are not directly exposed to energy aspects. However, with
all the weight given to energy consumption, it is worthy to investigate how the compiler optimizations
could have tremendous impacts on the overall energy consumption. As the main factor for activity on
processor and memory systems, software has a signification effect on the energy consumption of the
entire system. Still, developing new power-aware compiler optimizations and combining them with
performance-oriented compiler optimizations is the focus of several researches.
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Furthermore, in order to optimize compilers for a specific objective, performance models and metrics
are the primary keys that help to make efficient transformations to the program code. Indeed, these
keys indicate to the compiler which transformations should be selected to achieve the goal whether in
terms of performance or energy or even both. The common metrics used in literature are time and
energy per access in memory hierarchy. Although these two metrics often behave similarly, moving
down in memory levels makes both time and energy increase, which let us conclude that a memory
architecture that has a good performance has also a good energy consumption. In spite of that, this
conclusion may lead us to incorrect interpretation for the following reasons:

• time and energy do not increase in the same way,

• the performance is a worst-case quantity but the power is an average-case quantity [3] which
means that improving performance for some critical computations may surprisingly be the
cause of an increase in energy consumption. The notion of critical path has been used in many
performance models. A critical path is a sequence of instructions or activities that will influence
over the whole program execution time. In the context a performance, if an optimization is
performed based on the non-critical path, performance is not affected and the optimization
could be beneficial. However, in the context of power/energy, this is unreliable. Any activity,
whether on or off the critical path will play a part in the overall power dissipation and energy
usage [11].

As software execution corresponds to performing operations on hardware, as well as accessing and
storing data. It requires power dissipation for computation, storage and communication. Beside the
fact that the energy consumed during execution is very important, reducing the code size and thus, the
storage cost of a program, is the classical goal of compilers. The energy cost of executing a program
relies on the machine code and the target machine. Therefore, for a target architecture, energy cost is
bound to machine code and consequently to compilation. Hence, it is the compilation process itself that
strikes energy consumption. Traditional optimizations such as common sub-expression elimination,
partial redundancy elimination, silent stores elimination or dead code elimination increase the
performance of a program by reducing the work to be done during program execution [14, 1]. Clearly,
reducing the workload may also result in power/energy savings. Memory hierarchy optimizations
play with latency and data placement. Optimizations such as loop tiling and register allocation try
to keep data closer to the processor in order be accessed more faster. Memory optimizations may also
contribute to reduce energy consumption. Loop tiling tries to keep a value in an on-chip cache instead
of an off-chip memory and register allocation optimization try to allocate data in a register instead
of the cache. Both techniques allow to save power/energy due to reduced switching activities and
switching capacitance [11].

A good compiler is a compiler based on efficient metrics. So definitely, bad metrics will directly affect
performance as well as energy. At this stage of work, we focus on metrics that we intend to use in
our future work. There is a fundamental difference in the models and metrics used for performance
(CPU and memory) and those for power/energy optimizations. While memory is the bottleneck for
performance, how to measure and evaluate memory systems has become an important issue facing the
high performance computing community. In the following sections, we will detail the metrics that are
the most commonly used in literature.

Version 2.0
(2016)

Confidentiality: Public Distribution

Page 3



D2.1 – Report on selected relevant metrics: design and implementation choice

3 Performance metrics

3.1 CPU time

CPU execution time is the time required to complete the execution of a program. It is measured in
clock cycles/seconds and it is expressed as follows:

CPUtime = I ∗ CPI ∗ T

where I is the number of instructions in program, CPI is the average cycles per instruction and T is
the clock cycle time. Furthermore, CPI can be detailed as:

CPI = CPIexecution+ CPImemstall

where

CPImemstall = Mem accesses per instruction ∗Miss rate ∗Miss penalty.

Therefore, CPUtime becomes:

CPUtime = I ∗ (CPIexecution+ CPImemstall) ∗ T.

3.2 Miss rate/ hits rate / misses per instruction

Miss-rate (MR), hit-rate (HR) and misses per instruction are often used to measure the performance of
a certain cache configuration. The miss-rate is the number of misses per total cache access and the
hit-rate is the number of cache hits per total accesses. They are computed as follows:

HR =
no. of hits

total no. of accesses

MR =
no. of misses

total no. of accesses

Given the above definitions, the number of misses per instruction (MPI) is therefore equal to:

MPI = Memory accesses per instruction ∗MR

Besides the miss rate, hits rate and the number, the cache size is an important factor as well. It involves
area and miss rate. Large cache size means higher hit rate and lower miss rates in instructions cache
as well as data cache. If the cache line size is increased, then the miss rate is reduced. If the number
of cache lines is increased, then the miss rate can be reduced if the block size or the degree of set
associativity is also increased. Here, we differentiate direct-mapped caches and set-associative caches.
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A direct-mapped cache with a large block size performs better than a set associative cache of the same
size. Increasing block size improves the instruction cache hit rates.The effect on the hit rate of a data
cache while increasing the block size is not as apparent as in the instruction cache. In the other hand, a
set associative cache with a large degree of set associativity does better than a direct-mapped cache of
the same size. Increasing the degree of set associativity improves the data cache hit rates. The effect
on the hit rates of an instruction cache while increasing the degree of associativity is in contrary not as
apparent as in the data cache [22].

We should note that even if large cache size means higher hit rate, larger size caches are more expensive
and slightly slower than smaller caches due to the larger number of control gates.

3.3 Number of cycles per instruction

A single machine instruction may take one or more CPU cycles to terminate. The average CPI of a
program is the average CPI of all instructions executed on a given CPU design. It is expressed by:

CPI =
CPU clock cycles

inctructions count

Several code optimizations focus on reducing the number of cycles needed to run an application, but
they might not decrease consumed energy as well, as they can create very complex transformations
that may increase the energy used by the processor for computation. Another form of this metric is
its inverse: Number of Instructions Per Cycle IPC. It has been widely used as a major performance
evaluation metric in the computer architecture community. It reflects the overall performance in terms
of the number of executed instructions per cycle:

IPC =
1

CPI

When a profiler tells you that the average CPI is equal to 2,that means that IPC is equal to 1
2
= 0.5. This

level of performance would be rather bad for modern superscalar CPUs that can reach 4 Instructions
Per Cycle (Intel). Therefore, the ideal CPI for modern processors is 1

4
= 0.25

Moreover, the impact of a miss on CPI is the cost of a cache miss in terms of time. In the literature,
it is known as the miss penalty. For example, the miss penalty on the cache L1 correspond to the
required time to access data in the lower level of cache L2. It is equal to:

Miss PenaltyL1 = Hit LatencyL2 ∗Hit RateL2 +Miss RateL2 ∗Miss PenaltyL2

3.4 Branch misprediction rate

Branch prediction is a fundamental component of modern pipelined architectures. It resolves a branch
hazard by predicting which path will be taken to avoid stalling. The cost of stalling is directly related to
CPI. Branch misprediction rate is a system performance metric because it relies on predictor accuracy.
If a misprediction occurs, the entire pipeline needs to be flushed. There are dynamic and static methods
for branch prediction. Dynamic branch prediction depends on program behaviour. It uses information
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about taken or not taken branches collected at run-time to predict the outcome of a branch. It is
implemented in hardware. The most common algorithm is based on branch history. On the other hand,
static prediction is the simplest branch prediction technique because it does not require information
about the dynamic history of a program execution. It predicts the outcome of a branch based uniquely
on the branch instruction. The simplest predictors predict which branch is always taken or to which
one is always not taken. Another way is to use a profiler and some training input data to predict the
branch direction that was most frequently taken.

3.5 Average Memory Access Time

The Average Memory Access Time (AMAT) is a metric that allow to analyze memory system
performance. AMAT is the conventional metric to measure and analyze the influence of locality on
data access latency [8]. It can be used recursively to measure the impact of locality throughout all
layers of the memory hierarchy and is widely used in memory system design and optimization.

AMAT depends on three terms: hit latency, miss rate, and miss penalty. It is calculated by taking the
product of miss rate and miss penalty and adding it to the hit latency:

AMAT = Hit LatencyL1 ∗Hit RateL1 +Miss RateL1 ∗Miss PenaltyL1.

Then, the Miss PenaltyL1 can be replaced by its formula:

AMAT = Hit LatencyL1 ∗Hit RateL1+
Miss RateL1 ∗ (Hit LatencyL2 ∗Hit RateL2 +Miss RateL2 ∗Miss PenaltyL2)

On the other hand, AMAT is in accordance with data access whether it is a hit or a miss, which means
that the memory only supports sequential accesses and do not support multiple simultaneous accesses.
For this reason, AMAT has been extended to take into consideration the modern memory systems.
The new metric is called Concurrent-AMAT (C-AMAT). It combines the influence of data locality and
concurrency. C-AMAT can be applied recursively to each layer of the memory hierarchy and reduces
to AMAT when there is no data concurrency. C-AMAT uses two new parameters, hit concurrency and
miss concurrency. It also introduces the notion of a pure miss, which is a miss that contains at least
one pure miss cycle. A pure miss cycle is a miss cycle that does not overlap with a hit cycle. Using
pure misses, C-AMAT adapts the definition of miss rate and average miss penalty of AMAT to pure
miss rate and pure average miss penalty, as follows:

Miss rate =
total no. of pure misses

total no. of accesses

The average miss penalty, considering only pure miss accesses is:

AMP =
sum of total pure miss cycles

total no. of pure misses
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which is used in turn to define C-AMAT as expressed below:

C − AMAT =
Hit T ime

Ch

∗Hit Rate+Miss Rate ∗ AMP

Cm

where Ch represents hit concurrency and Cm represents miss concurrency.

C-AMAT is based on the following assumptions [23]:

1. reducing the number of pure misses is more relevant to the context of performance’s improve-
ment,

2. as data locality doesn’t always improve performance, optimizations ought to balance between
data locality improvement and concurrency.

3.6 Access Per Cycle

Based on the concept of IPC, which is a widely used system-performance metric, designed to measure
CPU performance but does not reflect memory performance, Access Per Cycle is proposed to evaluate
memory performance. It can be applied at each level of memory hierarchy, i.e, L1, L2,... It is calculated
as the quotient of the overall memory accesses requested at a certain memory level (load/store) by the
total cycles required by these accesses at that level. Let M denote the total data access (load/store) at a
certain memory level, and T denote the total cycles consumed by these accesses. According to the
definition, APC is expressed by:

APC =
M

T

A special characteristic of APC is that it separates memory evaluation from CPU evaluation and
therefore allows to evaluate better data-intensive applications. System performance should correlate
with memory performance, and if a memory performance metric does not correlate with system
performance then this metric is probably missing important characteristics of memory system. Thus,
correlation between IPC and APC is used to verify the correctness of APC. Wang et al. [25, 24]
showed that among other memory metrics (Hit Rate, Hits Per 1K Instruction, Average Miss Penalty
and Average Memory Access Time), APC has the highest correlation with IPC.

4 Energy metrics

4.1 Power

A processor works at a given power expressed as Watt (W). There are several factors contributing
to the CPU power consumption. The two major types of power dissipations occurring in a CMOS
circuit are: dynamic power consumption and static dissipation. The former one is due to the charging
and discharging of capacitance or due to the switching activities of the circuit and the latter is due to
transistor leakage currents. The power consumption of a circuit CMOS is represented by: P = CV 2f
where C is the effective load capacitance, v the supply voltage and f the clock frequency. According to
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this relation, we can see that the power consumption of the processor depends linearly on the effective
capacitance, supply voltage and clock frequency. Thus, by changing the voltage and frequency, the
power dissipation of the processor can be managed. For this reason, different techniques that aim to
minimize the power consumption such as Dynamic Voltage/Frequency Scaling and Dynamic Power
Management, try to adjust the voltage/frequency in order to conserve power or to reduce it.

4.2 Energy

As explicit as it is, the energy metric represents the energy consumption of a system. Different formulas
have been proposed to estimate the energy consumed by a system using other performance metrics.
Most of today’s processors include dedicated hardware performance counters for debugging and
measurement. These counters allow to create power models and measure the energy more precisely.

Isci et al. in [10] proposed a runtime power modelling methodology based on using hardware
performance counters to estimate component power breakdowns for the Intel Pentium 4 processor.

In asymmetric multi-core architectures in which we are interested, it integrates cores with different
power and performance characteristics, which makes mapping workloads to appropriate cores a
challenging task.

Figure 2: Big.LITTLE architecture

Pricopi et al. [17] develop power-performance model for commercial asymmetric multi-core: ARM
big.LITTLE (see Figure 2). Power and performance are modelled differently. While performance
modelling is a combination of mechanistic and empirical modelling, power modelling is based on
regression analysis. The aim is to predict, at runtime, the power, performance behaviour of an
application on a target core (big or little), given its execution profile on the current core, where the
cores share the same ISA but has heterogenous micro-architecture. A simple linear regression model
is used to estimate the power consumption in terms of available performance counters. However,
the performance counters available on one core are not the same available on the other core. For
example, the big core provides the L2 cache write access counter but the small core does not provide it.
Moreover, on asymmetric cores, the memory hierarchy and the branch predictors may not be identical
across different core types, as it is the case in ARM big.LITTLE.

In big.LITTLE platform, the small cores are superscalar in-order, power efficient Cortex-A7 processors.
Thus, there is no need to model power for the small cores. In contrary, the big cores (out-of-order
A15) are very energy-demanding. That’s why it is essential to model application-specific power
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consumption on A15. The power consumption of A15 depends on the pipeline behaviour and the
memory behaviour of the application. The power consumption in the memory hierarchy is determined
by the number of L1 Inst, L1 Data, L2, and memory access. The small cores are connected to a simpler
cache system in order to increase the power efficiency, while the big cores are connected to a more
complex memory that supports higher memory throughput, which increases the overall performance.
The main challenge to tackle in estimating the power consumption of an application on the big core
while running it on the small core is that we have to predict the access profile. In order to predict
the CPI value of core P2 while running on core P1, the values of the following performance counters
need to be predicted: number of first level data and instruction cache miss (missL1D, missL1Inst),
number of last level cache miss (missL2) and the number of branch mispredictions (missbr). Pricopi
et al. proposed a combination of compile-time analysis, mechanistic modelling, and linear/non-linear
regressions to create an accurate model that estimates the cache miss and branch misprediction rates
on the target core, solely from the information available on the current core.

Therefore, energy can be computed relying on power models and estimation of factors such as
missL1D, missL1Ins, missL2 and missbr or relying on hardware counters. The unity of measurement
is Joules(J). In this work, as a concrete measurement of energy consumption, we will use the simulator
developed by LIRMM that gives the overall consumed energy [6]. It consists of a combination of
three simulators: gem5, NVSim and McPAT, that are all performance-based frameworks.

4.3 Energy Delay Product

The energy delay product concept is based on the trade off existing between performance and energy
consumption. It is a metric that considers both time and energy. It is defined as: EDP = E ∗ t
[12]. The graph illustrated in Figure 3 represents the energy curve and the delay curve. We observe
that as VDD is scaled down, the delay decrease and the energy consumed increased. However, the
EDP curve reaches a minimum before the energy curve. Therefore, EDP is minimized between the
minimum energy and the minimum delay. Hence, choosing the optimal VDDedp

for EDP depends on
the weight given to energy and delay. If the weight of energy is bigger than the weight of performance,
VDDEnergy

will tend to be decreased aggressively, which means that one can trade increased delay
for lower energy. In the contrary, if performance has the bigger weight, then the emphasis will
be on the delay and VDDDelay

will be greater than VDDEnergy
. The overall can be summarized as:

VDDEnergy
< VDDedp

< VDDDelay
.

4.4 Resynchronization time

The modern processors support different operating modes (power modes/energy modes), each con-
suming a different amount of energy. Memories and other peripherals are also equipped with this
feature (e.g., the RDRAM technology provides up to six power modes) [5]. The power reduction is
determined by which regions of the chip are turned off and how they are turned off. This is directly re-
lated to the latency (resynchronization time), which is determined by how long these regions need to
transition back to the active state once the idle period is over. For this reason, the low power modes
must be enabled and disabled at the right time, to avoid the cost of resynchronization, which is defined
as the number of cycles required to get back to active state
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Figure 3: Energy Delay Product

4.5 Activity level for a program region

Another possible metric for energy is the activity size at a given point during program execution and
total amount of activities for a program region [11]. For an optimizing compiler, the activity size could
be the number of executed instructions at a given point. Assuming that each instruction is associated
with a certain amount of power, scheduling instructions and reordering them may have an impact
on the power consumption at a certain time. This could be useful in case of partitioning code for an
heterogeneous architecture and region-based compilation where the compiler is allowed to partition
the program into new set of compilation units called regions.

5 Non volatile memories

Emerging non-volatile RAMs (NVRAMs), and generally non-volatile memories (NVM), have zero
standby power, high density and non-volatility, which are useful features [13, 26]. However, they also
have the following limitations:

• relatively long and asymmetric access latencies, compared to conventional DRAM,

• high dynamic power consumption for write operations,

• limited write endurance.

Based on these characteristics, there are three categories of NVRAMs:

• NVRAMs with long access latencies for both read and write operations (e.g., PCRAM and
Flash memory),

• NVRAMs with long write latencies and read access latencies comparable to DRAM (e.g.,
STT-RAM),

• NVRAMs with performance very close to and even slightly better than DRAM (e.g., RRAM).
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In the CONTINUUM project, we focus more on the second category because it represents prominent
opportunities. STT-RAM have been recently considered for cache-level integration. The RRAM
technology is not mature enough for consideration in our forthcoming studies, which will largely
focus on the cache memory hierarchy. There are already some existing design exploration frameworks
[18, 20, 19] that could support these studies. We will partly rely on them by adopting tools like gem5
[4] and NVSim [7] for simulation and evaluation.

Different approaches have been proposed to mitigate the limitations of NVMs. The most common
idea is to manage thoroughly the writes operations with the objective of reducing the number of writes
activities on NVRAMs. Whence, hybrid memory systems were rigorously been studied and several
approaches were proposed, based on data placement and data migration from NVRAM to the other
type of memory. To stay in the context of metrics, hybrid memories will be discussed in futur works
with more details. According to the characteristics of NVRAMs, the number of writes and Read/write
ratio are used in order to benefit from them and quantify their opportunities.

The read/write ratio is inversely proportional to the number of writes. Thus, a higher read/write ratio
signifies less intensive write program/benchmark. Several existing studies have proposed approaches
to mitigate the cost of write operations. Basically, the common idea is to minimise the number of
write operations on NVRAM. Zhou et al. [27] proposed early write termination (EWT) to reduce high
write energy for MRAM. The EWT technique was proposed to detect and terminate redundant write
operations to remove unnecessary write operations.

Hu et al. [9] proposed two optimization techniques: write-aware scheduling and recomputation. These
two techniques aim to minimize write activities on NVRAM while speeding up the completion time
of programs and extending NVRAM’s lifetime.

Smullen et al. [21] presented an approach for redesigning NVRAM (e.g., STT-RAM) cells to reduce
the high dynamic energy and slow write latencies. They used the retention time which is the time
that indicates how long the data can be kept in a NVRAM cell after it had been stored. Reducing
the retention time leads to lower write current, hence, to less consuming write operations. Other
important approaches are also presented in the context of hybrid memories, typically, using SRAM
and NVRAMS and migrating as much as possible write operations to SRAM.

Version 2.0
(2016)

Confidentiality: Public Distribution

Page 11



D2.1 – Report on selected relevant metrics: design and implementation choice

6 Conclusions and future work

This deliverable presented some relevant metrics accordingly to literature. Measuring power and
energy is not an obvious task. Different factors contribute in the energy consumption of an entire
computing system. Choosing the right factors is the first step towards an efficient energy measurement.
The next step consist in specifying and designing energy-aware optimizations using NVMs as shown
in our very recent work [16]. We want to investigate new compilation techniques that allow us to
exploit the advantages of emerging non-volatile memory technologies.
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