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Abstract—An oscillatory neural network (ONN) is a neuromor-
phic computing paradigm based on encoding of information into
the phases of oscillators. In this paper we present an ONN whose
elemental unit, the “neuron”, is implemented through a beyond-
CMOS device based on vanadium dioxide (VO2). Such ONN
technology provides ultra-low power solutions for performing
pattern recognition tasks, and it is ideally suited for edge
computing applications. However, exploring the groundwork of
the beyond-CMOS ONN paradigm is mandatory premise for its
industry-level exploitation. Such foundation entails the building
of a holistic simulation flow from materials and devices to circuits,
to allow assessment of ONN performance. In this work we report
results of this advanced designing approach with special focus
over the VO2 oscillator. This establishes the ground to scale
up to evaluate beyond-CMOS ONN functionalities for pattern
recognition.

Index Terms—Oscillatory neural networks (ONN), density
functional theory (DFT), technology computer aided design
(TCAD), circuit simulation, Internet-of-Things (IoT), edge ar-
tificial intelligence (edge AI), neuromorphic computing.

I. INTRODUCTION

Systems of biological neurons can be mimicked by neural
networks, with the neurons emulated after the McCulloch–Pitts
[1] or “integrate and fire” [2] models. However, neural systems
can be modeled also as periodic oscillators. For instance,
features of the visual system are reproduced via nonlinear
oscillatory network. In last years, a novel neuromorphic
architecture has been suggested [3] based on an ensemble
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of coupled oscillators. In such oscillatory neural networks
(ONNs) the information is hold by the phases of the oscil-
lators. The coupling laws among the oscillators determine the
phase relations among them. It has been demonstrated that the
ONNs work as Hopfield neural networks with limit cycles as
attractors [3]. Thus, the phase-locked synchronized states yield
the outcome of the ONN computation.

A Hopfield neural network realizes a ”memory” that can be
addressed by content, similarly to the biological associative
memory. In this respect, it can perform pattern recognition,
which is pivotal for edge artificial intelligence (AI)’s appli-
cations, such as surveillance or autonomous driving. By edge
AI is meant the evolution of AI of bringing data processing
the closest to the location where data are collected, that
is our smart devices at the edge of the Internet-of-Things
(IoT). The goal is to perform the data analysis at the user’s
level, differently to what happens in cloud computing where
data have to be sent across Internet. Applications of edge
AI pose a serious constrain over power consumption, given
that edge devices possess reduced power resources. ONN
presents an alternative paradigm that is suitable for computing
at the edge due to its low power computing capability. For
instance, the embedding of information into oscillator’s phase
is a power-saving solution compared to its encoding into
oscillator’s amplitude. Also, ONNs have demonstrated fast
operation speed that makes them ideally suited for real-time
data processing.

In this work we present an innovative implementation of
the ONN paradigm to target ultra-low power neuromorphic



computing at the edge. We explore beyond-CMOS devices
based on vanadium dioxide (VO2) for the realization of the
fundamental block of the ONN architecture, the oscillator
emulating the neuron. The capability of optimizing an ONN
architecture with respect to its functionalities is a mandatory
step towards the industrial exploitation of this technology. In
this context, the assessment of the ONN dynamics and phase-
locking synchronization is a necessary premise. In literature,
the ONN concept is mainly discussed in terms of mathemat-
ically abstract models [5]. Here, we provide an exploratory
design flow from materials and devices to circuit-level to
enable ONN performance and power assessment. Then, the
setting-up of an advanced design toolbox dedicated to beyond-
CMOS ONN is an important first step toward achieving
technological maturity. This advanced simulation toolchain
will encompass all the aspects of interest of the beyond-
CMOS ONN, from materials (through atomistic simulations)
to devices (by means of technology-computer-aided-design,
TCAD) up to circuits (simulations performed through mixed-
mode approach and compact models). In this paper, we report
the results obtained from such simulation flow with the focus
on investigating the beyond-CMOS oscillator (Fig.1). The
simulation flow serves as the exploratory toolbox to scale up
ONN circuit level description and evaluate its performance on
the pattern recognition task.
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Figure 1. Advanced design toolbox for the simulation workflow of the VO2

oscillator.

II. VO2 NEURON

A. Material

Among the transition metal oxides (TMOs), VO2 has at-
tracted interest because its phase transition occurs near room
temperature (∼340 K). It causes a remarkable change in its
physical properties, and in particular the material’s resistivity
varies up to 5 orders of magnitude within a temperature
window of 0.1 K for pristine VO2. Furthermore, the phase
transition is reversible, and often shows hysteretic behavior.
Such low-temperature, ultrafast, and reversible switching is a
technological advantage over “traditional” TMOs, and enables
the use of VO2 for ultrafast memory switches and memory
devices.

From a structural perspective, above 340 K VO2 has a
tetragonal rutile-like (R) crystal structure where the distance
between V atoms along the c axis is constant throughout the
lattice, and is 2.96 Å. Notably, R-VO2 shows metallic behavior

with zero band gap. However, when VO2 undergoes its phase
transition a distortion in the lattice occurs, and V atoms
dimerize with long (3.12 Å) and short (2.65 Å) distances.
This breaks the crystal symmetry, and causes a shift to the
monoclinic (M1) structure with non-vanishing band gap. This
is commonly referred to as metal-to-insulator transition (MIT).

The vast majority of theoretical studies on VO2 is about
the mechanism leading to the MIT that is now believed to
be a cooperative Mott-Peierls [6]. However, significantly less
studied is the interaction between VO2 and the metal electrode
in a typical device architecture, which can provide useful
insights into device-level properties. Atomistic simulations of
this kind are challenging, as one has to explicitly construct
the VO2/metal interface geometry, and thus investigating the
different possible surface terminations of VO2 becomes piv-
otal. Furthermore, an in-depth understanding of VO2 surfaces
is also relevant in order to explore grain boundaries, as it has
been observed that the strain caused by the lattice mismatch is
able to affect the properties of the MIT, such as the transition
temperature and the hysteresis window [7].

In this regard, a limited number of density functional theory
(DFT) studies are available in the literature: for instance,
focusing on the insulating phase, DFT simulations were carried
out on the monoclinic VO2 (011) surface in order to compute
its electronic properties for catalytic applications [9]. The
effect of doping on VO2 surfaces has also been explored [7],
and results suggest that tuning the material’s work function
by doping could correlate with a change in the transition
temperature.

Ultimately, the aim of our atomistic simulations is to
bridge the gap between material’s and device properties by
constructing VO2/metal interface models that will enable the
prediction of relevant material- (band gap, work function) and
device-level parameters (e.g., type of contact, interface thermal
resistance) that will be fed in subsequent TCAD simulations.

B. TCAD simulation of Two-Terminal Device

TCAD has been a powerful propellant for the pathway to
success of the silicon semiconductor technology. Nonethe-
less, the mainstream trends of device development (extreme
miniaturization, beyond-Si materials) are currently defying the
traditional TCAD models. In particular, in case of VO2, its
temperature-induced phase change lies outside the standard
semiconductor physics commonly provided by TCAD tools.
For this reason, the electrical transport in VO2 is usually
emulated by modeling it as a resistor network [11], and results
on TCAD simulations of VO2 devices are essentially missing
as yet.

We present a TCAD approach suitable to cope with the
resistive switching of VO2. To this aim, we customize the
Phase Change Material (PCM) model available in Silvaco
Victory Device TCAD tool [12]. This model is developed for
phase change (PC) materials that pass from crystalline (low
resistivity ρ) to amorphous state (high ρ) depending on T .
PC materials are stable in crystalline/amorphous phase for T
lower/higher than the critical temperatures TC,cryst/ TC,am,



thus therein ρ = ρcryst/ρ = ρam. In Silvaco TCAD tools
PC materials are modeled as conductors whose local ρ is
made dependent from local T through the PCM model. The
hysteresis of experimental ρ vs T curves is accounted for
through the Johnson-Mehl-Avrami model.

PC materials and VO2 show similar behavior of ρ with T .
However, the PCM model has to be adapted to simulate VO2,
because ρ depends on T also when VO2 is in semiconducting
phase (T < TC,IMT,L). We use a dedicated c-function to cus-
tomize the PCM model and implement such behavior. We also
introduce a T -dependence of the ρ for T > TC,IMT,H when
VO2 is in metallic phase, in agreement with experimental
findings.

We use the customized PCM model to simulate experi-
mental current vs voltage (I − V ) characteristics of a VO2

device. This device consists of a VO2 layer on top of a silicon
dioxide substrate (Fig. 2d). The external heater which heats the
device at 315.7 K is emulated as thermal boundary condition
at the bottom part of the insulator. In VO2 devices the resistive
switching occurs while the current flows across the device. We
use the PCM model for VO2 and we perform electrothermal
simulation to investigate the role of self-heating over the
resistive change of VO2. Fig. 2a shows the good match
achieved between simulated (blue line) and experimental (cyan
symbols) data. This is a validation of our customized PCM
approach to simulate a VO2 device. Also, it supports that self-
heating is triggering the resistive change of VO2, as it has been
conjectured [10].

Fig. 2c plots the local ρ, probed inside VO2, vs the local
T . It should be noticed that the non Ohmic behavior of I−V
below IMT is fully explained with the interplay between 1)

Figure 2. (a) Simulated (blue line) and experimental (cyan symbols) I−V of
VO2 device. The device has been heated up to 315.7 K by an external heater.
(b) Simulated I−V s at the external temperature T of 315.7 k (blue line) and
of 303 k (magenta line). (c) Local resistivity probed within VO2. The IMT
switching is highlighted as α point of I−V in panel (a) and of resistivity vs
temperature in panel (c). (d) Structure of the 2D simulated device. A 53-nm
thick VO2 layer sits on top of an insulator layer. The VO2 channel length is
of 0.4 µm, the channel width is 1 µm. The thermal conductivity of 0.06 W
/ (cm K) [13] is used in electrothermal simulations. The temperature of the
lower boundary of the insulator substrate is set at 315.7 K. (e) Temperature
and (f) resistivity 2D plots across the VO2 layer as extracted in β point of
I − V of panel (a).

self-heating and 2) T -dependence of ρ. This results to be in
agreement also with experimental findings [14]. Fig. 2e and f
are 2D maps of lattice temperature and resistivity, respectively,
as extracted in β point of I−V of Fig. 2a. As it can be seen,
the temperature varies across the VO2 due to Joule heating
effect, and this mirrors in a consequent change of the local
resistivity (see also Fig. 2c).

The next step is to embed the device physics as provided
by the TCAD I − V into the circuit level simulation of the
oscillator at room temperature. To this aim, we simulate I−V
at 303 K (Fig. 2b, red line). It can be observed the impact of
the ambient temperature over the I−V s, especially the voltage
and current values at which the IMT occurs. Then, we feed this
TCAD I−V into a Matlab circuit solver tool used to perform
the simulation of the oscillator circuit, as it is described in the
next section. Our aim is to join up the device level description
inside the circuit level simulation (Fig.1).

C. Oscillator Circuit Simulation

In our beyond-CMOS ONN, the neuron is modeled as a
compact relaxation-oscillator made of a VO2 device in series
with a resistor. This highly scalable architecture is shown in
Fig.3a and has been validated experimentally [15], [16]. It
yields output oscillations at the node Vout for a certain range
of supply voltage VDD and biasing resistor RS . The voltage V
applied to the VO2 device is driven by VDD and Vout across
the output capacitor CP . A hysteresis window is defined by
the two threshold voltages, VL and VH , corresponding to the
occurrence of MIT and IMT respectively (Fig.3b). To obtain
oscillations, the bias current line IL = (VDD − V )/RS must
intercept the current I of the VO2 device in its hysteresis
window. Indeed, it is in this region that a Negative Differential
Resistance (NDR) takes place - visible in the I−V curve when
the VO2 is driven by a current source (Fig.2b) - from which
we can form an unstable fixed point to get oscillations.

To simulate the VO2-oscillator dynamics, we solve the
circuit equation expressed by Kirchhoff’s law:

CP
dV

dt
= IL − I (1)

This first-order differential equation can have oscillatory so-
lutions thanks to the hysteresis relationship between I and
V . One way to model it at circuit-level is to use a comparator
with a positive feedback as in [15]. In this compact model, the
comparator continuously stores the time-dependent VO2 state
and switches abruptly when the device voltage V reaches one
of the two thresholds VL or VH . Hence, it is only near MIT or
IMT that the VO2 resistance varies significantly. Otherwise,
the VO2 resistance is rather constant and is either Rmet or
Rins. The dynamics can then be interpreted as simple cycles
of RC-charges and discharges. However, TCAD simulations
that fit experimental data show a non-linear resistance while
VO2 is in insulator state (right-hand side of Fig.3b). Rins

decreases when V grows in the hysteresis window, due to
the combined effect of 1) self-heating and 2) temperature-
dependence of resistivity (Fig. 2c).
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Figure 3. (a) VO2-based oscillator with RS = 4 kΩ and CP = 500 pF. (b)
VO2 I−V curve at 303 K and load lines - yellow: VDD = 3.5V and magenta:
VDD = 3V. The dashed line is obtained with the compact model [15] and
parameters: Rmet = 3.822 kΩ, Rins = 246.2 kΩ, VH = 2.818V,VL =
2.424V, α = 200 and τ0 = 10 ns. Solid lines are TCAD results: I − V
relationship in insulator state is non-linear. (c) and (d): comparison between
oscillatory behavior as generated by the model [15] and through our TCAD
approach for VDD = 3.5V and 3V, respectively. The simulation time-step is
1 ns. In the last example, our method gives different results as CP ’s discharge
slows down before IMT.
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Figure 4. Two oscillators coupled by RC = 10kΩ. Oscillator 2 is turned-
on 300 ns after Oscillator 1. They represent pixels for pattern recognition
applications - white=in-phase and black=out-of-phase -. a) Simulation using
the compact model [15]. b) Using our TCAD method.

To take into account this non-linearity during circuit simula-
tions, we build a Matlab circuit solver that takes as inputs the
VO2 I −V data from TCAD simulations and the ONN archi-
tecture description - number of oscillators, circuit parameters,
coupling elements and input signals - (Fig.1). More precisely,
we numerically solve (1) by using Euler’s method and by
keeping track of the VO2 state. We extract the VO2 resistance
at every time step by interpolating TCAD data stored in a
lookup table.

Comparison between our TCAD-based circuit solver and
the model [15] are presented for VDD = 3.5 V and VDD = 3
V in Fig.3c and d, respectively. In the first case - yellow
load line -, we observe almost no variation between the two
approaches. Indeed, if we label ∆I the difference between
the current extracted with TCAD and the one with the model
[15], we have IL >> ∆I so (1) does not change significantly
and there is small discrepancy between the two circuit-solving
methods. However, in the second example - magenta load line
- IL(VH) ≈ 2 ∆I(VH) thus dV/dt is more affected before
IMT. This situation is likely to occur as IL is generally set
as low as possible by increasing RS or by decreasing VDD

to minimize the ONN energy consumption. Using our TCAD
approach, we predict that the output oscillation slows down

because of the gradual decrease of Rins in the hysteresis
window. Consequently, the ONN computation time - given
by multiple oscillation periods - increases along with the
energy. Therefore, we believe that the non-linearity in the
VO2 insulator state should be considered for accurate ONN
simulation and energy assessment.

To further illustrate the impact of non-linearity in the
VO2 insulator state, we simulate two oscillators coupled by
RC = 10 kΩ (Fig.4). The second oscillator is turned-on 300
ns after the first one which is 10% of the oscillation period
based on the compact model [15]. For a pattern recognition
application [16], the two coupled oscillators correspond to a
first white pixel and a second light-gray pixel of an input
image. Intuitively, we would expect the two oscillators to
converge to an in-phase relationship as the compact model [15]
predicts (Fig.4a), because the oscillators are initialized with a
small delay with respect to the oscillation period. However, by
using our TCAD approach we observe the opposite outcome
(Fig.4b), i.e the two oscillators converge to an out-of-phase
relationship. Hence, considering non-linearity in VO2 insulator
state is key for precise ONN circuit simulation. Finally, we
believe our TCAD-based circuit solver is a step toward more
robust ONN design and training, as we can also analyze the
influence of various factors such as material parameters or
ambient temperature.

III. CONCLUSION

In this work we present an innovative ONN architecture
whose basic element, the “neuron”, is realized as an oscillator
based on vanadium dioxide (VO2). Such ONN promises to
provide ultra-low power technology for pattern recognition
tasks in IoT applications. However, to guide its physical
realization a robust design procedure is required. This entails
the building of an advanced simulation toolchain (Fig.1) to
cover from materials to devices up to circuits, for the assess-
ment of ONN functionality. We show the development of this
advanced designing approach with special focus over the VO2

oscillator. We succesfully perform electrothermal simulation of
experimental VO2 devices by customizing the Silvaco TCAD
PCM model. In particular, we account the non Ohmic behavior
of the I − V below IMT with the interplay between 1) self-
heating and 2) T -dependence of ρ. Also, our results support
the role of self-heating in driving the phase transition in
VO2. Then, we feed the TCAD I − V into a Matlab circuit
solver tool to simulate the dynamics of the VO2 compact
relaxation-oscillator. Our simulation approach is able to link
the device physics to the circuit level description. Especially,
we assess the impact of the non-linearity of resistance in the
VO2 insulator state in the oscillatory behavior, and, in turn,
over a proof-of-concept pattern recognition task. Thus, our
TCAD-based circuit solver is a first step toward more robust
ONN design and training. As future work, we plan to analyze
the influence of various factors such as material parameters or
ambient temperature over VO2 oscillator behavior.
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