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Executive Summary

The goal of the CONTINUUM project is to define a new energy-efficient compute node model,
which will benefit from a suitable combination of efficient compilation techniques, emerging memory,
and communication technologies together with heterogeneous cores. The originality of the solution
promoted by the project is to consider the core technology of the Cortus partner.

The current deliverable presents a number of candidate core technologies, mainly from Cortus
and ARM. Performance and power consumption numbers are given as an assessment of all these
technologies. The outcome of the present survey will serve in choosing the suitable core technologies
in the expected heterogeneous architecture.
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1 Introduction

In embedded computing, while the systems power budget is still confined to a few watts, the per-
formance demand is growing. This comes from the continuous integration of new functionalities
in systems, e.g. in mobile computing. To address this demand, the number of cores in systems has
been increasing. At the same time, in the HPC domain, supercomputers are expected around 2020 to
achieve 1018 floating-point operations per second (FLOPS) also referred to as exascale computing,
within a power budget of 20MW [6]. With current technologies, such a supercomputer would require
a similar power budget to that of a European mid-size city, therefore calling for new design solutions.
These observations from both embedded and HPC domains draw their convergence towards finding
the best ratio between performance and power consumption, i.e., energy-efficiency.

One solution consists in using embedded technologies in HPC systems in order to take advantage of
their inherent low power consumption. This is the vision considered in the European MontBlanc project
[38]. The project developed a prototype of large-scale HPC architecture integrating ARM embedded
cores for energy-efficiency. In [34], the scalability and energy-efficiency of three multiprocessor-on-
chip (MPSoCs) within compute clusters are evaluated. These MPSoCs are PandaBoard, Snowball and
Tegra. They all contain ARM Cortex-A9 processors. In [5], a similar study is reported, which aims
to assess the possible benefits of ARM core-based clusters compared to those relying on commodity
processors such as x86, for HPC.

Another study [33] compared ARM-based clusters against Intel X86 workstation, by evaluating both
their energy-efficiency and cost-efficiency. The reported experiments showed that the ARM clusters
enable a better energy-efficiency ratio against the Intel workstation, e.g. up to 9.5 for in-memory
database, and around 1.3 for Web server application. Note that the relevant measurement of the power
consumption in the addressed systems highly depends on the reliability of the applied data collection
tools. In [35], a platform-independent tool is devoted to this aim while targeting both homogeneous
and heterogeneous systems. Such a tool a worth-mentioning for our forthcoming studies.

This deliverable presents an assessment of selected candidate core technologies, with relevant features
to be explored for the compute node architecture targeted in the CONTINUUM project. Usual
design assessment techniques rely on flexible system descriptions at different abstraction levels for a
comfortable design space exploration [29, 30]. The techniques can follow general modeling paradigms,
e.g. UML [19, 16, 37, 4], analytical modeling [11, 3, 2], transaction-level modeling[39, 27, 28, 31],
cycle-accurate or cycle-approximate modeling [7, 10, 8, 9], and ultimately hardware prototyping [45].

In this work, we consider hardware prototypes as a baseline to evaluate the identified key metrics. As
stated in the project proposal, the core technologies from the Cortus partner are given high attention in
this project, as they are inherently energy-efficient. They offer a set of cores with different capabilities
in terms of performance and power consumption tradeoff. This opens an interesting opportunity for
building multicore heterogeneous architectures in which cores can be selected for execution depending
on workload nature, so as to reduce as much as possible the dissipated energy while meeting the
performance requirements [44, 26].

An existing similar heterogeneous multicore architecture is ARM big.LITTLE [22]. It basically
consists of two clusters of cores as illustrated in Figure 1.
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Figure 1: Sketch of the big.LITTLE technology integrated in the Exynos 5422 System-on-Chip.

The “big” cluster is composed of high-performance cores while the “LITTLE” cluster contains
low power cores. The main idea behind this design is to select a suitable cluster according to
the performance and power demand of executed workloads. While the traditional big.LITTLE
configurations rely on application processors only, such as ARM Cortex-A7 or Cortex-A15, the
CONTINUUM project aims to integrate also ultra-compact cores, such as Cortus cores which belong
to the micro-controllers class. The target compute node architecture should be capable of supporting
a full operating system, basically running on application processors. The presence of Cortus cores
in the resulting heterogeneous architecture will increase its energy-efficiency. As there is not yet
heterogeneous multicore architectures based on Cortus cores, we will consider some existing compute
nodes integrating ARM big.LITTLE technology to carry out our preliminary investigations in the
CONTINUUM project. The gained insights will serve in designing our solution with Cortus cores.

Outline. The rest of this deliverable is organized as follows. First, an overview of Cortus low power
cores is given, together with a comparison against similar ARM low power cores in Section 2. Then,
the energy-efficiency of a specific ARM big.LITTLE multicore system is evaluated based on the HPL
and Rodinia benchmarks in Section 3. This case study gives some preliminary assessment of what one
could expect from such a technology. A quick survey of some popular multi/manycore architectures is
presented in Section 4. Finally, a few concluding remarks are provided in Section 5.
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2 Very low power cores: Cortus versus ARM

We evaluate some selected CPU cores developed by the Cortus Company. The cores are compared
with equivalent well-known ARM cores in order to provide the reader with a convenient comparison
basis.

2.1 Overview

A possible design option investigated by the CONTINUUM project for energy-efficient compute
nodes is a heterogeneous multicore architecture composed of many low power cores and a few high-
performance cores. The candidate core technologies are those developed by the Cortus1 partner. The
current section briefly introduces the current processor families proposed by Cortus (Section 2.2). A
comparison with similar ARM processors is also discussed (Section 2.3).

2.2 Cortus core technologies

The Cortus range of processors is all modern advanced 32-bit RISC processors, featuring the same
core architecture and instruction set. However, they differ in silicon footprint and performance.
Generally speaking, systems that are silicon and power-sensitive will find the APS processor family
ideal. Applications demanding more performance and floating-point operations will find the high
throughput FPS processors more suitable.

As illustrated in Table 1, within each family, one can distinguish processors that are designed so as to
provide an optimized core size without compromising the performance. Other processors are designed
in a way that increases their code density, therefore their instruction memory size. The increased code
density comes at the expense of a slightly more complex processor core.

Table 1: Two families of Cortus processors (typical area in 90 nm technology node).

Family 1: optimized core size Family 2: optimized code density
APS1 0.039 mm2
APS3R 0.043 mm2 APS23 0.049 mm2
APS3RP 0.079 mm2 APS23P 0.084 mm2
APS5 0.095 mm2 APS25 0.103 mm2
FPS6 0.185 mm2 FPS26 0.192 mm2

A typical architecture: APS25. The APS25 processor architecture depicted in Figure 2 is a fully
32-bit high-performance general purpose CPU, with an excellent code density (and a marginal increase
in silicon area compared to APS5), designed specifically to meet the demands of embedded systems.

It relies on a Harvard architecture with 2 × 4 GB address space. The instructions are 16, 24 and
32 bits in length. Most of them are single cycle, including load and store. The 5-7 stage pipeline
ensures ultra low power consumption and high-performance while retaining a reasonable maximum

1http://www.cortus.com/overview.php
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Figure 2: APS25 subsystem architecture

clock frequency. Out-of-order completion enables nearly all instructions to execute in a single cycle,
including loads and stores. Interrupts are fully vectored and the architecture ensures a minimum of
software overhead in task switches. The processor was designed to execute high level languages such
as C. The entire GNU GCC toolsuite has been ported to this architecture.

Several standard peripherals are available. An optional trace buffer is also made available to make
debugging rapid and simpler.

The Cortus APS bus is a simple and efficient synchronous bus that interfaces easily to synchronous
memories (SRAM). It has a minimal number of signals that simplifies the interconnect reducing logic
costs. With a sufficiently high-performance memory subsystem, it can offer zero latency memory
accesses, with back-to-back reads and writes. The AXI 4 Lite bus is a high-performance bus that is
compatible with other IP and interfaces easily with the APS bus. Efficient bridges between these bus
interfaces, and to other popular standards such as AHB-Lite and APB are available.

Table 2 summarizes typical maximum operating frequencies of Cortus processor families. Here, the
APS25 processor operates at the highest possible frequency.

Table 2: Maximum frequencies of APS and FPS processors in 90 nm.

Maximum frequency in UMC90
APS1 307 MHz
APS3R 312 MHz APS23 235 MHz
APS3RP 285 MHz APS23P 217 MHz
APS5 425 MHz APS25 425 MHz
FPS6 400 MHz FPS26 392 MHz

Table 3 provides a range of typical power consumption numbers for Cortus cores according to
frequency scale.
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Table 3: Power consumption per MHz in 90 nm.

Power consumption per frequency scale in UMC90
Core type Power per frequency scale (µW / MHz)
APS3R 10.42
APS3RP 11.42
FPS6 37.16
APS23 11.62
FPS5 17.56
FPS23P 12.66

The diversity of Cortus cores in terms of performance and power capabilities makes them attractive
for usage in heterogeneous multicore systems, such as those explored in the CONTINUUM project.
Typically, a system composed of a mix of such cores can run while its high-performance cores are in
deep sleep mode in order to save power (e.g., running a network stack). Whenever an event requiring
high-performance processing occurs, the high-performance subsystem is taken out of sleep mode in
order to process the data already prepared by the low power companion cores. After all required data
get processed, the high-performance cores can go back to sleep mode and the low power companion
cores tidy up.

The ARM big.LITTLE technology [22] follows a similar principle by combining low power Cortex-A7
cores with high-performance Cortex-A15 cores so as to enable the adequate core selection depending
on the nature of the executed workloads.

2.3 ARM core technologies

The Advanced RISC Machine (ARM) offers a family of Reduced Instruction Set Computing (RISC)
architectures for computer processors, configured for various environments. A characteristic feature
of ARM processors is their low electric power consumption. Almost all modern mobile phones and
personal digital assistants contain ARM CPUs, making them one of the most widely used 32-bit
microprocessor family in the world. The ARMv7-A cores, which rely on this 32-bit architecture will
be evaluated in Section 3.

The Cortus processor technology introduced in the previous section is comparable to ARM microcon-
troller class processors, also known as Cortex-M class. Tables 4 and 5 compare both the size (in terms
of gates count) and the maximum operating frequency for the two processor technology providers.
The Cortus processors consume smaller area while providing higher frequency levels.

Table 4: Number of gates in core design: ARM Cortex-M versus Cortus APS.

Number of gates in ARM and Cortus cores
Cortex M0 12 kgate Cortus APS23 9 kgate
Cortex M3 33 kgate Cortus APS5 17.4 kgate
Cortex M4 50 kgate Cortus APS23P 15.3 kgate

Finally, Table 6 reports a comparison of both technologies in terms of Dhrystone Million Instruction
per Second (DMIPS). The performance obtained with Cortus processor technology is generally higher
than that of ARM Cortex-M class.
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Table 5: Maximum core frequencies in 90 nm : ARM Cortex-M versus Cortus APS.

Maximum core frequencies
Cortex M0 180 MHz Cortus APS23 235 MHz
Cortex M3 180 MHz Cortus APS5 425 MHz
Cortex M4 204 MHz Cortus APS23P 217 MHz

Table 6: Performance comparison: APS/FPS versus Cortex-M cores.

DMIPS values
APS3R 2.76 DMIPS/MHz Cortex M0 1.27 DMIPS/MHz
APS3RP 2.76 DMIPS/MHz Cortex M3 1.89 DMIPS/MHz
APS5 2.33 DMIPS/MHz Cortex M4 1.91 DMIPS/MHz
FPS6 2.33 DMIPS/MHz
APS23P 2.79 DMIPS/MHz
APS25 2.52 DMIPS/MHz

2.4 Summary

This section briefly introduced the Cortus processor families, which are envisioned as major building
blocks in the heterogeneous multicore architecture explored by the CONTINUUM project for energy-
efficient compute nodes. The massive usage of small embedded cores (such as those from Cortus) as
promoted in the project proposal can provide an interesting compromise expected for energy-efficiency
and cost-effectiveness. These small embedded cores are highly energy and silicon efficient offering
more MIPS/mm2 or MIPS/µW of energy consumed than bigger application cores.
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3 Evaluation of a big.LITTLE technology

Among the recent ARM-based technologies, big.LITTLE is certainly a very popular and promising
solution that is worth-mentioning in our vision. Indeed, the CONTINUUM project aims at system
designs with similar features as ARM big.LITTLE.

3.1 Introduction

We explore the potential of a state-of-the-art ARM-based computer board named Odroid XU3 for
building energy-efficient many- and multicore systems. This board integrates the Samsung Exynos
5422 chip relying on ARM big.LITTLE technology [22] that enables to dynamically migrate applica-
tions between two different clusters of ARM cores: a low-power cluster composed of four Cortex-A7
cores versus a high-performance cluster composed of four Cortex-A15 cores. It also includes a GPU
and further peripherals. The migration of applications between the 4-core clusters depends on their
workload, i.e. it is steered by performance needs. Our study provides insightful performance and
energy results in typical compute-intensive benchmarks.

3.2 Evaluated system setup information

3.2.1 Hardware characteristics

Figure 3: ODROID XU3 block diagram

To explore the capabilities of the Exynos 5422 chip, we consider the Odroid XU3 embedded board,
developed by Hardkernel company2. This board embeds useful power and thermal sensors that
facilitate the evaluation of the energy consumed by its relevant hardware components. Its block
diagram is shown in Figure 3. The board is a complete embedded system featuring several components
among which:

2http://www.hardkernel.com.
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• Samsung Exynos 5422 chip with big.LITTLE processor, characterized by the following parame-
ters:

Table 7: Exynos 5 Octa (5422) SoC specification.

Parameters LITTLE big
Architecture model

Core type Cortex-A7 Cortex-A15
(in-order) (out-of-order)

Number of cores 4 4
Core clocks 200 MHz - 1.4 GHz 200 MHz - 2 GHz
L1 Size 32 kB 32 kB

Assoc. 2-way 2-way
Latency 3 cycles 4 cycles

L2 Size 512 kB 2 MB
Assoc. 8-way 16-way
Latency 15 cycles 21 cycles

• CCI-400 64-bit interconnect

• PowerVR SGX544MP3 GPU,

• 2 GB LPDDR3 RAM (933 MHz, 14.9 GB/s, 32-bit, 2 channels),

• eMMC 4.5 Flash Storage (64GB),

• Current and voltage sensors to measure power consumed by the two quad-core clusters, RAM
memory and GPU.

3.2.2 Software parameters

To run the Odroid board we use the following software:

• Operating system: xUbuntu 13.103,

• Compilation: GCC 4.8.1,

• Libraries: OpenMPI 1.6.4 and automatically tuned linear algebra software (ATLAS) 3.10.1-2.

The first benchmark we consider is high-performance Linpack (HPL) [1]. It solves random dense
linear systems in double-precision arithmetic (64 bits). The Top500 ranking of the most powerful
supercomputers relies on this benchmark. The performance numbers obtained with HPL provide a
good correction of theoretical peak performance. In our case, the Odroid board is evaluated according
to the following setup: on each quad-core cluster, four MPI tasks (one task per core) will be executed;

3http://www.odroid.in/Ubuntu_XU – Linux 3.4.67 #5 SMP PREEMPT Sun Nov 24 19:25:46 KST 2013
armv7l armv7l armv7l GNU/Linux
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the benchmark data fills around 1.2 Gbits of the LPDDR3 RAM memory; there is no SWAP and the
GPU will not be used in all our experiments.

The second benchmark suite is Rodinia [13]. It is composed of applications and kernels of different
nature in terms of workload, from domains such as bioinformatics, image processing, data mining,
medical imaging and physics simulation. It also includes classical algorithms like LU decomposition
and graph traversal. For our experiments, the following setup is considered: for each quad-core cluster,
each application and kernel is executed through its OpenMP implementation configured with 4 threads
(except for the kmeans_serial kernel which is executed with a single thread).

3.3 Energy-efficiency evaluation based on HPL

We evaluate the performance, power and energy-efficiency by considering the entire Odroid board at
core peak performance level with HPL.

3.3.1 Performance and energy-efficiency of Odroid-XU3

The peak performance is evaluated in terms of Giga FLoating point Operations Per Second (GFLOPS)
for both Cortex-A15 and Cortex-A7 quad-core clusters. The power consumption of the different
components is monitored via on-board sensors. Results given in the following rely on an average of
10 iterations of HPL execution. Table 8 shows the HPL score for different cluster frequencies. As
expected, at similar frequencies (i.e., 1.4Ghz, 0.8GHz and 0.2GHz) the Cortex-A15 cluster provides
a higher performance than the Cortex-A7 cluster. The peak performance of Cortex-A15 cluster at
1.4GHz is around 4.96 GFLOPS, which is around 3 times higher than that of the Cortex-A7 cluster at
the same frequency.

A15 A7
Freq. (GHz) 2.0 1.4 0.8 0.2 1.4 0.8 0.2
HPL score 4.7 4.96 3.42 0.96 1.68 1.04 0.26(GFLOPS)
Average 12.5 7.5 4.6 2.76 3.46 2.58 2.18Power (W)

EtoS 221.7 127.7 113.1 240 172.1 206.4 710(J)
Energy eff. 0.376 0.662 0.746 0.347 0.484 0.404 0.118(GFLOPS/W)

Table 8: HPL results for different frequencies of Odroid board.

Now, let us consider the energy-efficiency of the system in terms of GFLOPS per Watt (GFLOPS/W),
which is computed from the HPL score, execution time and average power consumption. The
corresponding results are given in the last row of Table 8. From the entire board level, the most energy
efficient configuration corresponds to the Cortex-A15 cluster running at 800 MHz. Despite the fact
that Cortex-A7 core consumes less power than Cortex-A15 core, the extremely compute-intensive
feature of the HPL benchmark makes the Cortex-A15 quad-core cluster more energy-efficient than the
Cortex-A7 one.
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3.3.2 Comparison with other computer systems

Let us consider the most energy-efficient board-level configuration of the Odroid board identified
previously, i.e. the Cortex-A15 cluster at 800 MHz. Now, we compare it with other systems
running the HPL benchmark [24, 5, 34] in Table 9. In [34], the scalability and energy-efficiency of
three multiprocessor-on-chip (MPSoCs) in a cluster are evaluated. These MPSoCs are PandaBoard,
Snowball and Tegra. They all contain ARM Cortex-A9 processors. The obtained results show that
Snowball is the most energy-efficient while Tegra 2 is the most scalable. In [5], a similar study is
reported, which assesses the benefits of ARM core clusters compared to those relying on commodity
processors such as x86. Compared to mentioned works using Cortex-A9, our identified configuration
is more energy-efficient. This is explained by two reasons: first, the Cortex-A15 processor belongs
to the third generation of Cortex-A family, which is more optimized than the second generation to
which belongs the Cortex-A9 processor; second, the number of cores available in a system appears
proportional to the energy-efficiency of that system.

In Table 9, the Viridis system contains four Cortex-A9 cores while both PandaBoard and Tegra 2
systems contain only two Cortex-A9 cores. The two AMD dual-core systems are less energy-efficient
than all mentioned ARM-based systems. The only system that proves better than Odroid is composed
of four i7 cores. However, the cost of such a node ($1000 each) is around 5 times higher than the
Odroid XU3 board.

i7 [24] Atom64 [24] amdf [24] viridis[24] Pandaboard [5] Tegra 2 [34] Odroid XU3

CPU Intel Core i7-3615 Intel Atom N2600 AMD Fusion G-T40N Cortex-A9 Cortex-A9 Cortex-A9 Cortex-A15
Num. of cores 4(8 threads) 2 4 2 2 2 4

HPL score 39.63 0.9575 1.609 3.218 1.601 0.9206 3.42(GFLOPS)
Energy eff. 1059 69 85 593 291 161 746(MFLOPS/W)

Table 9: Energy efficiency of single system node for HPL benchmark

3.4 Evaluation of the board using Rodinia

In this section, we evaluate the performance and energy-efficiency of the Odroid board when executing
the Rodinia benchmark suite.

3.4.1 Evaluation scenarios

In the considered experiments, three execution configurations are considered: i) execution only
performed on the Cortex-A7 cluster, ii) execution only performed on the Cortex-A15 cluster, and iii)
execution performed on both clusters, i.e., HMP mode. Typically, for applications with low workloads,
i.e. which are not performance-demanding, the Cortex-A7 cluster is generally preferable for low
power execution. The Cortex-A15 cluster will be preferred for applications with high workloads. In
the next paragraphs, for all experiments, the results are normalized regarding the configuration (i).

Figures 4 and 5 show the average speedup of configurations ii) and iii) versus configuration i). In the
former case, all cores simultaneously operate either at their maximum or minimum frequency levels.
In the latter case, cores simultaneously operate at different frequency levels.
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While the two configurations always provide a better speedup than the reference configuration, the
observed gains vary with the application kernels. The best speedup results are provided in the scenario
captured by Figure 5. More generally, the HMP mode appears as the best, except for a few scenarios
(e.g., Lud and Myocyte kernels in Figure 5).

(a) At maximum core operating frequencies

(b) At minimum core operating frequencies

Figure 4: Speedup of A15 cluster and HMP execution modes vs. A7 cluster for Rodinia: all cores
operating simultaneously at maximum/minimum frequency levels.

Figures 6, 7 and 8 details the energy consumption for each evaluated Rodinia kernel or application.
The energy-to-solution measured when only using the Cortex-A7 cluster is globally less than that
obtained with other configurations, i.e., when using only the Cortex-A15 cluster or the HMP mode.
Contrarily to HPL, this evaluation shows that for a large part of Rodinia applications and kernels the
Cortex-A7 mode appears more energy-efficient at board level.

This suggests that application nature has an impact on the energy consumption induced in the different
clusters at board level: HPL permanently exploits the peak performance of available cores during
execution while Rodinia applications and kernels, due to their irregular computational nature, imply a
load fluctuation on cores.
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(a) At maximum A15 and minimum A7 core operating frequencies

(b) At minimum A15 and maximum A7 core operating frequencies

Figure 5: Speedup of A15 cluster and HMP execution modes vs. A7 cluster for Rodinia: all cores
operating simultaneously at different frequency levels.

3.5 Summary and remarks

This chapter presented an evaluation of opportunities and limitations of state-of-the-art and reasonable
cost embedded multicore computer systems, integrating ARM big.LITTLE technology for energy-
efficient mini-clusters. It provided insightful performance and energy-efficiency results based on two
compute-intensive benchmarks, high-performance Linpack and Rodinia. The performance scalability
of a mini-cluster composed of these boards has been analyzed.

These results showed that the big.LITTLE architecture of the considered Odroid board calls for
adequate migration policies, which are capable of adequately addressing heterogeneous application
workloads. A characterization of applications/tasks/threads is required, e.g., regular vs. irregular,
computation-intensive vs. memory-intensive. This information can be used either offline or online
together with data monitoring (power and energy consumption, CPU workload, etc.) to exploit as
much as possible the energy-efficiency of clusters.
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(a) Backprop (b) Myocyte

(c) Hotspot (d) Lud

(e) PathFinder (f) Particle

Figure 6: Energy-to-Solution of Rodinia kernels according different clustering modes and operating
frequencies.
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(a) Srad V2 (b) B+Tree

(c) NW (d) Heartwall

(e) BFS (f) Kmeans OpenMP

Figure 7: Energy-to-Solution of Rodinia kernels according different clustering modes and operating
frequencies.
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(a) Kmeans serial (b) Lava

(c) Leukocyte

Figure 8: Energy-to-Solution of Rodinia kernels according different clustering modes and operating
frequencies.
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4 Further multicore architectures

Beyond the big.LITTLE technology evaluated in the previous section, there are further manycore
architectures that can deserve attention. These architectures have different characteristics that could be
considered in the design of the compute node architecture investigated in the CONTINUUM project.
Thanks to their high number of cores, they represent interesting compute accelerators adopted in a
number of execution infrastructures. In the next sections, we survey some of these architectures.

4.1 Graphical Processing Units of Nvidia

Figure 9: Kepler SMX architecture (source: http://www.bit-tech.net).

Graphical Processing Units (GPUs) such as Kepler4 can have upto 15 streaming multiprocessors
(SMX), each able to handle 192 single-precision cores and 64 double-precision units. Figure 9
illustrates a massively parallel architecture of an SMX. Each core has fully pipelined floating-point

4http://www.nvidia.com/object/nvidia-kepler.html
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and integer arithmetic logic units. Threads are scheduled in SMX by groups of 32 parallel lightweight
threads called warps. All these features make GPUs powerful compute accelerators able to provide
high performance per watt, especially for regular data-parallel computations as found in graphics
and scientific computing applications. Their main limitation comes when dealing with irregular
applications, e.g. with conditional branches. In addition, when using an SMX for all its corresponding
cores become active, thus energy-consuming. This means that to have an energy-efficient execution
on the SMX, all its cores must be used.

4.2 Intel Many Integrated Core Architecture

Many Integrated Core Architecture (MIC)5 [18] is the architecture adopted by Intel Xeon Phi co-
processors, used as compute accelerators in the second ranked world’s fastest6 supercomputer (Thiane-
2) in 2014. It is composed of 61 cores interconnected by a bi-directional ring network (see Figure
10). Intel Xeon Phi co-processors provide power gating of cores, L2 cache and memory controllers
for leakage power reduction. Compared to GPUs for which performance optimization requires to
run lightweight threads maximizing parallelism, the MIC architecture maximizes core performance
through coarse-grained parallelism. However, a study indicated that the ring network and the ECC
memory overhead are performance bottlenecks in MIC architecture, showing poor scalability beyond
32 cores [25].

Figure 10: Intel MIC architecture (source: http://wiki.expertiza.ncsu.edu).

4.3 Tile-Gx of Tilera

TILE-Gx7 architecture is another multicore processor, which comprises up to 72 cores interconnected
by a 2D mesh NoC using wormhole routing packets. Figure 11 depicts a Tile-Gx architecture composed
of 36 cores. From a global point of view, TILE-Gx processor in composed of a two-dimensional array

5http://www.intel.com/content/www/us/en/architecture-and-technology/many-
integrated-core/intel-many-integrated-core-architecture.html?_ga=1.31218297.
751580311.1426595792

6https://www.top500.org/lists/2016/06
7http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-

ArchOverview-TILE-Gx.pdf
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of identical so-called “tiles”. Each tile consists of a core, 64KB L1 cache, 256 L2 cache and a non-
blocking switch connecting tiles to the NoC. A shared address space with cache coherence maintained
by hardware is considered. A study [32] showed that such a processor has a well-balanced architecture
for achieving an excellent ratio of performance per watt. This makes TILE-Gx a good candidate for
building energy-efficient compute accelerators. But, the weak point of its architectures mainly lies in
the lack of floating point units (FPUs) required for compute-intensive applications.

Figure 11: Tile-Gx36 block diagram (source http://www.mellanox.com/repository/
solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf).

4.4 Multi-Purpose Processor Array of Kalray

Multi-Purpose Processor Array (MPPA)8 [14] is a manycore architecture that integrates 256 cores,
where cores are distributed across 16 compute clusters (see Figure 12). Each compute cluster
has a private local memory and cache coherence is enforced by software. Communication and
synchronization between compute clusters are ensured by a proprietary NoC using a 2D torus topology
with a wormhole routing. A recent study [15] compares three accelerators: (i) MPPA, Intel i7-
3820 quad-core, and Nvidia Tesla C2075 GPU. It showed that although MPPA has a lower peak
performance than Intel i7-3820 and GPU for double precision floating-point arithmetic, for irregular
application it outperforms Intel i7-3820 by a factor of 2.4 and only twice worse than the GPU. When
comparing energy consumption, MPPA is over 20 and 6 times more efficient than Intel i7-3820 and
GPU respectively. Indeed in a study [12] authors showed that a single thread execution on a cluster
dissipates 3.73watts while 16 threads require 3.98watts. This suggests that a partial exploitation of the
16 cores available in a cluster leads to low energy-efficiency as with GPUs.

8http://www.kalrayinc.com/kalray/products/#processors
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Figure 12: MPPA - 256 block diagram (source: [12]).

4.5 Tera-Scale ARchitecture

Tera-Scale ARchitecture (TSAR) [23, 20] is a scalable general-purpose cache-coherent globally
asynchronous locally synchronous (GALS) multicore architecture. It consists of a set of clusters
(see Figure 13) interconnected by a 2D mesh NoC. Each cluster is composed of 32 bits RISC cores
without superscalar features. TSAR architecture aims to solve two major technical issues: i) scalability
by targeting up to 4096 cores and ii) power consumption by using small cores to obtain the best
MIPS/microwatt ratio. TSAR architecture physically implements MMU in the L1 cache controller.
This creates an overhead in terms of silicon area and increased latency communication to maintain
cache coherency. Therefore, network latency of distributed MMU may be very sensitive to the growth
of the system.

A recent multicore architecture proposal [21] adopting distributed-memory design, shows promising
performance, area and energy consumption improvements. This is enabled by the scalability of the
architecture.

4.6 Summary

This section presented a number of existing compute accelerator architectures from which some
interesting features could be borrowed for the compute node architecture explored in CONTINUUM.
For instance, the cluster-based design of the TSAR architecture with low power cores certainly deserves
to be considered as it shares a number of characteristics in the foreseen compute node architecture.
However, an important innovation expected in CONTINUUM is the integration of emerging non-
volatile memory technologies in the memory hierarchy, while exploiting core heterogeneity so as to
achieve the best compromise in terms of performance and power consumption.
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Figure 13: TSAR architecture (source [23]).

5 Conclusions and future work

In this deliverable, we presented a number of candidate core technologies for the compute node
architecture studied in the CONTINUUM project. The core technologies from the Cortus partner are
central building blocks in the definition of the expected architecture. Indeed, they appear as good
candidates for offering the required capabilities in terms of performance and power consumption
trade-off in order to conveniently reach energy-efficiency. The foreseen design solution shares several
points with the ARM big.LITTLE technology, which consists of heterogeneous cores that can be
selected according to the performance and power demand of executed workloads, for energy-efficiency
purposes. The energy-efficiency of a system-on-chip integrating this technology has been evaluated in
this deliverable. On the other hand, some complementary manycore architectures have been surveyed,
as a possible inspiration basis for the compute node targeted in our project.

From this preliminary study on relevant candidate technologies about cores, we can properly now
address the design of our target compute node based on all interesting features identified from the
state-of-the-art. In particular:

• as big.LITTLE design paradigm shows several benefits in terms of performance and power
consumption trade-off, we would like to focus on its heterogeneous feature by considering the
ultra-compact core technology from Cortus, which are more energy-efficient than traditional
big.LITTLE configurations;

• further interesting design paradigms identified from the reviewed literature, e.g., mesh intercon-
nects and cluster-based partitioning [23, 21], deserve high attention as part of the design options
to be considered in the next steps of the project;
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• emerging non-volatile memories [43], such as magnetic memories integrated in last-level caches
[41, 40, 36, 42, 17], are other design ingredients to take into account for an aggressive energy
reduction.
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