A Hardware-aware Heuristic for the Qubit Mapping Problem in the NISa Era

Introduction

NISQ devices.
$\min 7.978 \mathrm{e}-3$ $\max 1.587 \mathrm{e}-2$
-Connectivity constraint: Nearest-neighbor connections.
Different physical qubits: various calibration data
Qubit mapping problem: Adapting a quantum program to given hardware connectivity

Motivation

Methods

-Hardware-Aware (HA) mapping transition algorithm

- Cost function
$H=\frac{1}{|F|} \sum_{g \in F} D\left[\pi\left(g \cdot q_{1}\right)\right]\left[\pi\left(g \cdot q_{2}\right)\right]+W \times \frac{1}{|E|} \sum_{g \in E} D\left[\pi\left(g \cdot q_{1}\right)\right]\left[\pi\left(g \cdot q_{2}\right)\right]$ -Distance matrix

$$
D=\alpha_{1} \times S+\alpha_{2} \times \varepsilon+\alpha_{3} \times T
$$

- S : SWAP matrix, ε : SWAP error matrix, T : SWAP execution time matrix
-Selection between SWAP and Bridge gate.

SWAP gate

Bridge gate
-Hardware-aware Simulated Annealing (HSA) initial mapping.

- Hardware-aware get_neighbor method.

Results

- Comparison of number of additional gates on IBM Q 20 Almaden (large benchmarks).

Benchmarks

- Comparison of number of additional gates and fidelity on IBM Q 20 Almaden (small benchmarks)

```
                                    \square0HA+SABRE|0HA+HSA, SABRE|\N-A|!Qiskit
```


$$
\square \square \mathrm{HA}+\mathrm{SABRE} \square \mathrm{HA}+\mathrm{HSA} \| \text { SABRE\|N-A\|Qiskit }
$$

Conclusion

- Map the most used qubit of the mapped circuit to the most connected physical qubit
-Apply CNOT gates on qubits that are directly connected and with reliable interconnects.
-If a CNOT cannot be applied on two neighbor qubits, apply on two qubits whose distance is two

