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A Simple and Efficient Non-Model Based Cable
Tension Control ?
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Abstract. Although the control of cable tensions plays a paramount
role in the control of Cable-Driven Parallel Robots (CDPRs), studies
addressing the subject are very few. The present paper proposes and ex-
perimentally validates a simple cable tension feedback control scheme. In
order to avoid issues related to friction and saturation of the feedback cor-
rection, a velocity-controlled winch is considered. The closed-loop scheme
consists of an ordinary PI applied with respect to the measured cable
tensions. Thanks to its simplicity, the main advantage of the proposed
scheme is its ease of implementation. The experimental validation is per-
formed using two scenarios. First, a simplified case consisting of a single
degree-of-freedom CDPR is considered. Finally, the performance is vali-
dated with a a six degrees-of-freedom CDPR fully-constrained by eight
cables.

Keywords: Cable tension control · Non-model based · Velocity-controlled
motor.

1 Introduction

Most often, motion control schemes of Cable-Driven Parallel Robots (CD-
PRs) define, at some point, a set of desired cable tensions. Therefore, a strategy
should be defined to convert desired cable tensions to a variable that is mean-
ingful to the motor drivers, typically motor torques (or currents), positions or
velocities. Such control strategies are referred to as cable tension control schemes.

The majority of published experimental results were obtained with open-loop
cable tension control. A common solution is the application of motor torques
compensating the friction in the winches [2,7,15] which led to satisfying results
in the context of position tracking control [6] and of force-based control [12].
Nevertheless, the application of a closed-loop approach should notably improve
the robustness to the uncertainties present in the controlled system.

A closed-loop cable tension control can be seen as a simplified case of feedback
force control which is a well established topic in robotics [16,17]. Its variants,
which can be exemplified by impedance control [3] and hybrid position/force

? This work was supported by the European Union’s H2020 Program (H2020/2014-
2020) under the grant agreement No. 732513 (HEPHAESTUS project).



2 Santos and Gouttefarde

control [1], were successfully implemented in both serial [10] and parallel robots
[8]. Nevertheless, studies proposing closed-loop cable tension control strategies
in the context of CDPR control are few.

Based on an elastic cable model, Kraus et al. propose a cable tension control
scheme using motor positions as control inputs to the motor drivers [5]. This work
presents details on the identification of the dynamic system and experimental
results on position tracking control. Similar methods are used in [4] and in [11].
Nevertheless, the application of a position-controlled inner-loop may lead to the
saturation of the feedback correction. Kraus et al. proposes the implementation
of an anti-windup strategy in order to overcome this issue.

Besides, torque-controlled winches allow the motor torques to be directly
used as the control inputs. An advanced technique was tested through numerical
simulations in [9] using H∞ robust control in order to compensate the influence
of the cable sagging and elasticity. However, torque-based strategies requires a
precise model of the friction present in the winches. This may be a significant
issue when gear trains with a large reduction ratio are used.

The present paper proposes a rather simple control strategy considering
velocity-controlled winches. This non-model based approach relies on a PI feed-
back correction and, therefore, presents simple implementation and tuning. Fur-
thermore, the proposed scheme does not demand any identification of the con-
trolled system. The control scheme can be seen as an application of a standard
velocity-based admittance control, as discussed in [13]. Experimental validation
is fulfilled using two scenarios. First, a simplified case of a one degree-of-freedom
(DoF) CDPR is considered. Finally, the application on the CDPR motion con-
trol is validated on a 6-DoF CDPR fully-constrained by eight cables. In contrast
to position-based control schemes, real-time experiments notably indicate that
the proposed control scheme is not prone to saturation issues.

2 Set-up Description

A simple 1-DoF CDPR is first considered in order to study the cable tension
control of CDPRs. This set-up is illustrated in Figure 1. It consists of two cables
of a CDPR connected one to each other at point P . The influence of gravity
is neglected under the assumption that the cables are kept sufficiently taut.
Accordingly, the position of the point P is determined by means of the scalar
` as shown in Figure 1. For this 1-DoF CDPR, the stretched cable length, i.e.
the actual length of the cable under tension, is equal to ` plus a constant value,
the latter corresponding to the stretched cable length when point P is in its
reference position.

Cable tensions are measured with the aid of two load pins positioned in the
pulley axes (as shown in Figure 1). The cable tension measurements correspond-
ing to each cable are denoted as τ1 and τ2. Initially, neglecting the pulleys inertia
and friction, it is assumed that τ1 = τ2 = τ . Consequences of this assumption
are discussed in Section 4.
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Fig. 1. An illustrative schematic view of the experimental set-up.

The synchronized movement of actuators 1 and 2 enables the control of the
tension τ and the position `. As a matter of fact, the essential aspects involved in
the control of the cable tensions of a CDPR can be addressed with this system.
Section 3 proposes a velocity-based feedback policy able to track a desired cable
tension τd by means of controlling the velocity of winch 1, denoted as q̇.

3 Cable Tension Control Scheme

The present section proposes a control scheme able to track a set of desired
cable tensions by means of controlling the motor velocities. At first glance, a
velocity-based strategy may seem a peculiar choice. A scheme controlling di-
rectly the motor torques may instead be considered as an appropriate option.
Disregarding cable distributed mass, friction in the winches and in the routing
pulleys, and dynamics forces, the torque applied by the drum is proportional to
the cable tension. Moreover, independently of the chosen strategy, the innermost
control loop regulates the motor current which is closely related to the motor
torque.

Nevertheless, the torque applied on the drum is often transmitted from the
corresponding motor by means of a gearbox which generally possesses non-
negligible friction. As a result, the torque applied on the drum and the one
generated by the motor are commonly related by a highly non-linear system.
This issue is demonstrated in Figure 2. The data displayed in this chart was
obtained for a constant position ` of the 1-DoF CDPR shown Figure 1 whose
winches have gear trains with reduction ratio of 25—other technical details on
the mechanical parts used in the experimental setup are described in the next
section. One may note that a continuous variation of the motor torque results
in significant discontinuities in the variation of the cable tension. This is due to
the so-called stick-slip phenomenon.

In contrast, the relation between motor positions and cable tensions is much
more tractable since it is mainly governed by the cable elasticity. Performing a
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Fig. 2. Simultaneous plot of the applied torque and measured cable tension (with the
cable attached to a fixed support).

test similar to the above mentioned experiment, the data depicted in Figure 3
is obtained. In this case, a continuous variation of the motor position leads to
a continuous variation of the cable tension. As a matter of fact, the results
presented in Figure 3 are rather obvious considering the elastic behavior of the
cable. Since ` is constant in this experiment, the unstretched length variations
presented in Figure 3 takes place with constant stretched length. The comparison
between Figures 2 and 3 demonstrates that controlling the cable tension through
the motor position should be more suitable than through the motor torque.

In general, a simple position control is able to perform a sufficiently precise
position tracking independently of the external forces and torques. Hence, while
positioning precision may be obtained independently of the cable tensions, the
motor angular position may be controlled in order to generate a desired cable
tension. Noting that the relation between the cable tension and the position is
continuous and well behaved, good results with a position-based control scheme
can be expected. This is indeed the approach proposed in [5,4] but some sec-
ondary complications come up with this method. Notably, the suppression of
steady-state errors demands the application of an anti-windup feedback strat-
egy.

For this reason, the present section proposes a scheme in which the motor
velocity is taken as the control input. Similarly to a position-controlled winch, a
simple velocity control is able to perform a sufficiently precise velocity tracking
independently of the external forces and torques. Therefore, this approach is
also able to reduce the influence of friction on the tracking of cable tensions.
Furthermore, results presented in the remainder of the paper indicates that this
velocity-based scheme is not prone to saturation issues.

As discussed earlier, a crucial advantage of the proposed control scheme lies
in its simplicity of implementation. Indeed, as shown in Figure 4, the proposed
strategy consists of a simple PI feedback correction combined with a feedforward
term proportional to the velocity ˙̀. More precisely, the desired winch angular
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Fig. 3. Simultaneous plot of variations in the unstretched cable length and the mea-
sured cable tension (with the cable attached to a fixed support).
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Fig. 4. Block diagram of the proposed velocity-based cable tension control scheme.

velocity q̇d is computed according to:

q̇d = kP (τd − τ) + kI

∫ ta

t0

(τd − τ) dt+
˙̀

rw
, (1)

with positive scalars kP and kI representing the feedback gains. The limits of
integration in (1) refers to the initial and actual time, t0 and ta, respectively. τd is
the desired cable tension and τ is the measured one. Moreover, the positive scalar
rw denotes the radius of the winch drum. Consequently, the feedforward term
˙̀/rw represents the motor angular velocity necessary to generate the tangential
linear velocity ˙̀ of the drum.

In practice, the value of the angular velocity q̇d is used as a set-point in an
inner-loop control responsible for tracking this velocity by means of controlling
the motor currents. Typically, servo-drives are able to manage this inner-loop.
While the proposed control scheme presents a remarkable simplicity, the next
section shows that the resulting performance is satisfying.
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Fig. 5. HRPCable prototype.

4 Experimental Results

The experimental validation presented in this section was performed using
the HRPCable prototype shown in Figure 5. The mobile platform of HRPCable
has six degrees of freedom and is driven by eight cables in a fully-constrained
configuration. Each winch is driven by a motor Beckhoff AM8061 with nominal
torque of 12.8 Nm and nominal power of 3.46 kW. The reduction is performed
by a two stage gear train Beckhoff AG2210 with reduction ratio of 25:1. Motor
servo drivers Beckhoff AX5112 are controlled by an IPC Beckhoff C6920. Control
implemented in the IPC is developed in C++ (TwinCAT environment).

Load pins Sensy 5300 1T SL positioned in the axes of the pulleys measure
the cable tensions. The analogical amplifier of this sensor is integrated to the
body of the load pin. Based on the authors’ practical experience, this is a decisive
requirement in order to obtain a reduced level of noise on the force measurements.

Section 4.1 presents the experimental validation of the control scheme pro-
posed in Section 3. Moreover, supplementary results are discussed in Section 4.2.
The influence of the cable hysteresis and the friction in the pulleys are quantified.

4.1 Main Validation

First, two kinematic chains (two winches and cables) of the HRPCable pro-
totype were used to form the 1-DoF CDPR depicted in Figure 1. Figure 6 shows
the results obtained with the velocity-based control of Eq. (1) with a step input.
The lower level is 190 N and the upper one is 440 N. The rise time to reach 440
N is 0.4 s. The position ` was kept constant.

Figure 7 shows the results of another test where τd varies at low frequency.
This figure shows that the obtained error is negligible so that desired and mea-
sured cable tensions are virtually equivalent. Moreover, the small error obtained
with a slow variation of τd shows that the proposed strategy successfully avoids
the stick-slip problem.
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Fig. 6. Measured cable tension with a step input in the desired tension.
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Fig. 7. Measured cable tensions and tracking errors. Displacement ` is constant and
the desired cable tension is determined according τd = 320 + 220 cos(2π t/62.5) [N].
The RMS of the tracking error is equal to 1.51 N.

Moreover, Figure 8 depicts the results for a sinusoidal ` and constant τd. This
figure compares strategies with and without the feedforward term ˙̀/rw. It shows
that a control scheme without the feedforward term would lead to large errors
when variable ` is used. The small errors obtained when the feedforward term is
applied indicates that the compensation of ˙̀ is satisfying.

Figure 9 presents the results with sinusoidal ` and τd. A small delay may be
observed. Nevertheless, the obtained results with the proposed control strategy
are considered suitable. Accordingly, the proposed velocity-based cable tension
control can be used in the CDPRs motion control.

Finally, the eight winches, cables and load pins of the HRPCable prototype
were used and the proposed cable tension control scheme of Eq. (1) was im-
plemented as part of a position tracking control strategy. More precisely, the
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Fig. 9. Measured and desired cable tensions (on the left) and displacements ` (on the
right).

Model Predictive Control (MPC) strategy proposed by the authors in [14] was
implemented and used to perform the trajectory illustrated in Figure 10. The
resulting measured cable tensions and cable tension tracking errors are shown
in Figure 11. The tracking errors were mostly limited to ± 10 N which allows
an efficient closed-loop tracking of the desired cable tensions as can be seen in
Figure 11 (a).

4.2 Additional Results

Some additional results were obtained during the experiments described in
the previous section. Figure 12 shows several repetitions of the experiment de-
picted in Figure 7. One can see that the relation between the cable tension
and the displacement of the winch (q rw) is repeatable. The plot displaying the
elongation vs. the cable tension indicates that the relation between stress and
strain for increasing cable tensions can be reasonably approximated by an affine
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Fig. 11. (a) Graph of both measured (solid lines) and desired (dashed lines) cable
tensions. (b) Tracking errors of the cable tensions.

function. Nevertheless, the values obtained for decreasing tensions shows that
significant hysteresis is present.

As shown in Figure 1, there is a second load pin in pulley 2 measuring the
cable tension. Figure 13 presents the values obtained with the two load pins.
One may see that the cable tension τ1 measured by sensor 2 shifts when the
direction of movement changes (velocity equals to zero). This shift is probably
caused by the friction in pulleys 3 and 4 shown in Figure 1. Since τ1 is the value
used in the control loop, it is continuous and close to the desired cable tension.

In order to clarify the influence of the friction in the pulleys, the following
simplified model τ̃2 of the cable tension τ2 can be considered:

τ̃2 = τ1 − 2 τf sign(ẋ) + τk, (2)
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Fig. 12. Experimental results highlighting the hysteresis present in the cable elongation
behavior.

Fig. 13. Difference between cable tensions measured by load pins 1 and 2 (τ1 and τ2).

where τf is the the dry friction force due to pulleys 3 and 4, the friction forces in
these pulleys being considered equal. The scalar τk is a constant that depends on
the initialization of the system. Parameters τf and τk were identified using data
from Figure 13. The fitted data is shown in Figure 14 where it can be seen that
the simple model in Eq. (2) is accurate. The pulley dry friction force obtained
is τf = 3.9 N.

5 Conclusions

This paper proposed and validated experimentally a non-model based ca-
ble tension control scheme. The desired cable tension is tracked by means of a
velocity-controlled winch. The control scheme consists of an ordinary PI feed-
back correction combined with a feedforward term of the motor angular velocity.
The advantage of the proposed approach in comparison to existing state-of-the-
art strategies is its simplicity of implementation allied to satisfying performance.
This approach did not led to saturation and proved to be barely sensitive to the
friction in the winch. Future works may address the influence of friction in the
pulleys and the cable elasticity (and hysteresis).
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Fig. 14. Identification of the pulley friction: Measured cable tension τ2 (experimental
data) and predicted value τ̃2 given by Eq. (2) (fitted data).
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