
HAL Id: lirmm-03185020
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03185020

Submitted on 22 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Digital Implementation of Oscillatory Neural Network
for Image Recognition Application

Madeleine Abernot, Thierry Gil, Manuel Jiménez Través, Juan Núñez, María
José Avedillo de Juan, Bernabé Linares-Barranco, Tanguy Hardelin, Theophile

Gonos, Aida Todri-Sanial

To cite this version:
Madeleine Abernot, Thierry Gil, Manuel Jiménez Través, Juan Núñez, María José Avedillo de Juan,
et al.. Digital Implementation of Oscillatory Neural Network for Image Recognition Application.
Frontiers in Neuroscience, 2021, 15, pp.#713054. �10.3389/fnins.2021.713054�. �lirmm-03185020�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03185020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ORIGINAL RESEARCH
published: 26 August 2021

doi: 10.3389/fnins.2021.713054

Frontiers in Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 713054

Edited by:

Chunsheng Jiang,

China Academy of Engineering

Physics, China

Reviewed by:

Lyes Khacef,

University of Groningen, Netherlands

Timothée Levi,

Université de Bordeaux, France

*Correspondence:

Aida Todri-Sanial

aida.todri@lirmm.fr

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 21 May 2021

Accepted: 04 August 2021

Published: 26 August 2021

Citation:

Abernot M, Gil T, Jiménez M, Núñez J,

Avellido MJ, Linares-Barranco B,

Gonos T, Hardelin T and Todri-Sanial A

(2021) Digital Implementation of

Oscillatory Neural Network for Image

Recognition Applications.

Front. Neurosci. 15:713054.

doi: 10.3389/fnins.2021.713054

Digital Implementation of Oscillatory
Neural Network for Image
Recognition Applications

Madeleine Abernot 1, Thierry Gil 1, Manuel Jiménez 2, Juan Núñez 2, María J. Avellido 2,

Bernabé Linares-Barranco 2, Théophile Gonos 3, Tanguy Hardelin 3 and Aida Todri-Sanial 1*

1 Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, University of Montpellier, CNRS,

Montpellier, France, 2 Instituto de Microelectronica de Sevilla, IMSE-CNM, CSIC, Universidad de Sevilla, Sevilla, Spain, 3 A.I.

Mergence, Paris, France

Computing paradigm based on von Neuman architectures cannot keep up with the

ever-increasing data growth (also called “data deluge gap”). This has resulted in

investigating novel computing paradigms and design approaches at all levels from

materials to system-level implementations and applications. An alternative computing

approach based on artificial neural networks uses oscillators to compute or Oscillatory

Neural Networks (ONNs). ONNs can perform computations efficiently and can be used to

build a more extensive neuromorphic system. Here, we address a fundamental problem:

can we efficiently perform artificial intelligence applications with ONNs? We present

a digital ONN implementation to show a proof-of-concept of the ONN approach of

“computing-in-phase” for pattern recognition applications. To the best of our knowledge,

this is the first attempt to implement an FPGA-based fully-digital ONN. We report ONN

accuracy, training, inference, memory capacity, operating frequency, hardware resources

based on simulations and implementations of 5 × 3 and 10 × 6 ONNs. We present

the digital ONN implementation on FPGA for pattern recognition applications such as

performing digits recognition from a camera stream. We discuss practical challenges

and future directions in implementing digital ONN.

Keywords: artificial intelligence, auto-associative memory, FPGA implementations, learning rules, oscillatory

neural networks, pattern recognition

1. INTRODUCTION

In recent years, we have witnessed a proliferation of smart edge devices adopted by all industry
sectors such as smart homes, smart city cameras, smart autonomous driving cars, smart healthcare,
smart manufacturing, etc. Most edge devices are getting smaller and compact.

Using Artificial Neural Networks (ANNs), specifically Deep Neural Networks (DNNs) to create
Artificial Intelligence (AI) at the edge, has successfully been used to teach smart systems to
recognize or detect objects (Redmon et al., 2016; Krizhevsky et al., 2017; Shah and Kapdi, 2017;
Yang and Song, 2018; Jiao et al., 2019), read texts (Jackel et al., 1991), and understand speeches
(Xiong et al., 2018; Nassif et al., 2019). Contraints to such applications on edge devices derives from
the inherent limitations of power consumption, memory, and little to no bandwidth. In addition,
privacy and security concerns would recommend the data to be stored locally. In contrast, ANNs or
DNNs systems that enable AI at the edge are getting larger to cope with the ever-increasing amount
of data. Thus, resulting in more power consumption, memory, and bandwidth demand.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.713054
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.713054&domain=pdf&date_stamp=2021-08-26
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aida.todri@lirmm.fr
https://doi.org/10.3389/fnins.2021.713054
https://www.frontiersin.org/articles/10.3389/fnins.2021.713054/full

Abernot et al. Digital ONN for Image Recognition

Systems based on ANNs and Convolutional Neural Networks
(CNNs) running on traditional von Neumann architectures
require a large amount of memory, computational power, and
bandwidth demand. While they perform well on expensive
hardware such as GPUs (Pham et al., 2019), they are often
unsuitable for smaller edge devices. Such a disconnect between
the growing need in AI at the edge and limitations of processing
hardware has compelled significant research efforts into beyond-
von Neumann systems such as neuromorphic computing
paradigms deployable at the edge (Bey, 2020; Kendall and Kumar,
2020).

This paper focuses on an alternative, low-power,
neuromorphic computing approach with Oscillatory Neural
Networks (ONNs) (Raychowdhury et al., 2019; Csaba and Porod,
2020). The ONN is a system of coupled oscillators mimicking
at circuit level the basic structure of the brain architecture. The
key feature of ONNs is to encode the information on the phase
relations between oscillators and to let them oscillate using their
physical dynamics to compute. For example, the random start
of five metronomes (similar to grandfather’s clock) will make
them oscillate in parallel (Met, 2013). After several cycles, they
get synchronized in frequency while their phase relations can
tell us if they are in- or out-of-phase. Contrarily to the classical
computation based on voltage amplitude to determine a logic “1,”
or “0,” in ONN we use the phase relations to determine the logic
“1” (out-of-phase 180o) or “0” (in-phase 0o). Thus, working with
parallel oscillators in the frequency and phase domains allows to
reach fast and low-power computation (Roychowdhury, 2014;
Shukla et al., 2016). This makes ONN an ideal solution to bring
artificial intelligence on edge devices.

ONN principle was first introduced in Hoppensteadt and
Izhikevich (2000) where ONN showed good associative memory
properties. Thus, there is a recent interest to exploit ONN for
large-scale associative memory applications. While there is a
lot of ongoing research on devices and analog architectures to
implement ONN efficiently (Csaba and Porod, 2013; Jackson
et al., 2015; Shi et al., 2016; Kumar and Mohanty, 2017; Corti
et al., 2019; Velichko et al., 2019), we focus on addressing a more
fundamental problem—can we perform relevant AI applications
such as image recognition with ONN?We explore ONN at small-
scale (up to 60 coupled oscillators) as a first attempt to show
phase computation in the digital domain. Despite being a small-
scale ONN, we investigate advantages and limitations on image
recognition tasks suitable for AI applications on edge devices. To
do so, we implement an FPGA-based digital ONN to serve as a
proof-of-concept of the ONN computing paradigm for enabling
AI at the edge.

The rest of the paper is organized as follows. In section 2,
we present materials and methods used for all experiments
carried out for this work. In section 2.1, we introduce the ONN
model and compare it with state-of-the-art associative memory
models. Then, in section 2.2, we present the training methods
we apply to the ONN. Afterward, in section 2.3, we describe
the digital ONN design. section 2.4 presents methods used for
ONN validation and characterization for design simulation and
FPGA implementation. Next, section 2.5 exposes methods for a
10 × 6 ONN used for image recognition from a camera stream.

section 3 reports on results related to ONN simulation, ONN
FPGA implementation, and image recognition application using
such 10× 6 ONN. Finally, in section 4, we discuss the advantages
and limits of ONN and future directions.

2. MATERIALS AND METHODS

2.1. ONN Biological Inspiration and Related
Works
Recent researches on brain-inspired computing paradigms
have focused on Spiking Neural Networks (SNNs) (Maass,
1997; Paugam-Moisy and Bohte, 2012; Zenke and Ganguli,
2018). Neurons in the brain use voltage spikes to transmit
information and SNNs emulate spikes to compute efficiently
in the time domain. On another side, the human brain’s
electrical activity has shown macroscopic oscillations observable
on electroencephalogram signals (EEG). Since then, on going
research has tried to find relationships between oscillation
behavior and neuronal activity (Martindale, 1978; Lieff, 2012).
ONNs are a novel computing paradigm that uses coupled
oscillators as neurons to mimic brain wave oscillations. With
ONNs, we exploit the synchronization dynamics of physical
oscillators to compute (Hoppensteadt and Izhikevich, 1997).

In ONNs, information is encoded in the phase of the
oscillators. Selecting one oscillator as the reference, we can use
each oscillator to encode frame values into phases (between 0◦

and 180◦). Computation consists of oscillators initialization with
initial phase state φinit (0

o < φinit < 180o). Then, oscillators
will oscillate in parallel within multiple states until they stabilize
and lock in phase. Once they stabilize, we can measure phase
information of the final state φend and associate it to output frame
values. When synchronization occurs, the oscillators oscillates in
parallel so it permits fast computation, independently from the
number of oscillators. Additionally, computing with oscillators
in the frequency domain allows low voltage operation. These two
features allow for low power computation (Roychowdhury, 2014;
Shukla et al., 2016), and are attractive to implement artificial
intelligence on edge devices.

Thus, ONN advantages come from the analog-based
computing principle and the hardware implementation.
Different approaches have been explored to emulate oscillating
neurons in ONN architectures such as using spin-torque
oscillators (Csaba and Porod, 2013), ring oscillators (Csaba
et al., 2016), microelectromechanical oscillators (Kumar and
Mohanty, 2017), PLL-based oscillators (Shi et al., 2016), or more
recently, beyond-CMOS devices such as VO2-based oscillators
(Corti et al., 2019). In parallel, different analog couplings
have been proposed using resistors and capacitors (Csaba and
Porod, 2020). In literature, (Ahmed et al., 2021) reported a
fully coupled ONN implementation of 100 neurons. It is, to
the best of our knowledge, the largest implementation of an
ONN with fully coupled oscillators. Other efforts have been
deployed on the hardware implementation of ANNs (Misra and
Saha, 2010; Levi et al., 2018) and SNNs have shown a particular
interest for hardware implementations due to their low-power
properties. Some authors have developed FPGA-based platforms

Frontiers in Neuroscience | www.frontiersin.org 2 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

FIGURE 1 | Oscillatory Neural Network with 4 neurons n using associative memory capability to perform image recognition (wij corresponds to the weight between

neurons ni and nj).

with SNNs (Rosado-Muñoz et al., 2012; Guo et al., 2021), and
mostly perform image classification tasks (Han et al., 2020; Xia
et al., 2020). Some others have focused more on customizable
neuromorphic chips (Khan et al., 2008; Mitra S, 2009; Ma et al.,
2017; Davies et al., 2018). In this manuscript, we present a
first proof-of-concept of the ONN paradigm implemented on
FPGA, and further efforts are needed to develop ONN-based
hardware implementations at the same scale as existing SNN
neuromorphic chips.

ONNs have shown associative memory computing
properties (Hoppensteadt and Izhikevich, 2000), like the
one possessed by Hopfield Neural Networks (HNNs) (Hopfield,
1982). Associative memory systems can store patterns and
associate each possible input to one of the stored patterns.
Stored patterns represent the minima of an energy function
toward which the network evolves. In the case of multiple stored
patterns, the network will evolve and converge to the nearest
energy minimum, meaning the closest stored pattern from the
input. We train the ONN to store patterns by adapting the
coupling between oscillators. The coupling elements represent
the weights of the oscillators. If we consider the image processing
domain, each pixel is an oscillator, and the phase information
represents the pixel color. We compute weights corresponding
to training images stored in ONN. Thus, when we initialize
the network with a new image, it converges to the closest

stored image, see Figure 1. This is what we define by image
recognition task in this paper. In some cases, the network evolves
between states without stabilizing, meaning the network does
not converge.

HNNs have shown capabilities to work with binary/bipolar-
valued patterns (Hopfield, 1982), continuous-valued
patterns (Ramsauer et al., 2021), and complex-valued patterns
(Muezzinoglu et al., 2003; Tanaka and Aihara, 2009). In this
work, we use binary patterns representing in- and out-of-phase
relations and corresponding to black and white images.

2.2. ONN Learning
The Hebbian learning rule (Morris, 1999) is one of the most
popular learning algorithm to calculate synaptic weights for
bipolar-valued stored patterns on HNNs. However, the Storkey
learning rule (Storkey et al., 1997) has been reported to possess
higher storage capacity and robustness against correlated stored
patterns and crosstalk phenomenon (Storkey, 1997; Wu et al.,
2012). So, we apply both the Hebbian and the Storkey rules to
the ONN and compare results.

For both learning rules, we transform each stored pattern
with index k into a vector ξ k of length N, with N, the number
of neurons inside the network. Each vector element is bipolar
(–1/1). For the Hebbian rule, synaptic weight wij between neuron
ni and neuron nj is calculated as:

Frontiers in Neuroscience | www.frontiersin.org 3 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

FIGURE 2 | Digital ONN architecture with fully parallel implementation of neurons and a combinatorial implementation of the arithmetic synapse block.

wij =
∑

k

ξ ki ξ k
T

j (1)

with wij = 0 ∀ i = j.
Whereas, Storkey learning rule is defined as:

wν
ij = wν−1

ij +
1

N
ξ ν
i ξ ν

j −
1

N
ξ ν
i h

ν
ji −

1

N
hν
ijξ

ν
j (2)

h
µ
ij =

∑N
k=1,k 6=i,j w

µ−1
ik

ξ
µ

k
(3)

where w0
ij = 0 ∀ i, j, and hij is a form of local field at neuron i.

Theoretically, the Hebbian memory capacity, represented by
the maximum number of stored patterns K is derived in Amit
et al. (1987) as

K = 0, 14 ∗ N (4)

For our simulations and implementations, we apply up to K
patterns. We calculate weights off-line using a software algorithm
and we store them in our digital design.

2.3. Digital ONN Design
We develop a digital ONN as a proof of concept of the computing
in phase paradigm to explore ONN architectures and AI at-the-
edge applications. We present an ONN digital design inspired by
hybrid analog-digital work from Jackson et al. (2019) but without
analog components.

In Jackson et al. (2019), synapses are implemented by a resistor
network, and a critical analog comparator is required at the

input of each digital neuron. In contrast, in our digital ONN
implementation, we use an arithmetic circuit for each synapse
and there is no analog comparator in neurons. Figure 2 illustrates
the digital ONN architecture. It is a fully parallel design, meaning
we implement each neuron inside the FPGA to oscillate in
parallel. In addition, the synapses block is combinatorial, which
means all synaptic operations are computed in parallel. Also, our
architecture needs extra blocks to control synapses and neuron
signals. Figure 3 presents our digital ONN design composed
of neurons, synapses, and control blocks. In the following
subsections, we detail the implementation of each block.

2.3.1. Neuron Block
In this design, ONN neurons are phase-changed oscillators.
Each neuron n computes the phase difference between the
present input and output oscillations to align the output in-
phase with the input. All neurons are identical according to
the diagram in Figure 3. A neuron has one 1-bit input, nin,
and one 1-bit output, nout , oscillating signals (square signals),
in addition to synchronization, initialization, and control signals.
The synapse block generates the nin signal, which determines the
evolution of the neuron phase. The φout and state_changed signals
give information on the neuron phase and its evolution. We
use full_tick, ser_state_in, and ser_state_out signals to initialize
the neuron phase, and reset, clk, and slowclock signals to
ensure synchronization.

The process starts with the initialization of the output
signal phase φout . It triggers the initial output oscillation
nout corresponding to φout . Automatically, the synapses block

Frontiers in Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

FIGURE 3 | Complete digital ONN design representing digital blocks and block description with the operating principle of a single oscillatory neuron.

computes the new input oscillation nin with the phase φin.
We initialize all neurons serially when full_tick is activated
by connecting ser_state_out signal to ser_state_in signal of the
neighbor neuron. Note, when initialization is over, a scan-path
between ser_state_out and ser_state_in is configured to load and
read ONN’s state in series.

Then, each neuron calculates the phase difference1φ between
φin and φout and uses it to update the new φout with a phase
calculator block. The phase calculator block contains two edge
detectors and a finite state machine (FSM). Edge detectors detect
rising edges on nin and nout oscillating signals. FSMmeasures the
time difference between nin’s rising edge and nout ’s rising edge to
define 1φ. The 1φ value allows us to update the neuron output
phase φout aligning nout signal with nin signal, as:

φout = φout + / − 1φ (5)

Note, the sign (+/−) depends on the first rising edge detected.
(−) if nout ’s rising edge is detected first and (+) if nin’s rising edge
is detected first. Note, the nin signal phase is set by the weighted
sum of the neuron’s input signals.

Finally, we apply the new φout to the oscillating output signal
nout with a phase-controlled oscillator. The phase-controlled
oscillator contains a circular shift register with a multiplexer.
The shift register has 16 stages to represent square signals with
different phases so, 16 phase options are available. The 16-bit

pattern [1111111100000000] cycles continuously through time.
So, through the multiplexer selection bits, we select a shift-
register state corresponding to a square signal with a distinct
phase. This square signal becomes the new neuron output nout .
Figure 4A shows the logic diagram of the phase-controlled
oscillator and Figure 4B the waveforms corresponding to stage
0 (in-phase, φout = 0◦) and stage 2 (out-of-phase, φout = 45◦).
The register controlling the multiplexer stores the neuron state,
or equivalently the phase of the neuron output. Note, we use
different clocks (driven by the system clock) to control the state
register and the shift register. The latter is driven by a slow clock
generated from the system clock so that the multiplexer’s output
cycles as long as its control register remains unchanged with a
period Tosc = 16 ∗ Tslowclk.

2.3.2. Synapses Block
ONN synapses block contains weights and computes each
neuron input oscillation nin. We use an arithmetic logic circuit
for our digital ONN design to generate the input signal to the i-th
neuron as:

nin[i] = sign(
∑

j

wij −
∑

k

wik) (6)

where j extends to those neurons with nout[j] = 1 and k to those
with nout[k] = 0. It is the most expensive component in terms

Frontiers in Neuroscience | www.frontiersin.org 5 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

FIGURE 4 | (A) Logic diagram of the implemented phase-controlled oscillator. (B) Output waveform of internal neuron shift-register for stages 0 and 2.

of resources. Results in this paper correspond to a combinatorial
synapses block using 5-bit weights.

2.3.3. Control Block
In addition to neurons and synapses, our digital design requires
a control block to control and monitor ONN computation. It
is mainly in charge of three tasks. (1) The initialization step
required to carry out an ONN computation. We serially apply
input state with a scan-path on neuron’s state registers while
activating the full_tick signal. (2) The control block generates
a slow clock to ensure ONN operation. The relation between
the slow clock and the system clock is Tslowclk = 4 ∗ Tclk. We
use a frequency divider of 2-bit length to speed up the system
performance. (3) The generation of the steady (steady_check)
and the inconsistent (inconsistent_check) signals (see Figure 3).
They indicate wether ONN gives a stable or unstable state. We
activate the steady signal once the ONN reaches a stable state,
meaning all neuron phases φout are stable for two oscillation
periods (Tosc). We activate as well the inconsistent signal if the
ONN does not achieve any stable state after a time (160 µs)
arbitrarily defined by us. To do so, the control block monitors
neurons’ oscillation activity.

The combination of neuron blocks, synapses block, and
control block creates our complete fully-digital ONN design.

Next, we carry out tests to validate the associative memory
properties of our design, and its characteristics.

2.4. ONN Characterization Methods
To validate our digital ONN design, we characterize 5 × 3 and
10 × 6 digital ONNs using both Hebbian and Storkey learning
rules. First, in section 2.4.1, we present simulation methods
used to evaluate its performances using software tools. Next, in
section 2.4.2, we present FPGA implementation methods.

2.4.1. Simulation
We validate and characterized ONN with simulation software
tools using a testbench before being implemented on FPGA.
We use a testbench on the software Xilinx’s Vivado Design
Suite 2018.2. We also perform post-place&route simulations to
characterize ONN designs following Vivado’s default strategies
for synthesis and implementation. We set the target device to the
Xilinx 7-series FPGA, the XC7Z020-1CLG400C since it is used
for implementation afterward.

We carry out simulations with a 5 × 3 ONN and a 10 ×

6 ONN configured for pattern recognition using both Hebbian
and Storkey learning rules. We configure the 5 × 3 ONN
design with three stored patterns with standard 5 × 3 bitmap
representations of digits 0, 1, and 2 (see Figure 5A). Each

Frontiers in Neuroscience | www.frontiersin.org 6 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

FIGURE 5 | Reference patterns for (A) 5 × 3 ONN, (B) 10 × 6 ONN, and Test sets (C) associated to digit 1 for the 5 × 3 ONN, (D) associated to digit 3 for the 10 ×

6 ONN.

pixel of the image corresponds to a neuron. Each pixel color
is associated with each neuron phase, with white as in-phase
(0◦), and black as out-of-phase (180◦). Gray-level pixels are
encoded with intermediate phases. Similarly, we configure the
10 × 6 ONN design with five stored patterns representing digits
0, 1, 2, 3, and 4 (see Figure 5B). We use two test sets, one
for each ONN, containing both stored patterns and corrupted
patterns. We create four corrupted patterns associated with each
stored pattern by changing several pixel values with opposite or
intermediate values (black or white or gray), see Figures 5C,D.
We use Hamming Distance (HD) as a metric to measure the
corrupted patterns’ deviation from the stored ones. The HD
between two patterns ξ ν and ξµ of i elements is defined as:

HD =
1

2

∑

i

(ξ ν
i − ξ

µ
i) (7)

In our test set, each stored pattern has four associated corrupted
ones that are closer in their Hamming distances than any other
stored patterns. Corrupted patterns are supposed to stabilize on
the stored pattern with closer HD.

2.4.2. FPGA Implementation
Once we validated and characterized the ONN design using
simulation, we implement it on an FPGA to ensure ONN
operation on a real embedded platform and to measure
real performances. Here, we describe the experimental set-up
necessary for ONN implementation on FPGA.

We test real pattern recognition performances of 5 × 3 and
10 × 6 digital ONN designs by implementing them on an FPGA
chip. We choose to use a Zybo-Z7 Digilent development board
(Digilent, 2018). The board has many communication ports,
memory spaces, user interaction tools, and a Xilinx Zynq-7000
System on Chip (SoC). The SoC integrates a dual-core ARM
Cortex-A9 processor with Xilinx 7-series FPGA, the XC7Z020-
1CLG400C. Only FPGA resources are necessary for the digital
ONN implementation. As for simulation, we use Xilinx’s Vivado
Design Suite 2018.2 software to implement the digital ONN
design on FPGA.

Figure 6 shows the system level architecture, including the
digital ONN design, for performing pattern recognition on
FPGA. The architecture includes the digital ONN described in
section 2.3 and a scheduler block to control it. The scheduler has
four control blocks to monitor and check the ONN operations.
First, the system clock is divided inside the slow clock block to
ensure the operations. Test patterns are stored inside the ONN
controller and we use switches to select the input pattern. Next,
the controller sends the input pattern to the ONN and waits until
the end of ONN computation (steady signal activated). In the
end, the ONN controller measures the ONN output state, applies
a mask to identify the stored image, and the LED controller block
turns on/off the corresponding LEDs, indicating which stored
image ONN retrieves. The development board provides switches
and LEDs needed by the architecture.

First, we validate our ONN FPGA implementation by
performing the same tests as in simulation, and we compare
results. We define a training configuration with two parameters;
the learning rule and the stored pattern combination. Respecting
the Hebbian maximum capacity (stored pattern limit) described
in section 2.2, we try multiple stored pattern combinations
for both Hebbian and Storkey learning rules for the 5 × 3
ONN and the 10 × 6 ONN, see Table 1. Similar to simulation
characterization, the test set includes stored patterns plus four
corrupted versions of each. See examples on Figure 5.

We also test multiple frequencies to compare with the
maximum frequency evaluated in simulation. ONN input
frequency is defined by the system clock of the development
board (125 MHz) divided by a configurable factor. The
configurable factor allows us to divide the frequency by multiples
of 2. First, we set the ONN input frequency to 7.8125 MHz which
is much lower than the frequency estimated by simulation static
timing analysis. Then, we modify the configurable factor to try
higher frequencies, up to the maximum frequency 125 MHz.

We use the error rate (ER) metric to check the ONN operation.
It is computed as:

ER =
ǫ

Itests
(8)

Frontiers in Neuroscience | www.frontiersin.org 7 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

FIGURE 6 | ONN FPGA implementation architecture for pattern recognition on Zybo-Z7 development board.

TABLE 1 | Pattern combinations used for implementation characterization.

ONN size Number of stored patterns Patterns

5 × 3 2 0, 1

5 × 3 2 0, 2

5 × 3 2 1, 2

5 × 3 3 0, 1, 2

10 × 6 3 0, 1, 2

10 × 6 4 0, 1, 2, 3

10 × 6 5 0, 1, 2, 3, 4

10 × 6 6 0, 1, 2, 3, 4, 5

10 × 6 7 0, 1, 2, 3, 4, 5, 6

10 × 6 8 0, 1, 2, 3, 4, 5, 6, 7

with ǫ, the number of errors and Itests, the number of test images.
We consider an output as an error when the retrieved pattern

does not correspond to any stored ones or when the ONN does
not stabilize (inconsistent signal activated).

Next, we experimentally measure initialization time (tinit),
and computation time (tcomp) of the ONN with an oscilloscope
to calculate the number of frames per second (FPS) that ONN
implemented on FPGA can treat. It is calculated as:

FPS =
1

tinit + tcomp
(9)

where initialization is the time needed to send serially the test
pattern to the ONN. Thus, initialization time grows linearly with
the increase of the ONN size.

2.5. Digits Recognition Application
Methods
To prove the ONN’s capability to perform real-world
applications, a 10 × 6 ONN is implemented on FPGA

Frontiers in Neuroscience | www.frontiersin.org 8 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

FIGURE 7 | System-level architecture for image recognition application.

inside a complete image recognition system with a
camera stream.

We configure a 10 × 6 ONN to recognize digits. We use
a camera to stream digits as the input image for ONN. Input
images are displayed by a phone to the camera with a dedicated
application. The camera is connected to the development board
and sends input images to the ONN.When the computation time
is over, the output pattern is displayed on an external screen (see
Figure 7).

We use a Pcam 5c (Digilent, 2017) camera which is connected
via a MIPI CSI-2 (MIPI Camera Serial Interface 2) with the
Zybo-Z7 development board. We connect the external screen via
HDMI (High Definition Multimedia Interface) communication.
The image streaming from the camera to the screen comes from
a Digilent Github project named Zybo-Z7-Pcam-5c (Digilent,
2020), compatible with the Xilinx’s Vivado software 2018.2. We
embed the digital ONN inside the image treatment flow. To
do so, we convert the camera’s image in greyscale, binarize it
in black/white pixels, and scale it down to a 10 × 6 pixels
image taking the primary color between black/white pixels. We
rescale ONN output into a 1280x720 pixels image to display it on
the screen. Both rescaling steps use the Vivado HLS tool from
Xilinx. We also use development board processor resources to
configure the camera. Based on our characterization results, we
can parametrize the ONN to a certain training configuration. We
choose to train the 10 × 6 ONN to recognize five digits, from
0 to 4, with the Hebbian learning rule. The test set comprises
five trained images and 20 corrupted images, similar to ONN
characterization, so we expect equal results.

3. RESULTS

3.1. Characterization Results
We validate and characterize digital ONN design with pattern
recognition configurations described in section 2.4 and analyze
ONN performances. We characterize 5 × 3 and 10 × 6
digital ONNs using both Hebbian and Storkey learning rules.
First, in section 3.1.1, we show simulation results and ONN

TABLE 2 | Frequency limit and resource utilization estimated in simulation for

Xilinx 7-series FPGA.

Design Maximum LUTs Flip-Flops

frequency (%) (%)

5 × 3 - Hebbian 83.33 MHz 958 (1.8) 721 (0.68)

5 × 3 - Storkey 83.33 MHz 800 (1.5) 721 (0.68)

10 × 6 - Hebbian 64.10 MHz 6,426 (12.08) 2,756 (2.59)

10 × 6 - Storkey 60.61 MHz 6,192 (11.64) 2,756 (2.59)

performances. Then, in section 3.1.2, we detail results obtained
with the ONN FPGA implementation.

3.1.1. Simulation
We simulate 5 × 3 and 10 × 6 ONNs and report on pattern
retrieval for Hebbian and Storkey learning rules. Simulation tests
of the 5 × 3 ONN using Hebbian and Storkey learning rules
result in only 1 test pattern not correctly retrieved. In contrast,
simulation tests of the 10 × 6 ONN have different results with
the Hebbian learning rule or the Storkey learning rule. Using
Hebbian, 5 test images out of 25 do not converge precisely
to their respective stored pattern. However, using Storkey, the
ONN design retrieves the whole test set successfully. It confirms
Storkey’s better storage capacity mentioned in section 2.2. We
achieve pattern recognition task, with a worst case of 5 images
not retrieved (errors) out of 25 (20% error rate).

Additional post place&route simulation allows us to extract
estimated characteristics about maximum operating frequency
and required resources, see Table 2. Such results indicate that
both frequency and logical resources are highly dependent on the
number of neurons. The smaller the network size is, the higher
the system clock frequency can be. Note that frequency differs for
the 10 × 6 ONN design that uses Hebbian or Storkey learning
rules. Frequency is limited by the synapses block, and synaptic
weights are different when using one or another learning rule.
It changes the critical path length leading to different frequency
limits. In any case, note that differences are almost insignificant.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

TABLE 3 | Resource utilization reported for multiple ONN size for Xilinx

7-series FPGA.

#Neurons #Synapses LUTs (%) Flip-Flops (%)

15 225 900 (1.7) 721 (0.68)

60 3,600 6,300 (12) 2,756 (2.59)

100 10,000 30,033 (56) 4,985 (5)

120 14,400 38,372 (72) 5,970 (6)

140 19,600 46,900 (88) 6,955 (7)

150 22,500 65,251 (123) 7,447 (7)

Besides, the 5 × 3 ONN design requires nearly ten times
fewer resources than the 10 × 6 ONN design. It highlights one
of the digital ONN design limits. An increase in the ONN size
extends ONN logical resources. Depending on the used FPGA,
the number of neurons will be limited. In the next experiments,
we use a Xilinx-7 series FPGA.Table 3 details resource utilization
for multiple ONN sizes on the Xilinx 7-series FPGA. It shows the
increase in LUTs with ONN size. For the given ONN design, we
can implement stand-alone ONNs between 140 and 150 neurons.

These first simulation results confirm the digital ONN
capability to perform pattern recognition.

3.1.2. FPGA Implementation
We validate and characterize our digital ONN implementation
by reporting on ONN pattern recognition accuracy (error rate)
for multiple parameters. First, we use a low frequency and we
perform the same tests as in simulation to check the ONN FPGA
implementation. Then, we compare the error rate for multiple
training configurations. Next, we observe the error rate for faster
frequencies to check the frequency limit. Finally, we measure the
computation time and calculate the number of FPS treatable by
the ONN.

3.1.2.1. ONN Training Configuration
Here, we present the ONN operation for multiple training
configurations. Results are shown in Table 4 for the 5 × 3 ONN
and the 10× 6 ONN. First, we validate the ONN implementation
by comparing results with simulation tests. Implementation tests
with the same training configuration as simulation tests give
equal results. Then, we observe that the error rate increases with
the number of stored patterns for both learning rules. With the
5 × 3 ONN, we obtain similar results with both Hebbian and
Storkey learning rules. However, with the 10× 6 ONN, we obtain
significant error rate differences. We notice that weights trained
with Storkey give a lower error rate than weights trained with
Hebbian for four pattern combinations out of five. Observations
also indicate which training configuration can be the best option
for a particular application considering an acceptable error rate.
If we consider 0% acceptable error rate for the 10 × 6 ONN, we
can store patterns from 0 to 3 with the Hebbian learning rule, and
we can add digit 4 if we use the Storkey learning rule.

3.1.2.2. ONN Frequency
Simulation reveals ONN maximum frequency depends on the
applied learning rule. With FPGA implementation, ONN input

frequency choice is limited. We perform FPGA implementation
experiments on the same range of frequencies to check if
implementation and simulation results match. Experiments on
5 × 3 ONN perform similarly at 7.8125, 62.5, and 125 MHz
as shown in Figure 8A. Thus, ONN can run a given test set
at higher frequencies than the evaluated limit (83, 33 MHz) for
all tested training configurations. The difference in frequencies
can be explained by the way they are measured—in simulation,
ONN frequency was evaluated with global static timing analysis,
whereas in experiments, frequency is evaluated on a specific
test set. Figure 8B shows the 10 × 6 ONN error rate at
different frequencies for four training configurations.We observe
a trade-off between error rate, operating frequency, and training
configuration. Also, we note that for each training configuration,
only a frequency of 125 MHz impacts the 10× 6 ONN error rate.

Considering simulation and implementation results, we assess
the 5 × 3 ONN on FPGA maximum operating frequency to be
62.5 MHz, and the 10 × 6 ONN on FPGA maximum operating
frequency to be 31.25 MHz. In our next experiments, related
to time measurements, we define a common digital ONN input
frequency for 5× 3 and 10× 6 ONNs. We set it to 31.25 MHz as
it is the highest common operating frequency.

3.1.2.3. ONN Computation Time
We assess the computation speed of our ONN implementation
with time measurements. We experimentally measure the ONN
initialization time needed to apply the input image to ONN,
and the computation time, from the end of the initialization
process to the steady signal’s activation time (see section 2.3).
We measure ONN timings for multiple training configurations
shown inTable 5. We choose training configurations that showed
a 0% error rate to avoid themaximum computation time clamped
to 160 µs when ONN does not converge. We measure the
computation time as the time required for the ONN to reach a
stable correct output pattern (0% error rate). We set the digital
ONN input frequency to 31.25 MHz.

Computation time, initialization time, and FPS results are
listed in Table 5. We initialize the ONN by presenting data
serially to the ONN, so it depends on the size of the ONN,
regardless of the applied learning rule. It explains why the
initialization time is longer for 10× 6 than 5× 3 ONN.

We observe that ONN computation time does not vary and
slightly increases with ONN size. It is an attractive feature of
the ONN concept in which convergence is achieved in a few
oscillation cycles independently of the number of neurons. It is
also worth mentioning that the degradation of FPS performance
is due to the initialization time that grows linearly with the
number of neurons because of its serial implementation. It could
be mitigated by using a different initialization approach.

Simulation and implementation characterizations allowed
us to validate our ONN digital design to perform pattern
recognition with a minimum error rate of 0%. We performed
multiple experiments to highlight the advantages and limitations
of the digital ONN. The main limit concerns the digital ONN
FPGA resources (LUTs, Flip-Flops). The current digital ONN
design implemented on the XC7Z020 − 1CLG400C FPGA is

Frontiers in Neuroscience | www.frontiersin.org 10 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

TABLE 4 | Experimental error rate of the 5 × 3 and the 10 × 6 ONN implemented on FPGA for various training configurations.

ONN Stored Learning rule Test Errors Error rate

patterns images (%)

5 × 3 0,1 Hebbian 10 0 0

Storkey 10 0 0

5 × 3 0,2 Hebbian 10 0 0

Storkey 10 0 0

5 × 3 1,2 Hebbian 10 0 0

Storkey 10 0 0

5 × 3 0,1,2 Hebbian 15 1 6.67

Storkey 15 1 6.67

10 × 6 0,1,2,3 Hebbian 20 0 0

Storkey 20 0 0

10 × 6 0,1,2,3,4 Hebbian 25 5 20

Storkey 25 0 0

10 × 6 0,1,2,3,4,5 Hebbian 30 9 30

Storkey 30 1 3

10 × 6 0,1,2,3,4,5,6 Hebbian 35 21 60

Storkey 35 4 11

10 × 6 0,1,2,3,4,5,6,7 Hebbian 40 35 87.5

Storkey 40 4 10

FIGURE 8 | Experimental results of the error rate (%) for various frequencies (MHz) and training configurations (learning rule and pattern combination) for (A) the 5 × 3

ONN, and (B) the 10 × 6 ONN.

limited to a 100 neurons. In contrast, we highlighted the short-
time computation required by the digital ONN.We can compute
each pattern with an average of 5 µs at 31.25MHz frequency for

both 5 × 3 and 10 × 6 ONNs. So, ONN size does not impact
the computation time, which is an important feature of ONN to
further explore design methods to upscale its size.

Frontiers in Neuroscience | www.frontiersin.org 11 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

TABLE 5 | ONN timing performances for various sizes (number of neurons) and learning rules.

Learning ONN Stored Initialization Computation FPS

rule patterns time time, avg

(us) (us)

Hebbian 5 × 3 [0,1] 2 5.04 142,045

Hebbian 10 × 6 [0,1,2,3] 7.8 5.2 76,923

Storkey 5 × 3 [0,1] 2 5.05 141,844

Storkey 10 × 6 [0,1,2,3] 7.8 5.4 75,757

FIGURE 9 | Representation of error images for 10 × 6 ONN digit recognition application showing incorrect pixels.

3.2. Digits Recognition Application Results
We validate the image recognition application by comparing
errors with previous characterization tests. We use the output
HDMI screen to identify recognized images and errors of the
digital ONN image recognition application. We expect results
to match with characterization ones and as expected, we find
five images not correctly recognized, see Figure 9. Output
patterns displayed on the screen reveal that for each not-correctly
recognized image, ONN is close to a correct reference pattern
with only a few pixels wrong. However, the reference pattern is
not necessarily the expected one, as for the image 3x.We expected
a 3, but the result is closer to a 2. Some errors can be explained by
test images that correspond to corrupted digits too far in their HD
from reference patterns. With this application, we demonstrate
the feasibility of using an ONN inside a complete design. Also,
we reach 20% error rate with this application using Hebbian
weights, but we know thanks to characterization, that Storkey
weights can reach 0% error rate. Besides, we know that 10 × 6

ONN takes 7.8 µs to be initialized, 5 µs to stabilize on average,
and 160 µs if it does not stabilize. As the camera provides an
image every 15 ms, the 10 × 6 ONN does not create any latency
for the image recognition application, so it respects real-time
requirements. It validates our digital ONN design as a solution
for image recognition applications and encourages us to look into
other embedded applications.

4. DISCUSSION

Our work presents the design and performances of a novel
fully digital ONN implementation. Further, we demonstrate
ONN on FPGA implementation for image recognition
applications. It is a proof-of-concept on the potential of
ONN as an alternative computing paradigm. Here, we present
the digital ONN design aspects and their advantages, limits, and
future directions.

Frontiers in Neuroscience | www.frontiersin.org 12 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

TABLE 6 | Frequency, computation time and resource comparison of ONN and HNN designs.

Neural Size Frequency Computation Computation time Resources

network (MHz) time (us) (clock cycles) (LUTs)

Max - Avg Max - Avg

HNN (*) 16 81.39 x - 1.3 x - 100 390

HNN (*) 32 33.55 x - x x - x 700

ONN

- Hebbian 15 83.33 2.74 - 0.92 228 - 77 958

- Storkey 15 83.33 1.18 - 0.77 98 - 64 800

ONN

- Hebbian 60 64.1 3.53 - 1.44 226 - 92 6,426

- Storkey 60 60.61 1.75 - 1.18 106 - 72 6,192

(*) Refers to De Abreu de Sousa et al. (2014). Note, HNN resource estimation comes from data extraced from De Abreu de Sousa et al. (2014) and FPGA documentation. Also note,

HNNs are implemented on a Xilinx 3-series FPGA (4-input LUTs) while ONNs are implemented on a Xilinx 7-series FPGA (6-input LUTs).

4.1. Advantages
Presently, we developed ONN designs that exhibit good
performances with 5× 3 and 10× 6 ONNs.

An interesting feature of our approach in comparison with
Jackson et al. (2019) is that by resorting to the 1-bit oscillation
at the neuron’s output, multipliers are avoided in the synapses
block, while still retaining a multi-level neuron. This is possible
because we encode the state in the neuron’s oscillation phase.

Another advantage of our approach is the easiness of
training. Results reported in this paper have been obtained using
simple Hebbian and Storkey rules. Given the patterns to be
stored/recognized, weights are calculated offline by using matrix
operations, while training other neural models can be a very
time-consuming operation. Limited retrieval capacity has been
obtained in some of the experiments described. However, the
accuracy of the ONN can be increased by resorting to enhanced
learning rules.

Finally, a fundamental advantage of ONN is the fast
computation. ONN parallel behavior allows the independence of
the computation time and the network size. In this paper, we
achieved more than 70000 FPS with 10 × 6 ONN and a serial
initialization of the neurons.

4.2. Limitations and Future Directions
The present digital ONN design has also limitations.

First, our ONN is a preliminary design developed to validate
the concept, and different optimization procedures at different
levels are currently being carried out.

Second, the limited FPGA resources introduce some
constraints on the ONN size that can be implemented on
FPGA (see Table 3). Such limited resources are the computation
resources (LUTs). They are used to implement the combinatorial
synapses block whose size increases quadratically with the
number of neurons.

The limited size does not allow for comparison with standard
benchmark sets usually used to evaluate neural networks. For
example, comparing ONN with SNN is not trivial because of the
paradigm differences, such as the different network architectures

and learning algorithms. To make a meaningful comparison, a
common ground is necessary with a common application and
benchmark. Comparison to other reported similar FPGA-based
implementations of neural networks is meaningful only if the
same ONN size are developed.

The Associative Memory Neural Networks (AMNNs), such as
HNNs, are the closest ANNs that can be compared with ONNs.
In the existing literature, we found digital implementations of
AMNNs such as Leiner et al. (2008), Mansour et al. (2011), and
De Abreu de Sousa et al. (2014). The most relevant comparisons
can be made with the digital design from De Abreu de Sousa
et al. (2014)’s work, which is also the most recent one. In this
work, authors perform a frequency study for multiple HNN sizes,
from 16 neurons to 32 neurons. Stored patterns resemble our
stored patterns representing digits. For example, they use 8 × 4
representations of the letter U and the number 5. Tests are also
similar as they use stored and corrupted patterns as inputs.

Table 6 shows the comparison between (De Abreu de Sousa
et al., 2014)’s HNN and our ONN. Results show that ONN has a
higher operating frequency than HNN. Such as in the 32 neurons
case, the maximum HNN frequency is 33.55 MHz, but ONN
can run faster, up to 60.61 MHz for 10 × 6 ONN. We do not
have information about the computation time for the 32-neuron
HNN, however, if we compare the 16-neuron HNN with the 5×
3 ONN, we expect similar trends in frequencies and computation
times. Though it is difficult to make any conclusive comparisons,
it seems that our larger ONN can operate at higher frequencies
than the cited HNN.

Motivated by the potential of the proposed ONN, we are
currently exploring optimizations in several directions like
hardware resources, frequency, and accuracy. For example, using
a faster internal clock than the oscillator frequency, a sequential
implementation could be used to reduce the size of this resource-
consuming block. Also, we can explore additional learning
rules to increase accuracy. At this time, we have only studied
Hebbian and Storkey, which are local and incremental with a
limited storage capacity, but other learning rules will also be
explored to have a better assessment of learning rules suitable

Frontiers in Neuroscience | www.frontiersin.org 13 August 2021 | Volume 15 | Article 713054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

for ONNs. For example, the pseudo-inverse rule (also called
projection rule) can increase HNNs storage capacity and improve
accuracy (Wu et al., 2012; Sahoo et al., 2016), but is not local
nor incremental. Moreover, recent works have explored learning
rules with self-feedback connections (non-0 diagonal), and have
shown higher accuracy for a high number of stored patterns
(Liou and Yuan, 1999; Folli et al., 2017; Rocchi et al., 2017;
Gosti et al., 2019). In summary, despite the present limitations
of the ONN, features in terms of FPS, computation time and
training, are encouraging toward the exploration of a wider range
of applications.

5. CONCLUSION

In this paper, we carried out the questions—can we use ONN for
image recognition, and—what are the advantages and limitations
of ONN for AI at-the-edge applications. To do so, we presented
a proof of concept of the ONN neuromorphic computing
paradigm with a fully digital design. We validated the computing
capability of a 5× 3 ONN and a 10× 6 ONN performing pattern
recognition both in simulation and FPGA implementation. We
used Hebbian or Storkey learning rules to train our ONN. For
both learning rules, with three stored patterns, the 5 × 3 ONN
retrieved 14 test patterns out of a test set of 15. For the 10 × 6
ONN with five stored patterns, results differ from Hebbian and
Storkey learning rules. ONNwith weights computed with Storkey
can retrieve 25 test patterns out of 25, but using Hebbian ONN
can only retrieve 20 test patterns out of 25. Further experiments
confirmed that Storkey is more accurate than Hebbian for an
equal number of stored patterns. We performed additional
experiments to characterize our digital ONN. First, we estimated
by simulation a maximum operating frequency for the 5 ×

3 ONN to 83,33 MHz. Then, we showed that for a specific
application, the ONN implemented on FPGA could go up to
125 MHz, without any changes on the ONN operation. Besides,
we performed a timing analysis on digital ONNs. We measured
the initialization time needed to apply the input pattern to
the ONN, and the computation time, needed by the ONN to

stabilize to a stored pattern. From measurements, we were able
to calculate the maximum FPS (Frames per second). For the
10 × 6 ONN, we obtained a maximum FPS around 76000, at
31.25 MHz with a training configuration resulting in all test
patterns successfully retrieved. Then, we embedded the 10 × 6
ONN into a complete image recognition application performing
digit recognition from a camera stream. It respected real-time
constraints, and we demonstrated that the ONN paradigm can fit
with AI at-the-edge image recognition application. Thus, despite
the size limitation (about a 100 neurons) of our digital design
due to high FPGA resource consumption, the huge potentiality
of ONN is undeniable. ONNs are still in their infancy for
comparison with standard benchmarks and it is the focus of
future works. The potential of the proposed ONN propels further
investigation to explore its capabilities on diverse applications for
AI at-the-edge.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AT-S motivated the project and experiments. MJ, JN, and MJA
conducted the digital ONN design development and simulation
characterization. MA and TGi developed the ONN design
implementation on FPGA, image recognition application, and
performed all measurements. BL-B, TGo, and TH were involved
in the discussion and editing of the manuscript and provided
valuable inputs at multiple stages of this work. All authors
contributed to the article and approved the submitted version.

FUNDING

This work is supported by the European Union’s Horizon 2020
research and innovation program, EUH2020 NEURONN (www.
neuronn.eu) project under grant no. 871501.

REFERENCES

Ahmed, I., Chiu, P.-W., Moy, W., and Kim, C. H. (2021). A probabilistic

compute fabric based on coupled ring oscillators for solving combinatorial

optimization problems. IEEE J. Solid State Circ. doi: 10.1109/JSSC.2021.30

62821

Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1987). Statistical

mechanics of neural networks near saturation. Ann. Phys. 173, 30–67.

doi: 10.1016/0003-4916(87)90092-3

Bey (2020). Beyond von Neumann. Nat. Nanotechnol. 15:507.

doi: 10.1038/s41565-020-0738-x

Corti, E., Gotsmann, B., Moselund, K., Stolichnov, I., Ionescu, A., and Karg, S.

(2019). “Resistive coupled VO2 oscillators for image recognition,” in 2018 IEEE

International Conference on Rebooting Computing, ICRC 2018 (Tysons, VA:

Institute of Electrical and Electronics Engineers Inc.).

Csaba, G., and Porod, W. (2013). Computational study of spin-torque oscillator

interactions for non-Boolean computing applications. IEEE Trans. Magn. 49,

4447–4451. doi: 10.1109/TMAG.2013.2244202

Csaba, G., and Porod, W. (2020). Coupled oscillators for computing: a review and

perspective. Appl. Phys. Rev. 7:011302. doi: 10.1063/1.5120412

Csaba, G., Ytterdal, T., and Porod, W. (2016). “Oscillatory neural network from

ring oscillators,” in CNNA 2016; 15th International Workshop on Cellular

Nanoscale Networks and their Applications (Dresden), 1–2.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

De Abreu de Sousa, M. A., Horta, E. L., Kofuji, S. T., and Del-Moral-Hernandez, E.

(2014). Architecture analysis of an FPGA-based hopfield neural network. Adv.

Artif. Neural Syst. 2014, 1–10. doi: 10.1155/2014/602325

Digilent (2017). Pcam 5C Reference Manual. Available online at: https://reference.

digilentinc.com/add-ons/pcam-5c/reference-manual

Digilent (2018). Zybo Z7 Reference Guide. Available online at: https://reference.

digilentinc.com/_media/reference/programmable-logic/zybo-z7/zybo-z7_rm.

pdf

Digilent (2020). Zybo Z7 -20 Pcam 5C Demo. Available

online at: https://github.com/Digilent/Zybo-Z7-20-pcam-5c

doi: 10.36311/1519-0110.2019.v20n1.01.p5

Folli, V., Leonetti, M., and Ruocco, G. (2017). On the maximum storage

capacity of the hopfield model. Front. Comput. Neurosci. 10:144.

doi: 10.3389/fncom.2016.00144

Frontiers in Neuroscience | www.frontiersin.org 14 August 2021 | Volume 15 | Article 713054

www.neuronn.eu
www.neuronn.eu
https://doi.org/10.1109/JSSC.2021.3062821
https://doi.org/10.1016/0003-4916(87)90092-3
https://doi.org/10.1038/s41565-020-0738-x
https://doi.org/10.1109/TMAG.2013.2244202
https://doi.org/10.1063/1.5120412
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1155/2014/602325
https://reference.digilentinc.com/add-ons/pcam-5c/reference-manual
https://reference.digilentinc.com/add-ons/pcam-5c/reference-manual
https://reference.digilentinc.com/_media/reference/programmable-logic/zybo-z7/zybo-z7_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/zybo-z7/zybo-z7_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/zybo-z7/zybo-z7_rm.pdf
https://github.com/Digilent/Zybo-Z7-20-pcam-5c
https://doi.org/10.36311/1519-0110.2019.v20n1.01.p5
https://doi.org/10.3389/fncom.2016.00144
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

Gosti, G., Folli, V., Leonetti, M., and Ruocco, G. (2019). Beyond the maximum

storage capacity limit in hopfield recurrent neural networks. Entropy 21:726.

doi: 10.3390/e21080726

Guo, W., Yantir, H. E., Fouda, M. E., Eltawil, A. M., and Salama, K.

N. (2021). Toward the optimal design and fpga implementation of

spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 11, 1–15.

doi: 10.1109/TNNLS.2021.3055421

Han, J., Li, Z., Zheng, W., and Zhang, Y. (2020). Hardware implementation

of spiking neural networks on fpga. Tsinghua Sci. Technol. 25, 479–486.

doi: 10.26599/TST.2019.9010019

Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.

doi: 10.1073/pnas.79.8.2554

Hoppensteadt, F. C., and Izhikevich, E. M. (1997). Neural Networks. New York,

NY: Springer New York.

Hoppensteadt, F. C., and Izhikevich, E. M. (2000). Pattern recognition via

synchronization in phase-locked loop neural networks. IEEE Trans. Neural

Netw. 11, 734–738. doi: 10.1109/72.846744

Jackel, L. D., Stenard, C. E., Baird, H. S., Boser, B., Bromley, J., Burges, C. J.,

et al. (1991). “A neural network approach to handprint character recognition,”

in Digest of Papers-IEEE Computer Society International Conference (San

Francisco, CA: IEEE), 472–475.

Jackson, T., Pagliarini, S., and Pileggi, L. (2019). “An oscillatory neural network

with programmable resistive synapses in 28 Nm CMOS,” in 2018 IEEE

International Conference on Rebooting Computing, ICRC 2018 (Tysons, VA:

Institute of Electrical and Electronics Engineers Inc.).

Jackson, T. C., Sharma, A. A., Bain, J. A., Weldon, J. A., and Pileggi, L. (2015).

“An RRAM-based oscillatory neural network,” in 2015 IEEE 6th Latin American

Symposium on Circuits and Systems, LASCAS 2015-Conference Proceedings.

(Montevideo: Institute of Electrical and Electronics Engineers Inc.).

Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., et al. (2019). A

survey of deep learning-based object detection. IEEE Access 7:128837–128868.

doi: 10.1109/ACCESS.2019.2939201

Kendall, J. D., and Kumar, S. (2020). The building blocks of a brain-inspired

Computer 7, 011305. doi: 10.1063/1.5129306

Khan, M., Lester, D., Plana, L., Rast, A., Jin, X., Painkras, E., et al.

(2008). “Spinnaker: mapping neural networks onto a massively-parallel chip

multiprocessor,” in 2008 IEEE International Joint Conference on Neural

Networks (Hong Kong: IEEE World Congress on Computational Intelligence),

2849–2856.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification

with deep convolutional neural networks. Commun ACM 60, 84–90.

doi: 10.1145/3065386

Kumar, A., and Mohanty, P. (2017). Autoassociative memory and pattern

recognition in micromechanical oscillator network. Sci. Rep. 7:411.

doi: 10.1038/s41598-017-00442-y

Leiner, B. J., Lorena, V. Q., Cesar, T. M., and Lorenzo, M. V. (2008). “Hardware

architecture for FPGA implemetation of neural network and its application

in images processing,” in Proceedings-2008 4th Southern Conference on

Programmable Logic, SPL (Bariloche: IEEE Computer Society), 209–212.

Levi, T., Nanami, T., Tange, A., Aihara, K., and Kohno, T. (2018). Development

and applications of biomimetic neuronal networks toward brainmorphic

artificial intelligence. IEEE Trans. Circ. Syst. II Express Briefs 65, 577–581.

doi: 10.1109/TCSII.2018.2824827

Lieff, J. (2012). What is Mind? Brain Oscillations, Synchronous Brain Waves and

Consciousness. Available online at: https://jonlieffmd.com/blog/what-is-mind-

consciousnesshuman-brain-oscillations-and-synchronous-brain-waves

Liou, C.-Y., and Yuan, S.-K. (1999). Error tolerant associative memory. Biol.

Cybern. 81:331–342. doi: 10.1007/s004220050566

Ma, D., Shen, J., Gu, Z., Zhang, M., Zhu, X., Xu, X., et al. (2017).

Darwin: a neuromorphic hardware co-processor based on spiking

neural networks. J. Syst. Arch. 77, 43–51. doi: 10.1016/j.sysarc.2017.

01.003

Maass, W. (1997). Networks of spiking neurons: The third

generation of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Mansour, W., Ayoubi, R., Ziade, H., Velazco, R., and EL Falou, W.

(2011). An optimal implementation on FPGA of a hopfield neural

network. Adv. Artif. Neural Syst. 2011:1–9. doi: 10.1155/2011/

189368

Martindale, C., and H. N. (1978). Eeg differences as a function of creativity, stage

of the creative process, and effort to be original. Biol. Psychol. 6, 157–167.

doi: 10.1016/0301-0511(78)90018-2

Met (2013). Spontaneous synchronization. UCLA Department of physics

and astronomy. Available online at: https://www.youtube.com/watch?v=

T58lGKREubo

Misra, J., and Saha, I. (2010). Artificial neural networks in hardware:

a survey of two decades of progress. Neurocomputing 74, 239–255.

doi: 10.1016/j.neucom.2010.03.021

Mitra, S., and Fusi, S., I. G. (2009). Real-time classification of complex patterns

using spike-based learning in neuromorphic vlsi. IEEE Trans. Biomed. Circ.

Syst. doi: 10.1109/TBCAS.2008.2005781

Morris, R. G. (1999). D.O. Hebb: the organization of behavior, Wiley: New York;

1949. Brain Res. Bull. 50:437. doi: 10.1016/S0361-9230(99)00182-3

Muezzinoglu, M., Guzelis, C., and Zurada, J. (2003). A new design method for the

complex-valued multistate Hopfield associative memory. IEEE Trans. Neural

Netw. 14, 891–899. doi: 10.1109/TNN.2003.813844

Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., and Shaalan, K. (2019). Speech

recognition using deep neural networks: a systematic review. IEEE Access 7,

19143–19165. doi: 10.1109/ACCESS.2019.2896880

Paugam-Moisy, H., and Bohte, S. (2012). Computing With Spiking Neuron

Networks. Berlin; Heidelberg: Springer Berlin Heidelberg.

Pham, H., Nguyen, M., and Sun, C. (2019). “Aiot solution survey and comparison

in machine learning on low-cost microcontroller,” in 2019 International

Symposium on Intelligent Signal Processing and Communication Systems

(ISPACS) (Taipei), 1–2.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Adler, T., et al. (2021).

Hopfield networks is all you need. arXiv:2008.02217. Available online at:

https://arxiv.org/abs/2008.02217

Raychowdhury, A., Parihar, A., Smith, G. H., Narayanan, V., Csaba, G., Jerry, M.,

et al. (2019). Computing with networks of oscillatory dynamical systems. Proc.

IEEE 107, 73–89. doi: 10.1109/JPROC.2018.2878854

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:

unified, real-time object detection,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Vol. 2016 (Las Vegas,

NV: IEEE Computer Society), 779–788.

Rocchi, J., Saad, D., and Tantari, D. (2017). High storage capacity in the hopfield

model with auto-interactions—stability analysis. J. Phys. A Math. Theor. 50,

465001. doi: 10.1088/1751-8121/aa8fd7

Rosado-Muñoz, A., Bataller-Mompeán, M., and Guerrero-Martínez, J. (2012).

FPGA implementation of spiking neural networks. IFAC Proc. 45, 139–144.

doi: 10.3182/20120403-3-DE-3010.00074

Roychowdhury, J. (2014). Boolean computation using self-sustaining nonlinear

oscillators. CoRR, abs/1410.5016.

Sahoo, R. C., Kumar, S., and Goswami, P. (2016). Implementation of hopfield

neural network for its capacity with finger print images. Int. J. Comput. Appl.

141, 44–49. doi: 10.5120/ijca2016909625

Shah, M., and Kapdi, R. (2017). “Object detection using deep neural networks,” in

Proceedings of the 2017 International Conference on Intelligent Computing and

Control Systems, ICICCS 2017, Vol. 2018 (Madurai: Institute of Electrical and

Electronics Engineers Inc.). 787–790.

Shi, R., Jackson, T. C., Swenson, B., Kar, S., and Pileggi, L. (2016). “On the design of

phase locked loop oscillatory neural networks: mitigation of transmission delay

effects,” in Proceedings of the International Joint Conference on Neural Networks,

Vol. 2016 (Vancouver, BC: Institute of Electrical and Electronics Engineers

Inc.), 2039–2046.

Shukla, N., Tsai, W.-Y., Jerry, M., Barth, M., Narayanan, V., and Datta, S. (2016).

“Ultra low power coupled oscillator arrays for computer vision applications,” in

2016 IEEE Symposium on VLSI Technology (Honolulu, HI), 1–2.

Storkey, A. (1997). “Increasing the capacity of a hopfield network without

sacrificing functionality,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), Vol. 1327, (Laussane: Springer Verlag), 451–456.

Storkey, A., Storkey, A., and Valabregue, R. (1997). A Hopfield learning rule with

high capacity storage of time-correlated patterns. Electron. Lett. 33, 1803–1804.

doi: 10.1049/el:19971233

Frontiers in Neuroscience | www.frontiersin.org 15 August 2021 | Volume 15 | Article 713054

https://doi.org/10.3390/e21080726
https://doi.org/10.1109/TNNLS.2021.3055421
https://doi.org/10.26599/TST.2019.9010019
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1109/72.846744
https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1063/1.5129306
https://doi.org/10.1145/3065386
https://doi.org/10.1038/s41598-017-00442-y
https://doi.org/10.1109/TCSII.2018.2824827
https://jonlieffmd.com/blog/what-is-mind-consciousnesshuman-brain-oscillations-and-synchronous-brain-waves
https://jonlieffmd.com/blog/what-is-mind-consciousnesshuman-brain-oscillations-and-synchronous-brain-waves
https://doi.org/10.1007/s004220050566
https://doi.org/10.1016/j.sysarc.2017.01.003
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1155/2011/189368
https://doi.org/10.1016/0301-0511(78)90018-2
https://www.youtube.com/watch?v=T58lGKREubo
https://www.youtube.com/watch?v=T58lGKREubo
https://doi.org/10.1016/j.neucom.2010.03.021
https://doi.org/10.1109/TBCAS.2008.2005781
https://doi.org/10.1016/S0361-9230(99)00182-3
https://doi.org/10.1109/TNN.2003.813844
https://doi.org/10.1109/ACCESS.2019.2896880
https://arxiv.org/abs/2008.02217
https://doi.org/10.1109/JPROC.2018.2878854
https://doi.org/10.1088/1751-8121/aa8fd7
https://doi.org/10.3182/20120403-3-DE-3010.00074
https://doi.org/10.5120/ijca2016909625
https://doi.org/10.1049/el:19971233
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Abernot et al. Digital ONN for Image Recognition

Tanaka, G., and Aihara, K. (2009). Complex-valued multistate associative memory

with nonlinear multilevel functions for gray-level image reconstruction.

IEEE Trans. Neural Netw. 20, 1463–1473. doi: 10.1109/TNN.2009.

2025500

Velichko, A., Belyaev, M., and Boriskov, P. (2019). A model of an

oscillatory neural network with multilevel neurons for pattern

recognition and computing. Electronics 8, 75. doi: 10.3390/electronics

8010075

Wu, Y., Hu, J., Wu, W., Zhou, Y., and Du, K. L. (2012). “Storage capacity of the

hopfield network associative memory,” in Proceedings-2012 5th International

Conference on Intelligent Computation Technology and Automation, ICICTA

2012, (Zhangjiajie) 330–336.

Xia, Y., Levi, T., and Kohno, T. (2020). Digital hardware spiking neuronal network

with stdp for real-time pattern recognition. J. Rob. Netw. Artif. Life 7, 121–124.

doi: 10.2991/jrnal.k.200528.010

Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., and Stolcke, A. (2018).

“The microsoft 2017 conversational speech recognition system,” in ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing-

Proceedings, Vol. 2018 (Institute of Electrical and Electronics Engineers Inc.),

5934–5938.

Yang, T., and Song, J. (2018). “An automatic brain tumor image

segmentation method based on the u-net,” in 2018 IEEE 4th

International Conference on Computer and Communications, ICCC

2018 (Salamanca: Institute of Electrical and Electronics Engineers Inc.),

1600–1604.

Zenke, F., and Ganguli, S. (2018). Superspike: supervised learning in

multilayer spiking neural networks. Neural Comput. 30, 1514–1541.

doi: 10.1162/neco_a_01086

Conflict of Interest: TGo and TH were employed by the company A.I.

Mergence, Paris.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Abernot, Gil, Jiménez, Núñez, Avellido, Linares-Barranco, Gonos,

Hardelin and Todri-Sanial. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 August 2021 | Volume 15 | Article 713054

https://doi.org/10.1109/TNN.2009.2025500
https://doi.org/10.3390/electronics8010075
https://doi.org/10.2991/jrnal.k.200528.010
https://doi.org/10.1162/neco_a_01086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Digital Implementation of Oscillatory Neural Network for Image Recognition Applications
	1. Introduction
	2. Materials and Methods
	2.1. ONN Biological Inspiration and Related Works
	2.2. ONN Learning
	2.3. Digital ONN Design
	2.3.1. Neuron Block
	2.3.2. Synapses Block
	2.3.3. Control Block

	2.4. ONN Characterization Methods
	2.4.1. Simulation
	2.4.2. FPGA Implementation

	2.5. Digits Recognition Application Methods

	3. Results
	3.1. Characterization Results
	3.1.1. Simulation
	3.1.2. FPGA Implementation
	3.1.2.1. ONN Training Configuration
	3.1.2.2. ONN Frequency
	3.1.2.3. ONN Computation Time

	3.2. Digits Recognition Application Results

	4. disc
	4.1. Advantages
	4.2. Limitations and Future Directions

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

