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D5.1 – Technical description of the holistic design flow in CONTINUUM

Executive Summary

The CONTINUUM project aims to define a new energy-efficient compute node model, which will
benefit from a suitable combination of efficient compilation techniques, emerging memory and
communication technologies together with heterogeneous cores.

This deliverable provides a technical summary of the different studies that contribute to the holis-
tic design flow of CONTINUUM: energy consumption optimization through innovative compilation
approaches and cache memory system design, taking into account the integration of non-volatile mem-
ory technologies; a workload management technique enabling performance and energy improvements
in heterogeneous multicore systems; and finally, the compute node architecture prototype designed
with the Cortus core technology.

Please note that the contents of this deliverable is mainly based on some extracts published in
conferences or journals by the consortium members of the CONTINUUM project. More technical
details could be found in the corresponding references.
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1 Introduction

The holistic design flow targeted by our project is motivated by the following considerations:

• the need for a co-design approach between both compiler and architecture designers, and
technology experts. This should bring all the actors to tightly cooperate towards the seamless
definition of the target compute node architecture, which able to answer the energy-efficiency
challenge;

• beyond the choice of suitable CPU cores, the careful selection of suitable technologies could
significantly contribute to reducing the expected system power consumption without compro-
mising the performance. In particular, we explored emerging non-volatile memory technologies
as the key solution;

• as a consequence, the need for revisiting existing compilation and runtime management tech-
niques to adapt them to the specific features of the designed compute node, e.g., core and
memory heterogeneity, which calls for some adaptive management of workloads and data.

According to the above considerations, we, therefore, study a system design "continuum" that seam-
lessly goes from software level to memory technology level via hardware architecture. Figure 1 depicts
the different aspects involved in the considered design flow.

Figure 1: Holistic design flow of CONTINUUM project

The rest of this deliverable briefly describes each of these aspects, in based, in major part, on the
dissemination material already published in the context of the CONTINUUM project: starting from
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NVM technology integration implications, we respectively discuss the effort achieved by the project
to optimize the energy consumption through innovative compilation and workload management
techniques (Section 2); then, we briefly describe the final compute node architecture prototype
designed with the Cortus core technology (Section 3). Finally, some concluding remarks are given
(Section 4).
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D5.1 – Technical description of the holistic design flow in CONTINUUM

2 Software level: workload analysis and runtime optimization

We first describe some studies that have been done in the project up to now in order to suitably leverage
NVM-based memory hierarchy. Then, we discuss our efforts for contributing to efficient workload
management.

2.1 Portable NVM-oriented analysis and optimizations

We explore some compile-time analyses and optimization and software analysis, as a possible alter-
native to leverage the low leakage current inherent to emerging NVM technologies [12] for energy-
efficiency. A major advantage is a flexibility and portability across various hardware architectures
enabled by such an approach, compared to the hardware-oriented techniques found in the literature.
Our proposal is inspired by some existing techniques such as the silent store elimination technique
introduced by Lepak et al. [24] and worst-case execution time analysis techniques [41]. Our main
contributions are summarized below.

Silent store elimination: profiling-based versus static analysis approaches. In [4, 5, 6], we
proposed a silent store elimination technique through an implementation in the LLVM compiler [23].
Thanks to this implementation, a program is optimized once and run on any execution platform while
avoiding silent stores. This is not the case of the hardware-level implementation. We evaluated
the profitability of this silent store elimination for NVM cache memories. Silent stores have been
initially proposed and studied by Lepak et al. [25]. They suggested new techniques for aligning cache
coherence protocols and micro-architectural store handling techniques to exploit the value locality of
stores. Their studies showed that eliminating silent stores helps to improve monoprocessor speedup
and reduce multiprocessor data bus traffic.

Methods devoted to removing silent stores are meant to improve the system performance by reducing
the number of write-backs. Bell et al. [3] affirmed that frequently occurring stores are highly likely to
be silent. They introduced the notion of critical silent stores and show that all of the avoidable cache
write-back can be removed by removing a subset of silent stores that are critical.

In our proposal, the silent store elimination technique is leveraged at compiler-level. This favors
portability and requires no change to the hardware. We remind that this technique is not dedicated
only to STT-RAM but to all NVMs. Here, STT-RAM is considered due to its advanced maturity and
performance compared to other NVM technologies. Our approach concretely consists in modifying the
code by inserting silentness verification before stores that are identified as likely silent. As illustrated
in Figure 2, the verification includes the following instructions:

1. a load instruction at the address of the store;

2. a comparison instruction, to compare the to-be-written value with the already stored value;

3. a conditional branch instruction to skip the store if needed.
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D5.1 – Technical description of the holistic design flow in CONTINUUM

Figure 2: Silent store elimination: (a) original code stores val at address of x; (b) transformed code
first loads the value at address of x and compares it with the value to be written, if equal, the branch
instruction skips the store execution; (c) when the instruction set supports predication, the branch can
be avoided and the store made conditional.

We showed that energy gains highly depend on the silentness percentage in programs, and on the
energy consumption ratio of read/write operations costs for NVMs. We validated our proposal with
the Rodinia benchmark suite while reporting up to 42% gain in energy for some applications. This
validation relies on an analytic evaluation considering typical NVM parameters extracted from the
literature.

The above silent store analysis was carried out based on program profiling, a complementary study
leveraging static code analysis is proposed [36]. It aims at predicting the presence of silent stores
prediction by analyzing the syntactic properties of programs, through a set of 127 features organized
into eight categories. To validate the approach, we collected a number of benchmarks from well-known
suites, such as SPEC CPU2006, MiBench, mediabench, BitBench, CoyoteBench, Trimaran, etc.
In total, we reused 34 different collections, which gave us 222 programs to analyze.

Out of the 127 features, 100 have been observed in our benchmarks. Figure 3 shows them, together
with the probability of silentness associated with their occurrence. Features in each category refer to
different parts of the store instruction “` : p[i] = v", and are described as follows:

• VALUETYPE. The type of variable v: Vfp: 32-bit floating point; Vdb: 64-bit floating point;
Vin: integers (with different bitwidths); Vpt: pointer.

• VALUESIZE. The size of the type, in bits: sz0: size is unknown v; sz1: one bit; sz8: two to
eight bits; s16: nine to 16 bits; s32: 16 to 32 bits; szN: more than 32 bits.

• VALUEDEPS. The operands (instructions, addresses and constants) that contribute to forming
the value of v.

• VALUEORIGIN The last instruction or operation that produced the value v.

• POINTERTYPE. The type of p: Pfp: 32-bit floating point; Pdb: 64-bit floating point; Pin:
integer; Pst: C-like struct; Pay: array; Ppt: another pointer; Pvc: SIMD vector.

• POINTERLOC. The location of the region pointed by p: Msc: static memory; Msk: stack; Mhp:
heap; Mar: unknown location loaded from function argument; Mfn: unknown location returned
by function; Mph: unknown location loaded from an SSA φ-function; Mbt: unknown location
produced by a bitwise operation; Mld: other unknown locations;
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Total Feat P1.0 P0.8 P0.6 P0.4 P0.2 Total Feat 1 0.8 0.6 0.4 0.2
1078 Vfp 0.13 0.24 0.28 0.32 0.38 2844 Dc? 0.07 0.1 0.11 0.13 0.15
3116 Vdb 0.08 0.14 0.15 0.19 0.22 11755 Dar 0.07 0.12 0.14 0.17 0.21
27266 Vin 0.12 0.17 0.2 0.24 0.29 20216 Dld 0.06 0.11 0.13 0.17 0.21
7914 Vpt 0.1 0.12 0.14 0.17 0.19 5385 Dcl 0.09 0.13 0.16 0.2 0.24
7915 sz0 0.1 0.12 0.14 0.17 0.19 590 Dcp 0.11 0.19 0.24 0.35 0.39
142 sz1 0.33 0.47 0.54 0.61 0.65 5185 Dph 0.07 0.15 0.19 0.23 0.28
1118 sz8 0.16 0.23 0.27 0.32 0.37 392 Dsl 0.05 0.09 0.13 0.19 0.24
858 s16 0.1 0.21 0.23 0.27 0.34 10883 Dad 0.04 0.09 0.11 0.14 0.17

24195 s32 0.12 0.17 0.2 0.24 0.29 3336 Dsb 0.05 0.11 0.13 0.17 0.22
5146 szN 0.09 0.15 0.17 0.2 0.23 3397 Dml 0.05 0.11 0.13 0.16 0.2
614 Pfp 0.1 0.23 0.26 0.3 0.37 1249 Ddv 0.02 0.09 0.13 0.17 0.22
2087 Pdb 0.07 0.14 0.16 0.19 0.22 341 Drm 0.02 0.05 0.08 0.12 0.21
18523 Pin 0.09 0.14 0.17 0.21 0.25 1660 Dsh 0.02 0.09 0.12 0.15 0.2
10797 Pst 0.15 0.2 0.23 0.28 0.32 1397 Dbt 0.05 0.12 0.16 0.19 0.23
3532 Pay 0.15 0.22 0.24 0.28 0.33 13275 Dgp 0.06 0.12 0.15 0.18 0.23
3820 Ppt 0.08 0.1 0.1 0.12 0.14 2233 Dcs 0.04 0.08 0.12 0.14 0.16
1 Pvc 0 1 1 1 1 181 Dex 0.06 0.09 0.14 0.18 0.22

6281 Ozr 0.4 0.48 0.52 0.58 0.62 207 Dfi 0.03 0.08 0.11 0.14 0.14
3857 Oin 0.05 0.1 0.12 0.15 0.18 648 Dif 0.03 0.07 0.11 0.15 0.19
466 Ofp 0.02 0.03 0.03 0.07 0.08 15 Dip 0.13 0.13 0.33 0.33 0.33
454 Ogb 0.09 0.15 0.18 0.22 0.27 86 Dpi 0.07 0.12 0.15 0.16 0.2
427 Oay 0.16 0.2 0.21 0.22 0.24 1955 Dtr 0.04 0.09 0.12 0.18 0.22
5043 Oag 0.05 0.09 0.11 0.15 0.19 6876 Dsx 0.05 0.12 0.15 0.2 0.25
5322 Old 0.09 0.14 0.18 0.23 0.29 1753 Dzx 0.09 0.16 0.19 0.24 0.29
2578 Ocl 0.11 0.15 0.18 0.24 0.28 12290 Dal 0.05 0.09 0.12 0.16 0.21
937 Omx 0.07 0.15 0.21 0.26 0.32 289 Di? 0.03 0.1 0.13 0.15 0.17
4075 Oad 0.05 0.08 0.11 0.13 0.16 1166 Smn 0.21 0.22 0.23 0.23 0.24
3082 Oic 0 0.01 0.01 0.01 0.02 25142 Sl0 0.13 0.17 0.19 0.23 0.26
140 Ong 0.04 0.16 0.2 0.22 0.23 8957 Sl1 0.08 0.14 0.18 0.22 0.27
9 Ont 0 0 0.11 0.11 0.22 3543 Sl2 0.08 0.17 0.21 0.24 0.29

768 Omd 0.07 0.17 0.18 0.22 0.25 1274 Sl3 0.07 0.17 0.22 0.26 0.29
938 Omu 0.04 0.11 0.14 0.17 0.22 458 Sln 0.06 0.11 0.15 0.21 0.27
989 Obn 0.04 0.12 0.16 0.2 0.23 16197 Scm 0.13 0.17 0.19 0.23 0.26
2728 Ocs 0.05 0.09 0.12 0.17 0.22 5830 Scl 0.1 0.15 0.19 0.24 0.29
12 Oal 0 0 0 0.08 0.08 643 Spl 0.1 0.16 0.19 0.3 0.33
238 Oun 0.04 0.1 0.13 0.15 0.17 11032 Slx 0.08 0.15 0.19 0.24 0.29
1030 Oiy 0.01 0.03 0.03 0.05 0.06 6881 Smp 0.14 0.2 0.23 0.28 0.32
5306 Msc 0.19 0.23 0.25 0.26 0.28 10631 Sms 0.1 0.15 0.18 0.23 0.27
18978 Msk 0.08 0.12 0.15 0.19 0.22 13771 Ssl 0.08 0.15 0.19 0.23 0.28
761 Mhp 0.16 0.22 0.24 0.28 0.3 8741 Sdl 0.07 0.13 0.16 0.21 0.25
6127 Mar 0.11 0.16 0.19 0.24 0.28 3151 Svi 0.19 0.29 0.34 0.4 0.46
6075 Mld 0.14 0.22 0.26 0.31 0.36 6174 Spi 0.05 0.1 0.14 0.18 0.22
1190 Mfn 0.15 0.2 0.23 0.25 0.28 2364 Erc 0.09 0.14 0.19 0.24 0.29
930 Mph 0.06 0.12 0.15 0.19 0.25 2364 Eaf 0.09 0.14 0.19 0.24 0.29
7 Mbt 0 0 0.43 0.43 0.43 100 Es1 0.09 0.12 0.16 0.26 0.41

18800 Dzr 0.18 0.24 0.28 0.32 0.37 565 Es4 0.05 0.14 0.21 0.29 0.35
24733 Din 0.05 0.1 0.13 0.16 0.2 631 Es8 0.21 0.24 0.28 0.32 0.35
1353 Dfp 0.03 0.08 0.1 0.15 0.17 952 EsN 0.04 0.1 0.13 0.17 0.2
5181 Dgb 0.08 0.14 0.16 0.19 0.23 1122 Esp 0.05 0.12 0.18 0.25 0.31
5008 Dfn 0.09 0.14 0.17 0.21 0.25 3181 Etp 0.08 0.19 0.24 0.29 0.33

Figure 3: Probabilities of silentness distributed per features [36]. Total shows number of instructions
that present each feature. The other columns show thresholds of silentness. Darker cells indicate a
higher proportion of silent stores. For instance, 48% of stores with the feature Ozr were silent 80% or
more of the time.

• LABELLOC. the location ` of the instruction within the program. Smn: within the main
function; Sl0: not inside a loop. Sl1-Sl3: within a singly, doubly or triply nested loop; Slx:
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within more than three loop nests. Scm: ` post-dominates the entry point of the function. Thus,
if this function is invoked, the store happens compulsorily. Scl: ` is compulsory within the
loop where it is located. Spl: ` exists within a compulsory loop, i.e., the loop’s entry point
post-dominates the function’s entry point. Slx: ` is within a single-exit loop, i.e., after the loop
runs, the program always reaches the same point. Ssl: ` is within a single-latch loop. A latch
is a block inside the loop that leaves it. Sdl: ` dominates the single latch in the loop. Smp: in a
basic block with multiple predecessors. Sms: in a basic block with multiple successors. Svi:
reached only by invariant definitions of v. Spi: reached only by invariant definitions of p.

• POINTERSTRIDE. The offset i that is added to p when building the store address, e.g., p +
i. We use LLVM’s scalar evolution to recover this information. Erc: i is created by some
recursive expression, e.g.: i = i + 1; Eaf: i is created by some affine expression, e.g., i
= 2 * b + c; Es1: i has a stride of size 1; Es4: i has a stride of size 4; Es8: stride of size
8; EsN: regular stride, but its value is unknown; Esp: stride has the same size as the region
pointed by p; Etp: i exists in a loop of known trip-count.

Partial WCET analysis for efficient NVM mapping. On the other hand, we proposed another
type of program analysis, which aims at exploiting the variable NVM data retention capacities. This
opens the opportunity to explore different energy/performance trade-offs, depending on the energy-
efficiency requirements of a system. We introduced a variant of worst-case execution time analysis
[40], to determine the partial worst-case lifetimes of the variables of a program, referred to as δ-
WCET [7]. Based on this knowledge, the variables can be safely allocated to NVM memory banks
accommodating their requirements in terms of data retention duration.

Our methodology is a two-step process, illustrated in Figure 4. First, we identify the def-use chains in
the program. In other words, for each store instruction, we determine all the loads that can read the
value previously written. Second, we compute the worst-case execution time between the store and all
subsequent loads (step referred to as “δ-WCET”). For this purpose, we have developed a method to
compute partial WCET estimates (see details in our previous work [8]).

source.c

executable
worst-case 
lifetimes

Heptane

-WCET
def-use 
chains

execution trace
(memory accesses)

NVM bank
allocation

Energy Gain




Figure 4: Sketch of our framework (input: C code).

We computed the dynamic energy gain, as illustrated in Figure 5 for the Malardalen benchmark-suite,
w.r.t. 4 MB and 32 KB STT-RAM memory setups respectively. Here, the reported gain is computed
against a baseline setup consisting of an STT-RAM memory with a retention time of 4.27 years.

Version 2.0
(2019)

Confidentiality: Public Distribution

Page 7



D5.1 – Technical description of the holistic design flow in CONTINUUM

The results show that we achieved with the small memory configuration up to 80 % of energy gain
compared to the baseline (small memory with 4.27 years retention time) [7].

Figure 5: Energy savings evaluation

Exploring advanced cache replacement policies for last-level cache in NVM. We evaluated the
impact of cache replacement policies in the reduction of cache memory write [35] in presence of
STT-RAM. We observed that state-of-the-art Hawkeye cache replacement policy can be beneficial
for larger last level caches [20, 34]. Our evaluations showed that the global system performance can
be improved up to 14% for a multicore platform. This gain, combined with the drastic static energy
reduction enabled by STT-RAM in place of usual SRAM, enhances the energy-efficiency by up to
27.7%.

For example, Figure 6 illustrates the effect of the Hawkeye policy over LRU, based on the study
presented in [35]. In the configuration names, the prefixes M ("Medium"), B ("Big") and H ("Huge")
respectively correspond to 2MB, 4MB and 8MB last level cache sizes. The considered architecture
consists of an Intel Core i7 system, with a 3-level on chip cache hierarchy plus a main memory. We used
the SPEC CPU2006 benchmark set. The reported results are normalized for each memory technology
configuration combined with the Hawkeye policy, compared to its LRU counterpart. Typically,
H_stt_hawk is normalized to H_stt_lru. For this experiment, we run the SRAM configuration that
do not fit into area constraint to illustrate the effect of Hawkeye on SRAM and STT-MRAM for the
same cache size. Both SRAM and STT-MRAM configurations follow the same trend regarding the
MPKI 1 (Miss Per Kilo Instructions) reduction over LRU since the Hawkeye policy is not impacted by

1MPKI is a common metric used to assess LLC performance. It is defined as the total number of cache misses divided
by the total number of executed instructions. One possibility to reduce the MPKI is to increase the cache size. The cache
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cache latency. Moreover, we use a single core platform where parallel events cannot occur. Hence,
eviction decision remains identical for a given cache size, regardless of the cache size. However,
the average gain obtained with Hawkeye is slightly better with STT-MRAM. The performance gap
between SRAM and STT-MRAM is 3.3% and 3.1%, respectively with LRU and Hawkeye. Hence,
reducing the amount of write-fill has higher impact on STT-MRAM where writes are penalizing.
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Figure 6: Performance impact of Hawkeye normalized to LRU

Figure 6 shows that the 8MB configuration is not as efficient as the 4MB configuration in terms of
performance improvement. The average gain for the Instruction Per Cycle (IPC) for H_sram_hawk
and H_stt_hawk is lower than B_sram_hawk and B_stt_hawk. This suggests an issue that can be due
to either a larger LLC, or the Hawkeye policy, or both. On the other hand, we observe that Hawkeye
increases the MPKI compared to LRU for a 8MB LLC. This is explained by some wrong eviction
decisions made by Hawkeye. Indeed, the Hawkeye predictor exploits all cache accesses to identify the
instructions that generate cache misses. Since a large cache size reduces the number of cache misses,
it becomes hard for the predictor to learn accurately from a small set of miss events. Note that the
performance for H_stt_hawk is still better than other configurations despite these inaccurate decisions.

It is important to notice that the above evaluation was conducted with the ChampSim simulator [1] used
for the Cache Replacement Championship at ISCA’17 conference. Despite the notable efforts made
recently for accelerating and making systematic gem5-based simulation [10, 29, 30, 38, 13, 14], we
decided to use ChampSim which is more abstract and faster yet relevant-enough for our experiments.

2.2 Workload management

We addressed the workload management issue on multicore heterogeneous architectures, by investi-
gating a few techniques. State-of-the-art approaches solve this problem dynamically, e.g., at runtime /
operating system levels, or via a middleware [26, 28], or statically, e.g., via compilers [27, 33].

Compiler-assisted Adaptive Program Scheduling. In a proposed approach [31], we used the
compiler to partition source code into program phases: regions whose syntactic characteristics lead to

contains more data and reduces the probability for a cache miss to occur. This results in penalties in terms of cache latency,
energy and area.
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similar runtime behavior. Reinforcement learning is used to map hardware configurations that best fit
program regions. To validate our proposal, we implemented the Astro framework to instrument and
execute applications in heterogeneous architectures. The framework collects syntactic characteristics
from programs and instruments them using LLVM [23]. For a program region, the scheduler can take
into account its corresponding characteristics collected statically, for immediate action. An action
consists in choosing an execution configuration and collecting the "reward" related to that choice.
Such feedback is then used to fine-tune and improve the subsequent scheduling decisions. We rely
on reinforcement learning technique to explore a vast universe of configurations (or states), formed
by different hardware setups and runtime data changing over time. However, the universe of runtime
states is unbounded, and program behavior is hard to predict without looking into its source code.
To speed up convergence, we resort to a compiler, which gives us two benefits: i) mining program
features to train the learning algorithm, and ii) instrumenting programs to provide feedback to the
scheduler on the code region currently under execution.

The heart of the Astro system is the Actuation Algorithm outlined in Figure 7. Actuation consists of
phase monitoring, learning and adapting. These three steps happens at regular intervals, called check
points, which, in Figure 7, we denote by i and i+1. The rest of this section describes these events.

Inst. Program Actuator

Log

Experience

State

Weighted
Actions

Neural NetDevice

PerfMon Di

Si

ri = reward(ei, pi)

(Hi-1, Si-1, 
Di-1, Hi, ri)

backprop.
(Hi, Di, Si)

(A1, R1)
...

(An, Rn)

H' = best(Ax, Rx) 1 � x � n

Hi+1 = chg(H', Hi)

Next 
ConfigH'

feedforward

i

i+1

i > 0 M
O
N
I
T
O
R

L
E
A
R
N

A
D
A
P
T

OS (Hi, pi)

PowMon ei

Figure 7: The actuation algorithm [31].

Monitoring step.

To collect information that will be later used, a monitor in Astro reads four kinds of data.
Figure 7 highlights this data:
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• From the Operating System (OS): current hardware configuration H and instructions p
executed since last check point.

• From the Program (Log): the current program phase S.

• From the device’s performance counters (PerfMon): the current hardware phase D.

• From the power monitor (PowMon [39]): the energy e consumed since the last checkpoint.

The monitor collects this data at periodic intervals, whose granularity is configurable. It was
500 milliseconds in our setup. The recording of the program phase is aperiodic, following from
instrumentation inserted in the program by the compiler. Information is logged at the entry point
of functions, and around library calls that might cause the program to enter a dormant state. The
hardware configuration is updated whenever it changes. The metrics e and p let us define the
notion of reward as follows:

Definition 1 (Reward). The reward is the set of observable events that determine how well the
learning algorithm is adapting to the environment. The reward is computed from a pair (e, p),
formed by the Energy Consumption Level e, measured in Joules per second (Watt), and the
CPU Performance Level p, measured in the number of instructions executed per second.

The metric used in the reward is given by a weighted form of performance per watt, namely
MIPSγ/Watt, where γ is a design parameter that gives a boosting performance effect in
the system. This is usually a trade-off between performance and energy consumption. To
optimize for energy, we let γ = 1.0. A value of γ = 2.0 emphasizes performance gains:
the reward function optimizes (in fact, maximizes the inverse of) the energy delay product
per instruction, given by Watt/IPS2; letting IPS = I/S we have (Watt × S × S)/I2 =
(Energy×Delay)/I2. This aims to minimize both the energy and the amount of time required
to execute thread instructions [9].

Learning step.

The learning phase uses the Q-learning algorithm. As illustrated in Figure 7, a key component in
this process is a multi-layer Neural Network (NN) that receives inputs collected by the Monitor.
The NN outputs the actions and their respective rewards to the Actuator so that a new system
adaptation can be carried out. Following the common methodology, learning happens in two
phases: back-propagation and feed-forwarding. During back-propagation, we update the NN
using the experience data given by the Actuator (Figure 7). Experience data is a triple: the
current state, the action performed and the reward thus obtained. The state consists of a hardware
configuration (Hi−1), static features (Si−1) and dynamic features (Di−1) at check points i-1.
The action performed at check point i-1 makes the system move from hardware configuration
Hi−1 to Hi. The reward is given by ri, received after the action is taken. The NN consists
of a number of layers including computational nodes, i.e., neurons. The input layer uses one
neuron to characterize each triple (state, action, reward). The output layer has one neuron
per action/configuration available in the system. During the feed-forward phase, we perform
predictions using the trained NN. Each node of the NN is responsible to accumulate the product
of its associated weights and inputs. Given as input a state (Hi, Di, Si) at checkpoint i, the result
of the feed-forward step is an array of pairs A×R, where A is an action, and R is its reward,
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estimated by NN. Actions determine configuration changes; rewards determine the expected
performance gain, in terms of energy and time, that we expect to obtain with the change. We
use the method of gradient descent to minimize a loss function given by the difference between
the reward predicted by the NN, and the actual value found via hardware performance counters.

Adaptation step. At this phase, Astro takes an action. Together with states and rewards, actions are
one of the three core notions in Q-learning, which we define below:

Definition 2 (Action). Action is the act of choosing the next hardware configuration H to be
adopted at a given checkpoint.

An action may change the current hardware configuration; hence, adapting the program accord-
ing to the knowledge inferred by the Neural Network. Following Figure 7, we start this step by
choosing, among the pairs {(A1, R1), . . . , (An, Rn)}, the action Ax associated with the maxi-
mal reward Rx. Ax determines, uniquely, a hardware configuration H ′. Once H ′ is chosen, we
proceed to adopt it. However, the adoption of a configuration is contingent on said configura-
tion being available. Cores might not be available because they are running higher privilege
jobs, for instance. If the Next Configuration is accessible, Astro enables it; otherwise, the whole
system remains in the configuration Hi active at check point i. Such choice is represented, in
Figure 7, by the function Hi+1 = chg(H ′, Hi). Regardless of this outcome, we move on to the
next check point, and to a new actuation round.

Machine learning-based performance model building. In [16], we kept investigating the defini-
tion of performance and energy consumption prediction models. Following the promising insights
obtained from ar earlier work [15], we generalized our study to more machine learning techniques.
We mainly focused on supervised machine learning techniques: Support Vector Machines (SVM) [18],
Adaptive Boosting (AdaBoost) [37] and Artificial Neural Networks (ANNs) [19]. We considered a
dataset consisting of mapping scenarios evaluated with the McSim simulator [22, 21]. Our evalua-
tion showed that providing some limited training efforts, AdaBoost and ANNs can provide very good
predictions, estimated around 84.8% and 89.05% correct prediction scores. This opens an interest-
ing perspective for considering such models in the runtime mapping and scheduling decisions for
heterogeneous architectures.
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3 Hardware level: a multicore asymmetric architecture

We devised a novel original asymmetric multicore architecture comprising two execution islands:
parallel and sequential [17]. While the former is devoted to highly parallelizable workloads for high
throughput, the latter addresses weakly parallelizable workloads. Accordingly, the parallel island is
composed of many low power cores and the sequential island is composed of a small number of high-
performance cores. Our proposal integrates the cost-effective and inherently low power core technology
provided by Cortus [2], one of the world-leading semiconductor IP companies in the embedded domain.
These cores are highly energy (MIPS/µW) and silicon efficient (MIPS/mm2) compared to existing
technologies. We believe the massive usage of such embedded cores deserves attention to achieve the
energy-efficient architectures required for high-performance embedded computing.

Another trade-off considered in our solution is the support of floating point arithmetic, which benefits
certain operations in embedded applications, e.g., matrix inversion required for Multiple Input /
Multiple Output (MIMO), Fast Fourier Transforms (FFTs) which often suffer from scaling problems
in fixed point. As floating point units (FPUs) can be expensive in terms of area and power in the very
low power cores being considered, it will be supported only by a subset of these cores.

Figure 8: Sketch of the implemented heptacore system.

A prototype comprising 7 CPU cores has been devised (see Figure 8). One high performance CPU
Core is implemented with Cortus APSX2 core IP. It is combined with two clusters that mix smaller
CPU cores integrating hardware floating point support or not. Each core has a local cache. The
relevance of such a heterogeneous multicore architecture has been recently illustrated [32, 11]. A
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level 2 memory block caches all the memory access to the external DDR memory, reducing the
memory access latency. As a proof-of-concept, a multi-thread execution model is defined for program
execution. The workload management exploits the nature of programs, which is analyzable statically
during compilation, e.g., computation versus memory intensiveness, floating-point intensive or not.
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4 Conclusions

This deliverable presented a brief description of the techniques defined in the framework of the holistic
design flow proposed by the CONTINUUM project. This covers: energy consumption optimization
through innovative compilation approaches and cache memory system design, taking into account
the integration of non-volatile memory technologies; a workload management technique enabling
performance and energy improvements in heterogeneous multicore systems; and finally, the compute
node architecture prototype designed with the Cortus core technology.
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