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Abstract. Scaffolding is the final step in assembling Next Generation
Sequencing data, in which pre-assembled contiguous regions (”contigs”)
are oriented and ordered using information that links them (for example,
mapping of paired-end reads). As the genome of some species is highly
repetitive, we allow placing some contigs multiple times, thereby gener-
alizing established computational models for this problem. We study the
subsequent problems induced by the translation of solutions of the model
back to actual sequences, proposing models and analyzing the complex-
ity of the resulting computational problems. We find both polynomial-
time and NP-hard special cases like planarity or bounded degree. Fi-
nally, we propose two polynomial-time approximation algorithms accord-
ing to cut/weight score.

1 Introduction

Context and motivation. Genomic data are of major importance in numerous
aspects of research and applications in biology and computational biology. Their
production is massively encouraged by industrial and academic actors, who use
them in various ways [26]. These data are produced by so-called sequencers, who
output (typically millions of) reads, that is, tiny subsequences of DNA that need
to be “assembled” in order to get the target genome. The genome, once stabilized,
is stored in huge databases and is made available to the community for further
analysis. A high-quality genome is of paramount importance to the accuracy
of further methods (such as genome comparison, gene inference, studies on the
order of given markers, etc). Thus, it is crucial to provide genomes as complete
and error-free as possible.
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Assembly and scaffolding steps. The operation consisting in merging reads to-
gether to produce longer sequences is called genome assembly. Many methods
and tools propose to assemble Next Generation Sequencing (NGS) reads into
genomes, metagenomes or transcriptomes, most of them modeling sequences
through graphs (assembly graphs, k-mer graphs, A-Bruijn graphs, etc.) [5, 8, 21,
23, 24, 25, 27, 37]. Those tools are compared and evaluated through benchmarks
of different origins [16, 34]. A recent state-of-the art about genome assembly
has been compiled by Phillippy [29]. However, assembly software typically has
trouble dealing with repetitive (parts of the) genomes [22, 32, 33] and, there-
fore, output a collection of “contiguous regions” (contigs), that is, large chunks of
DNA covering most of the genome. Unfortunately, nearly all “known” genomes
are in a thusly fragmented state; some mammalian genomes reach hundreds of
contigs per chromosome [1]. To overcome this issue, an additional step, called
scaffolding, intends to reduce the fragmentation using additional data (paired-
end reads, long reads, phylogenetic information, etc.). To this end, scaffolding
software computes the most likely order and relative orientation of these con-
tigs along the genome and, if possible, fills gaps between them [10, 12, 14, 30].
Scaffolding methods are also mainly based on various models of graphs, repre-
senting the way additional data link contigs. However, as with reads, the target
genome may contain multiple (inverted) copies of an entire contig, like the well-
known and described large inverted repeat region in chloroplast genomes [20],
and many scaffolders are incapable of handling these repeats. Recent techniques
use third-generation sequencing data [6] to resolve these repeats, but it requires
resequencing the large amount of available, highly fragmented genomes. A pos-
sible way to solve the problem without resequencing is to deduce multiplicities
of contigs using external information (such as read-coverage) and take this mul-
tiplicity into account when scaffolding.

Linearization of the solution. Scaffolding leads to a set of paths and cycles in
a scaffolding graph. When a repeated contig is involved in several paths corre-
sponding to distinct parts of the genome, it is impossible to distinguish between
the copies, and paths collapse into non-linear structures (see Figures 1 and 2, re-
quiring some definitions of Section 2). This solution structure is informative per
se and could be used as it comes, but it presents sequences non-linearly. How-
ever, the standard representation of scaffolds are linear sequences of nucleotides.
Thus, we need to linearize the solution graph, that is, resolve the ambiguities
arising from the indistinguishability among the copies of each repeated contig,
This is the main subject of this work. It turns out that the most straight-forward
linearization strategies may produce chimeric sequences, and we show that the
ones avoiding chimeras in a parsimonious way are NP-hard to compute (for rea-
sonable scoring). In particular, our model is an edge-deletion problem (called
Semi-Brutal Cut) concentrated on extremities of ambiguities in a “solution
graph” whose structure influences the computational tractability of the problem
(see Table 1 and Table 2 for a summary).
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Table 1: Overview of complexity results for Semi-Brutal Cut.
Topologies Type of cut Complexity

Complete bipartite
Cut score

Linear

Theorem 4
Complete Theorem 5
Cobipartite Theorem 6

Trees
All

Theorem 2
∆ ≤ 2 Theorem 3
G′1

NP-hard
Theorem 7

Supergraphs of G′ Weight score Corollary 2

Split
graphs Cut score

Theorem 8
No 2o(n) algorithm Corollary 3(under ET H)

1. Bipartite, planar and subcubic

Table 2: Overview of lower and upper bounds for Semi-Brutal Cut.
Topologies Type of Cut Hypothesis Lower bound Upper bound
G′1

Cut score
P 6= NP

1.00009. . . Theorem 9

4-approx
Theorem 15

Subcubic 1.00041. . . Theorem 12
∆ ≤ 4 1.0069. . .

Theorem 14∆ ≤ 5 1.0128. . .
∆ ≤ 6 1.0138. . .

General,
Split graphs

1.360. . . Theorem 13
UGC 2− ε

General Weight
score

1.01887. . . Theorem 10 2-approx
Theorem 16P 6= NP 1.01515. . .

Subcubic 1.00017. . . Theorem 11
1. Bipartite, planar and subcubic

Organization of this article. The next section is devoted to definitions and the
descriptions of problems related to scaffolding and linearization. In Section 3, the
notion of unambiguous solutions is explained. In Section 4, we describe several
reduction rules yielding a simplified version of the linearization problem. The
polynomial cases are developed in Section 5 whereas the hardness cases are
presented in Section 6. The non-approximability results are given in Section 7
and, in the last section, several polynomial-time approximation algorithms are
developed.

2 Obtaining Sequences From Solution Graphs

We consider simple, loopless graphs. Let G be such a graph. We denote by V (G)
and E(G) the set of vertices and edges of G, respectively (or V and E if no am-
biguity occurs). The degree of a vertex v is the number of edges incident to v
and is denoted by degG(v). The set of neighbors of v is denoted by N(v). The
maximum degree of G is ∆(G). Consider a set of contigs C = {C1, . . . , Cn} and
a set of weighted links between contig extremities (obtained from paired-end
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reads mapping). This can be represented by a graph G containing, for each con-
tig Ci, vertices ui and vi representing the extremities of Ci, an edge uivi repre-
senting the contig Ci (contig edge), and weighted links between contig extremi-
ties (non-contig edges). The contig edges form a perfect matching M∗ in G. In
the following of the paper, we refer to them as matching edges. The weight func-
tion ω is defined on non-matching edges and symbolizes, roughly, the amount
of confidence that we have in the link. We call such a graph a scaffold graph.
For the matching M∗ and a vertex u, we define M∗(u) as the unique vertex v
with uv ∈M∗. Slightly abusing notation, we sometimes consider graphs as sets
of edges. Then, a path p is alternating with respect to a matching M∗ if, for all
vertices u of p, also M∗(u) is a vertex of p (see Figure 3a for an example). Then,
a linear (circular) chromosome in the target genome is reflected as an alternat-
ing path (cycle) in G. One might now ask for the most parsimonious way (that
is, discarding as little weight as possible) of inferring a given number σp of lin-
ear (and σc of circular) chromosomes that, together, make up C. This problem
has been modeled as the following, computationally hard problem [7, 35].

Scaffolding (SCA)
Input: A scaffold graph (G,M∗, ω) and σp, σc, k ∈ N.
Question: Is there some S ⊆ E(G)\M∗ such that S∪M∗ is a collection

of ≤ σp alternating paths and ≤ σc alternating cycles and ω(S) ≥ k?

To work with multiplicities, we consider walks instead of paths. A length-` walk
in a graph G is a sequence (u0, u1, . . . , u`) of vertices in V (G) such that, for each
two consecutive vertices ui and ui+1 in the sequence, we have uiui+1 ∈ E(G).
The walk is called closed if u0 = u` and it is called alternating with respect to a
perfect matching M∗ in G if (a) uiui+1 ∈ M∗ if and only if i is even, and (b) `
is even if and only if the walk is closed. We will consider walks as multisets of
edges. For any multiset W , let χW (e) be the number of times that e occurs in
W and let ω(W ) :=

∑
e∈W χW (e)ω(e). When working with multiplicities, each

matching edge e of the scaffold graph has a multiplicity m′(e). For matching
edges, this can be read from the data as described in the introduction. Then,
the scaffolding problem with multiplicities is the following:

Scaffolding with Multiplicities (MSCA)
Input: A scaffold graph (G,M∗, ω,m′) and σp, σc, k ∈ N.
Question: Is there a multiset S of ≤ σc closed and ≤ σp non-closed

alternating walks in (G,M∗, ω) such that each e ∈M∗ occurs exactly
m′(e) times in walks of S and ω(S) ≥ k?

Obtaining solutions for MSCA is not the topic of this work. Instead, we con-
sider a solution for MSCA, that is, a multiset S of alternating walks in G such
that each e ∈ M∗ occurs exactly m′(e) times in walks of S. From S, we re-
construct a solution graph4 sol(S) := (G∗,M∗, ω,m) by “merging” all walks of

4 Solution graphs differ from scaffold graphs in that the multiplicity function is defined
on all edges and not just on matching edges.
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Fig. 1: Walks in a scaffold graph (not drawn) give a solution graph
(drawn) with multiplicities. Matching edges are bold. The only am-
biguous path is (x, y). It is ambiguous because it can be de-
composed into {(. . . , u, x, y, z, . . . ), (. . . , u, x, y, z, . . . ), (. . . , v, x, y)} or
{(. . . , u, x, y), (. . . , u, x, y, z, . . . ), (. . . , v, x, y, z, . . . )}. Removing all non-
matching edges incident with x or all non-matching edges incident with y de-
stroys all ambiguous paths.

S, that is, G∗ contains exactly the edges e of G that occur in walks of S and
m(e) =

∑
W∈S χW (e) is the number of their occurrences. Note that the func-

tion m is defined on every edges (contrary to m′ which is only defined on the
matching edges) and that for any matching edge e, we have m(e) = m′(e). We
also say that sol(S) is made up of S. This merge translates the fact that copies
of repeated contigs cannot be distinguished using information from the scaf-
fold graph. Any set of walks making up this solution graph is also a solution of
Scaffolding with Multiplicities with the same optimal score. The solution
graph is, in fact, a manner of representing all the optimal solutions. Any arbi-
trary choice between them could lead to chimeric scaffolds.5 Indeed, the prob-
lem is that sol is not necessarily injective. For example, suppose that the edge
xy in Figure 1 is used in three walks, two of which contain the vertex z. As x
is incident to different non-matching edges, one of the three walks differs from
the other two, but it cannot be determined whether or not it is the same walk
that avoids z. See also Figure 2 for an example with sequences and Figure 3 for
an example of a scaffold graph leading to a solution graph with ambiguous se-
quences. This notion is captured in the following definition.

Definition 1. Let A be an alternating path between u and v or an alternating
cycle in a solution graph. If all edges of A have the same multiplicity µ (that is,
m(e) = µ for all e ∈ A), then A is called µ-uniform (or simply uniform if µ is
unknown). Further,

1. if A is an alternating µ-uniform cycle and µ > 1, or
2. if A is an alternating µ-uniform u-v-path and each of u and v is incident

with a non-matching edge of multiplicity strictly less than µ,

then A is called ambiguous.

An example of ambiguous path is depicted in Figure 1. Roughly speaking, the
problem is that there are many ways of pairing up sequences on each end of
5 A sequences is called chimeric if it does not occur in the target genome, but is made
up of chunks picked from different chromosomes or regions of the genome.
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TTTT
2AA

1

CC
1

GG
1

AA
1

Fig. 2: A schema illustrating solution ambiguity: from the solution graph alone,
we cannot tell whether the target genome contains (1) AATTTTGG and CCTTTAA
or (2) AATTTTAA and CCTTTTGG. As methods “ignore” and “clever” choose one of
the two, they may produce wrong sequences. Method “brutal” removes all four
edges incident with the matching edges TTTT and “semi-brutal” removes either
the left or the right pair of edges. Note that this problem does not go away if we
require the solution to be represented as a collection of walks, as this collection
will just represent one of the arbitrary choices.

ambiguous paths and that the number of cycles is undefined in ambiguous cycles.
Interestingly, ambiguous paths and cycles are enough to characterize ambiguity
of solution graphs (proof in Section 3).

Theorem 1. Let G∗ be a solution graph. Then, G∗ is made up of a unique
multiset of alternating walks if and only if G∗ does not contain ambiguous paths
or cycles.

For biological applications, the representation as solution graph is not satis-
fying. Instead, it is necessary to translate the solution into sequences. However,
each solution S corresponds to a different collection of sequences which, with-
out additional external knowledge, are equally likely from a biological point of
view. For a solution graph G∗, we let sol-1(G∗) denotes the set of multisets S of
walks with sol(S) = G∗. Theorem 1 states that | sol-1(S)| = 1 if and only if G∗
does not contain ambiguous paths or cycles. However, if the solution graph does
contain ambiguous paths, we propose the following strategies for its translation
into sequences.
Ignore. Choose an arbitrary multiset of walks making up G∗. In this case, we

preserve the weight of the solution, but there is no way to distinguish between
the elements of sol-1(G∗) and the arbitrary choice could lead to an erroneous
solution, biologically speaking. Indeed, there is a risk to produce a chimeric
sequence, and this strategy has to be put aside in a bioinformatic context.

Clever. Choose walks that optimize some criterion (i.e. N506). This strategy
consists in finding, among all solutions of maximal weight in sol-1(G∗), one
which maximizes this global criterion. Again, this strategy induces a risk to
produce chimeric sequences, and we will not consider it any further.

Brutal. Isolate ambiguous paths by removing all non-matching edges incident
to their extremities. Remove one non-matching edge in each ambiguous cycle
to transform it into a uniform path.

6 N50 is a statistical measure on contig lengths: given a set of contigs, the N50 is defined
as the sequence length of the shortest contig at 50% of the total genome length.

6



Semi-brutal. Choose a proper set of endpoints of ambiguous path and remove
all non-matching edges incident to it. Remove one non-matching edge in each
ambiguous cycle to transform it into a uniform path.

We will focus on methods “brutal” and “semi-brutal” as the other methods may
produce chimeric sequences (See Figure 2). However, since we remove edges, the
final scaffold may not have maximum weight among all uniquely linearizable so-
lutions, and we will discuss this point. Method “brutal” can be executed in poly-
nomial time, but it may decrease the weight of the solution drastically. Method
“semi-brutal” forces us to make a choice each time we encounter an ambiguous
path, and we might want to choose “wisely”, that is, destroy ambiguous paths
in a way that optimizes a scoring. Let v be either an extremity of an ambiguous
path or a vertex of an ambiguous cycle, we sometimes say “to cut v”, by which
we mean removing all non-matching edges incident to it, and in that case v is
denoted as a cut. Thus, the following problem arises:

Semi-Brutal Cut (SBC)
Input: A solution graph (G∗,M∗, ω,m) and some k ∈ N.
Question: Is there a set X of cuts of G∗ which destroys all ambiguous

paths and the score of X is at most k?

In Section 4, we show how to simplify the problem statement. Notice that sep-
arating Semi-Brutal Cut from Scaffolding with Multiplicities is nec-
essary in order to avoid the production of a chimeric sequence, as explained in
Figure 3. Several possible scoring functions seem sensible to optimize:
Cut score. Pay one per cut: score(X) := |X|.
Path score. Pay one for each multiplicity that is cut:

score(X) :=
∑
{m(uv) | uv ∈ E(G∗) \M∗ ∧ {u, v} ∩X 6= ∅}.

Weight score. Pay the total weight of edges that are cut:
score(X) :=

∑
{m(uv) · ω(uv) | uv ∈ E(G∗) \M∗ ∧ {u, v} ∩X 6= ∅}.

Note that, from the perspective of computational complexity, the path score is
a special case of the weight score, since we can just set ω(e) = 1 for all edges e.
Thus, when saying “both scores” we refer to cut and weight score. Unfortunately,
it turns out that all these variants are NP-hard (see Section 6).

3 Unambiguous Solutions

We show in this section that the solution graph G∗ has to be free of ambiguous
paths and cycles in order to be uniquely deconstructable into walks that make up
G∗. To this end, we present a reduction rule whose application does not change
unique deconstructability (indeed, it does not change | sol-1(G∗)|).
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a b c d

e

f

g

h

ATCTT(1)

CCT(2)

TA
A(
1)

CATG(1)

26
7

9

3

1
1

2

(a) Scaffold graph. This graph illustrates
relationship between four contigs, figured
by bold edges ab, cd, ef and gh. Labels on
these edges show the sequence of the con-
tigs, and their mutliplicity (in parenthe-
sis). Edge cd, whose sequence is CCT, has
multiplicity two. Other contigs have mul-
tiplicity one. Links between contigs are la-
beled by their weight.

a b c d

e

f

g

h

ATCTT(1)

CCT(2)

TA
A(
1)

CATG(1)

26
7

9

(b) Solution graph after solving Scaf-
folding with Multiplicities. The so-
lution graph is obtained as a solution for
the MSCA instance asking for two open
walks with total weight ≥ 42. In the so-
lution graph, the contig of multiplicity
two labeled CCT constitutes an ambigu-
ous path, yielding two possible sets of se-
quences {ATCCT..CCT..TAA, CCT..CATG} and
{ATCCT..CCT..CATG, CCT..TAA}.

a b c d

e

f

g

h

ATCTT(1)

CCT(2)

TA
A(
1)

CATG(1)

26

(c) Linearization using Semi-Brutal
Cut. Brutal cut would provide a set
of four independent sequences of total
weight zero (the initial set of contigs),
whereas Semi-Brutal Cut with weight-
score provides a unique set of four se-
quences {ATCCT..CCT, CCT, TAA, CATG}, and
weight 26 (minimal weight-score 16). Af-
ter solving successively MSCA (with
σp = 2 and σc = 0) and SBC, the solution
is compatible with the initial hypothesis.
The only ambiguous path is the matching
edge cd and the cut vertex is d.

a b c d

e

f

g

h

ATCTT(1)

CCT(2)

TA
A(
1)

CATG(1)

26
3

(d) Direct linearization from the scaffold
graph. Directly searching two maximum
weighted alternating paths such that the
solution graph does not contain ambigu-
ity yields a chimeric sequence TTA..CATG
(note that the sequence of (f, e) is the
reverse complement of the sequence of
(e, f)) corresponding to (f, e, g, h).

Fig. 3: Example for a hypothetical genome consisting of the chromosomes
ATCTT..CCT..TAA and CCT..CATG: a scaffold graph (Figure 3a), a solution graph
(Figure 3b), scaffolds after solving Semi-Brutal Cut (Figure 3c), and a direct
linearization leading to chimeric solution (Figure 3d).
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Rule 1 Let (u, . . . , v) be a µ-uniform alternating
path in G∗ such that degG∗(u) = 1. Let vw be a non-
matching edge. Then, create the m(vw)-uniform al-
ternating path (u′, . . . , v′), create the edge v′w with
multiplicity m(vw), remove vw, and decrease the
multiplicity of (u, . . . , v) by m(vw).

u v
w

5
2 u v

w

3

u′ v′

2 2

We prove the correctness of this rule, that is, the input solution graph can
be uniquely deconstructed if and only if the output solution graph can.

Proof. Let G∗1 be a solution graph and G∗2 be the solution resulting of the appli-
cation of Rule 1 in G∗1. Consider the function τ mapping multisets W of walks
making up G∗1 to multisets of walks in G∗2. It works by replacing (u, . . . , v, w)
(or (w, v, . . . , u)) in m(vw) walks by (u′, . . . , v′, w) (or (w, v′, . . . , u′)). Clearly,
no two different multisets for G∗1 map to the same multiset for G∗2 and, thus,
τ is injective. To show that τ is surjective, suppose that there is a multiset W ′
of walks making up G∗2 that is not in the image of τ . Note that any walk W ′
of W ′ containing (u′, . . . , v′) also contains (u′, . . . , v′, w) (or (w, v′, . . . , u′)) as a
sub-walk, as for any edge e in (u′, . . . , v′),m(e) = m(v′w) and no walk starts
with a non-matching edge. Thus, replacing (u′, . . . , v′, w) (or (w, v′, . . . , u′)) by
(u, . . . , v, w) (or (w, v, . . . , u)) in all walks of W ′ yields a multiset W of walks
making up G∗1 and τ(W ) = W ′. Thus, τ is a bijection implying that the number
of different multisets of walks making up G∗1 is equal to the number of multisets
making up G∗2. ut

Theorem 1. Let G∗ be a solution graph. Then, G∗ is made up of a unique
multiset of alternating walks if and only if G∗ does not contain ambiguous paths
or cycles.

Proof. “⇒”: Suppose that G∗ contains an ambiguous cycle c. Let µ′ > 1 ∈ N
such that c is a µ′-uniform alternating cycle. For each k ∈ N, let ck be the closed
alternating walk which passes k times across the edges of c. The two multisets
of walks {cµ′} and {c1, cµ′−1} make up c, contradicting the uniqueness of such a
multiset. Suppose that G∗ contains an ambiguous path p = (v, w, . . . , x, y) and
letW be a multiset of walks that make upG∗. Letm ∈ N such that p is µ-uniform
and let uv and yz be non-matching edges incident to v and y, respectively, whose
respective multiplicities are strictly less than m. Thus, µ > 1. Note that no walk
W of W starts or ends with an inner edge e ∈ M∗ of p, since otherwise, e is
incident with a non-matching edge of p that is traversed strictly less than µ times,
as no walk ofW starts or ends with a non-matching edge. Thus, each time a walk
of W traverses vw, it also traverses p. Consider the graph G∗W on the vertex set
{(W1,W2) | (W1, p,W2) ∈ W} and G∗W contains an edge {(W1,W2), (W ′1,W

′
2)}

if and only if W1 = W ′1 (“blue edge”) or W2 = W ′2 (“red edge”). Note that sub-
walks can be empty and no edge is blue and red at the same time, as otherwise, its
endpoints are equal (but there are no self-loops in G∗W). Also note that the blue
edges form a transitive subgraph of G∗W and, by symmetry, so do the red edges.
Since the multiplicity of uv in G∗ is non-zero and different from that of vw, we
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know thatG∗W does not entirely consist of blue edges and, by symmetry, the same
can be said for red edges. Thus, G∗W is not a clique and, therefore, there are pairs
(W1,W2) and (W ′1,W

′
2) such that (a) W = (W1, p,W2) and W ′ = (W ′1, p,W

′
2)

are (not necessarily distinct) walks inW and (b)W1 6= W ′1 andW2 6= W ′2. IfW 6=
W ′, then the result of removing W and W ′ from W and inserting (W1, p,W

′
2)

and (W ′1, p,W2) is another multiset of walks making up G∗. Thus, W ′ = W =
(X1, p,X2, p,X3) for walks X1, X2, X3 in G∗. But then, the result of removing
W from W and inserting (X1, p,X3) and the closed walk consisting of p and X2

is another multiset of walks making up G∗. In both cases, W is not unique.
“⇐”: Let G∗ be free of ambiguous paths or cycles. We suppose that Rule 1 is

applied on G∗. If G∗ is empty, then G∗ has a unique multiset of walks making it
up. If G∗ contains a uniform alternating cycle c, then since c is not ambiguous,
c is 1-uniform. Hence, the unique multiset making up c is {c}. Otherwise, let
µ ∈ N and let p = (u, . . . , v) be a maximal, µ-uniform, alternating path in G∗ (as
p may consist of a single edge and G∗ is not empty, p exists). Note that all inner
vertices of p have degree two in G∗ and suppose without loss of generality that
degGS(u) ≤ degG∗(v). If degG∗(u) = 1 and degG∗(v) ≥ 2, then Rule 1 applies.
Thus, suppose degG∗(u) > 1 and degG∗(v) > 1. Then, by maximality of p, both
u and v are incident to a non-matching edge with multiplicity strictly less than
m and, thus, p is ambiguous, contradicting the assumption that G∗ is free of
ambiguous paths. Hence, degG∗(u) = 1 and degG∗(v) = 1, and p is isolated. The
multiset consisting of µ (u, . . . , v)-walks is the unique multiset making up p. ut

4 Reduction rules

In this section, we present a set of reduction rules that simplify instances of
Semi-Brutal Cut. First, let us deal with some trivial cases to remove them
from consideration.

Rule 2 Let c be an isolated, µ-uniform cycle in (G∗,M∗, ω,m). If µ = 1, then
remove c. Otherwise, cut a vertex incident to the lightest non-matching edge of c.

Rule 3 Remove all isolated, uniform, alternating paths from (G∗,M∗, ω,m).

Rule 4 Let uv ∈M∗ be a matching edge that does not occur in ambiguous paths
and let u and v have degree at least two. Then, remove uv, add new vertices u′
and v′ and add the matching edges uv′ and vu′ with multiplicity m(uv).

Correctness of Rule 4 follows immediately from the fact that no ambiguous path
is changed, created or destroyed by applying the rule. Furthermore, since both
u′ and v′ have degree one in the result G′ of applying the rule, all solutions X for
G′ avoid them and, since all scoring functions only depend on the non-matching
edges incident to the solution, all solutions maintain their scores.

10



Rule 5 Let µ ∈ N and let p = (u, . . . , v) be a
µ-uniform, alternating path in G∗. If uv is a non-
matching edge of G∗, then create two matching edges
u1u2 and v1v2 with multiplicity m(uv), add the non-
matching edges uu1 and vv1 with weight 0 and mul-
tiplicity m(uv), and remove uv (and, for the weight
score, decrease k by ω(uv)). In any case, remove all
inner vertices of p and create a matching edge uv
with multiplicity µ.

u x y v

3 3 3

1

u2 u1 v1 v2

1 1

u v

31 1

Proof (Correctness of Rule 5). First, since no inner vertex of p can be cut,
replacing p by a single matching edge does not change the score (cut- or weight-
) of a solution. It remains to show correctness for the case that uv exists in G∗.
Then m(uv) < µ since the input graph does not contain isolated cycles and,
thus, p is ambiguous. Thus, any solution X for G∗ contains u or v. In the output
graph, p is still ambiguous and either u1u or v1v must be removed in any solution.
Further, u1 and v1 can be replaced by u and v, respectively, in any solution for
the output graph. Thus, X is a solution in the input graph if and only if it is a
solution in the output graph. X has the same cut score in both input and output
graph. Under the weight score, score(X) decreases by ω(uv). ut

Finally, note that all reduction rules can be applied in linear time. Further, it
turns out that all matching edges of G∗ either occur in ambiguous paths or are
incident with a degree-one vertex. In the latter case, we call the matching edge
clean.

Proposition 1. Let (G∗,M∗, ω,m) be reduced with respect to the presented re-
duction rules. Then, it is free of ambiguous paths if and only if all its edges are
clean.

Proof. “⇒”: To show the contraposition, let uv be an edge that is not clean,
that is, u has a neighbor x 6= v and v has a neighbor r 6= u. If m(ux),m(vr) <
m(uv), then uv is an ambiguous path, proving the claim. Otherwise, since
m(vx),m(ur) ≤ m(uv) by definition of solution graph, m(vx) = m(uv) or
m(ur) = m(uv). By symmetry, suppose that m(vx) = m(uv) and let y :=
M∗(x). By definition of solution graph,m(xy) ≥ m(vx). Ifm(xy) = m(vx), then
p = (y, x, v, u) is an m(uv)-uniform, alternating path in G∗, contradicting re-
ducedness with respect to Rule 5. Thus, suppose m(xy) > m(vx). But then, any
ambiguous path containing uv must end at v and, since v is not incident to an
edge of multiplicity strictly less than m(uv), we know that uv is not contained
in any ambiguous paths, contradicting reducedness with respect to Rule 4.

“⇐”: To show the contraposition, let p = (u, . . . , v) be an ambiguous path in
G∗ and note that both u and v are incident to a non-matching edge. But then,
clearly, uM∗(u) cannot be clean in G∗. ut

Given Proposition 1, the multiplicity function is no longer important since the
presence of a vertex of degree one in a matching edge suffices to determine if the
matching edge is ambiguous. Semi-Brutal Cut can be now described as follows.

11



Semi-Brutal Cut (SBC)
Input: A solution graph (G∗,M∗, ω) and some k ∈ N.
Question: Is there a set X of cuts of G∗ which makes all the matching

edge clean and the score of X is at most k?

5 Polynomial cases

In the following, we consider special solution graphs for which Semi-Brutal
Cut can be solved in polynomial time for all of the presented scoring functions.
Recall that the goal is to clean all matching edges in G∗ (see Proposition 1).

5.1 Sparse graphs

We first show that SBC is polynomial for both scores into some classes of sparse
graphs. First, we consider the class of trees. We suppose that the tree G∗ is
rooted in an extremity of an ambiguous edge. Under the weight score, we can
thus formulate the following dynamic program.

Let x be a vertex, Tx is the subgraph induced by the subtree rooted at x
and M∗(x). For any vertex x, a table entry c(x) represents the minimum score
of a solution below x in which x has degree one in Tx and c̄(x) represents the
minimum score of a solution below x in which M∗(x) has degree one in Tx. For
convenience, we set ω(e) = 0 for all matching edge e. If x is a leaf of G∗ then,
clearly, c(x) = c̄(x) = 0. For any non-leaf x, we set

c(x) =
∑

y∈Children(x)

min(c̄(y), c(y)) + ω(xy)

c̄(x) =
∑

y∈Children(x)

{
c(y) if y = M∗(x)

min(c̄(y), c(y) + ω(xy)) otherwise

Lemma 1. Those costs c(x) and c̄(x) represent respectively the minimum weight
score of a semi-brutal cut in the subtree rooted at x when x or M∗(x) has degree
one in Tx.

Notice that it may hapend that both extremities of a matching edge have degree
one in an optimal solution, and in this case, we have c(x) = c̄(x).

Proof. We prove it by induction on the subtree’s height. Let x be any vertex in
the tree. Let h(x) denote the height of the subtree rooted at x. When h(x) = 0,
x is a leaf and a solution of Semi-Brutal Cut in Tx consists in cutting nothing,
thus the cost is zero. Suppose now that for any vertex x′ with height h(x′) < h(x),
c(x′) and c̄(x′) satisfy the lemma’s property. We prove that:

1. any solution X of Semi-Brutal Cut in Tx has score(X) ≥ c(x) if x has
degree one in Tx after applying X, or score(X) ≥ c̄(x) if M∗(x) has degree
one in Tx, and

12



2. there exists a solution Sx reaching the costs c(x) and c̄(x).

1. Let X be a solution of Semi-Brutal Cut in Tx. We denote by Xy the
restriction of X to Ty, for any children y of x. Xy is trivially a solution
of Semi-Brutal Cut in Ty, whose height is strictly less than h(x). By
induction hypothesis, score(Xy) ≥ c(y) if all non-matching edges incident
to y in Ty are removed in Xy, or score(Xy) ≥ c̄(y) otherwise.
– Suppose that all non-matching edges incident to x in Tx are removed in
X. Thus, the weight score of X contains the total weight of these non-
matching edges plus the score of any subsolution Xy:

score(X) =
∑

y∈Children(x)}

score(Xy) + ω(xy)

Using the previous equation and induction hypothesis, we have score(X) ≥
c(x).

– Suppose that all non-matching edges incident to M∗(x) in Tx are re-
moved after applying X. For any child y, the weight score of X contains
the score of Xy plus ω(xy) if y belongs to Xy:

score(X) =
∑

y∈Children(x)

{
score(Xy) + ω(xy) if y ∈ Xy

score(Xy) otherwise

We distinguish M∗(x) amongst children of x.
• If M∗(x) is in Children(x), then necessarily all incident edges to

it has to be removed. In this case, score(XM∗(x)) ≥ c(M∗(x)), by
induction hypothesis.

• For any other children y of x, either y has degree one inXy, yielding a
cost c(y)+ω(xy), orM∗(y) has degree one inXy, yielding a cost c̄(y).

Hence, using the previous equation and induction hypothesis, we have
score(X) ≥ c̄(x).

2. Now we show that is possible to build two solutions Xx and X̄x of Semi-
Brutal Cut in Tx with weight c(x) and c̄(x), respectively. Considering a
child y of x, we denote by Xy a solution of Semi-Brutal Cut in Ty, where
all non-matching edge incident to y in Ty are remoed, with weight score c(y),
and X̄y a solution of Semi-Brutal Cut in Ty, where all non-matching edge
incident to M∗(y) are removed in Ty, with weight score c̄(y). Such solutions
do exist, by induction hypothesis.
– We define the set Xx by:

Xx = {x} ∪
⋃

y∈Children(x)

{
Xy if c(y) < c̄(y)

X̄y otherwise.

Since Xy and X̄y are solutions of Semi-Brutal Cut in Ty, they clean
all ambiguous edges below y. Removing all non-matching edges incident
to x cleans the ambiguous edge xM∗(x) in Tx. Thus, Xx is a solution of
Semi-Brutal Cut in Tx, with weight score c(x).

13
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7

Fig. 4: Example of an application of the dynamic programming algorithm with
matching edges (bold, gray if already clean) and weights (numbers in boxes).
Left: the input solution graph G∗.Middle: costs (c̄, c) after the bottom-up step.
Bold figures indicate the backtracking path. For example, the minimal cost at
the root is a non-cutting cost 11, which comes from the cutting cost 11 of its
matching-child and non-cutting costs or cutting costs of non-matching children.
Right: resulting solution graph after the backtracking step, which is made up
of six paths.

– We define the set X̄x by:

X̄x =
⋃

y∈Children(x)

{
Xy if c(y) + ω(xy) ≤ c̄(y) or y = M∗(x)

X̄y otherwise

Since the Xy and X̄y are solutions of Semi-Brutal Cut in Ty, they
clean all ambiguous edges below y. IfM∗(x) is below x, a solution remov-
ing all non-matching edges incident to M∗(x) in TM∗(x) cleans xM∗(x).
For any other children of x, either y belongs to Xx or M∗(y) has de-
gree one, thus Xx cleans yM∗(y) in Tx. Thus X̄x is a solution of Semi-
Brutal Cut in Tx, with weight score c̄.

ut

Corollary 1. Using a bottom-up step computing these costs, setting the score
of the root as the minimum between c(r) and c̄(r) and backtracking those costs
to decide which vertices should be cut leads to an optimal solution in linear time
and space.

An example of the application of this dynamic program can be found in Figure 4.
While presented here for the weight score, we remark that this dynamic program
can be modified to work for the cut score. For that we add a third table entry
representing the fact x is not cut and all neighbors of x except M∗(x) are in the
solution. Hence, the formulation of the dynamic program is the following with
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n(x) = 0 if x is a leaf of G∗.

c(x) =
∑

y∈Children(x)

min(c̄(y), c(y), n(y)) + 1

c̄(x) =
∑

y∈Children(x)

{
min(c(y), n(y)) if y = M∗(x)

min(c̄(y), c(y)) otherwise

n(x) =
∑

y∈Children(x)

{
c̄(y) if y = M∗(x)

c(y) otherwise

Since we can easily adapt the proof of Lemma 1 to the cut score formulation,
we let the reader check the correctness of this dynamic program.

Theorem 2. On trees, Semi-Brutal Cut can be solved in linear time and
space for both scoring functions.

As a side note, we remark that Semi-Brutal Cut can be solved in linear time
if ∆(G∗) = 2. To this end, we just need to check the two possibilities of removing
every second non-matching edge in every cycle. Since each cycle can be worked
on individually and independently, this can be done in linear time. What remains
can be solved in linear time with Theorem 2.

Theorem 3. Semi-Brutal Cut can be solved in linear time on a collection of
paths and cycles (∆(G∗) = 2) under both scores.

5.2 Dense graphs

In some classes of dense graphs, we can show that SBC is polynomial under
the cut score. Concerning the weight score, Corollary 2 states that SBC is NP-
complete for most dense classes (Section 6.1). For the following proofs, note that
any graph can be solved with |M∗| cuts by simply cutting an arbitrary extremity
of all matching edges.

Theorem 4. Semi-Brutal Cut can be solved in linear time for cut score on
complete bipartite graphs.

Proof. Note that, if G∗ is bipartite, both cells of the partition have equal size
since M∗ is a bijection between the two. Let Kn,n be a complete bipartite graph
(with n := |M∗| and suppose that n ≥ 2 as, otherwise, matching edges are
already clean. Then, it is sufficient to cut all but one vertex of any of the two
cells of the bipartition to turn all matching edges clean. To show that n − 1
cuts are also necessary, assume that there is a solution X with cut score n− 2.
Since there are n matching edges in G∗, there are two matching edges uv and
xy that do not intersect X. Since G∗ is complete bipartite, (u, v, x, y) forms an
alternating cycle in G∗, so neither uv nor xy are clean. ut

Theorem 5. Semi-Brutal Cut can be solved in linear time under cut score
on complete graphs.
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Proof. If any solution does not contain a cut in a matching edge uv, then either
all neighbors of u or all neighbors v are cut, which implies a solution with a cut
score of |V (G∗)| − 2 > |M∗|. Hence, |M∗| cuts are necessary. ut

Theorem 6. Semi-Brutal Cut can be solved in linear time under cut score
on co-bipartite7 graphs.

Proof. In this proof, suppose that |M∗| > 2 as, otherwise, the claim trivially
holds. Let (V1, V2) denote a bipartition of the vertices of G∗ into two cliques.
First, assume that (G∗,M∗, ω) has a solution X with |X| = |M∗|−2 cuts. Then,
there are matching edges uv and xy that avoid X. If either V1 or V2 intersects
uvxy in at least three vertices, say u, v, and x, then uv is not clean. Thus, uvxy
intersects both cells in exactly two vertices. If one cell contains ux and the other
vy, then uvxy induces a cycle, and neither uv nor xy are clean. Thus, without
loss of generality, let uv ⊆ V1 and xy ⊆ V2. But then, all other vertices have to
be cut, implying |X| ≥ 2(|M∗| − 2) > |M∗| − 2.

Since we know that no solutionX with |X| ≤ |M∗|−2 exists and a solutionX
with |X| = |M∗| is trivial, we just have to check if G∗ contains a matching edge
uv such that we can cut the vertices of N(u) − v instead of cutting u or v. We
show that G∗ can be solved with |M∗|− 1 cuts if and only if there is a matching
edge uv with |N(u)| ≤ |M∗| and there are no matching edges xy ⊆ N(u). Since
this can be checked in linear time, the theorem follows.

“⇒”: If there is a solution X for G∗ with |X| = |M∗| − 1, then there is a
matching edge uv avoiding X and all other matching edges intersect X in exactly
one extremity. By symmetry, let N(u)− v ⊆ X, implying |N(u)| ≤ |M∗| and, as
each matching edge except uv contains only a single cut, no matching edge xy
is included in X and, thus, in N(u).

“⇐”: Let Q be a set containing an arbitrary extremity of each xy ∈M∗ with
xy ∩ N(u) = ∅ and let X := Q ∪ N(u) − v. Then, |Q| = |M∗| − |N(u)| and
|X| = |Q|+|N(u)|−1 = |M∗|−1. Towards a contradiction, assume thatX is not a
solution, that is, some matching edge xy ∈M∗ is not clean. Then, xy = uv since
all other matching edges contain a cut. But uv is clean since N(u)− v ⊆ X. ut

6 Computational Hardness

6.1 Hardness in Sparse Graphs

While Semi-Brutal Cut is known to be NP-complete for both cut and weight
score [36], we extend the cut-score hardness to planar, bipartite, subcubic graphs.

Theorem 7. Semi-Brutal Cut is NP-complete under both scores, even if the
graph is planar, bipartite and subcubic.

7 A graph is co-bipartite if its vertices can be partitioned into two cliques.
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Fig. 5: Matching edges are bold. Left: variable gadget cxi
linked to the clause

gadgets q1, q3 and qm, m /∈ {1, 3}, where xi occurs positively in C1 and C3 and
negatively in Cm. Right: clause gadget corresponding to the clause C` =(x1 ∨
x2 ∨ x3).

To this end, we reduce the classic NP-complete 3-SAT [13] problem to SBC.

3-Satisfiability (3-SAT)
Input: A boolean formula ϕ in conjunctive normal form where each

clause contains exactly three literals.
Question: Is there a satisfying assignment β for ϕ?

Construction 1 Let ϕ be an instance of 3-SAT with n variables x1, . . . , xn
and m clauses C1, . . . , Cm. For each variable xi, let ψi be the list of indices `
such that C` contains xi and |ψi| is the number of occurrences of xi in ϕ. We
construct the following solution graph (G∗,M∗, ω) with a proper 2-coloring of
G∗ (see Figure 5).
– For each xi, we construct a cycle ci on the vertex set

⋃
j≤|ψi|{u

i
j , u

i
j , v

i
j , v

i
j}

such that, for all j ≤ |ψi|,
• uijuij , vijvij ∈M∗, and
• the vertices uij and vij are blue and the vertices uij and vij are red.

– For each C`, we construct an alternating 6-cycle q` on the vertex set
⋃
j≤3{r`j , b`j}

such that, for all j ≤ 3, {r`j , b`j} ∈M∗, and r`j is red and b`j is blue.
– For each clause C` and each j ≤ 3, let xi be the jth literal of C` and let t be

such that C` is the tth clause in which xi occurs. Then,
• create two singles matching edges aita

i
t and citc

i
t, where ait and cit are blue

and ait and c
i
t are red,

• if xi is a positive literal, introduce the edges r`juit, b`ja
i
t and u

i
tc
i
t, and

• if xi is a negative literal, introduce the edges b`ju
i
t, r`ja`j and uitc

i
t.

– Each non-matching edge has weight one, except the edges uitcit and uitc
i
t which

have weight zero.

Note that each matching edge except the a`ia
`
i and citc

i
t is ambiguous. Clearly,

Construction 1 can be carried out in polynomial time. Further, the resulting
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graph G∗ is bipartite and ∆(G∗) = 3. We first use Construction 1 on a restricted
subcase of 3-SAT defined below.

Monotone 3-Satisfiability (Monotone 3-SAT)
Input: A boolean formula ϕ in conjunctive normal form where each

clause contains exactly three positive literals or three negative liter-
als.

Question: Is there a satisfying assignment β for ϕ?

In order to prove Theorem 7, we use the following properties of Construction 1,
yielding a “canonical” set of cuts, if the input formula is monotone.

Lemma 2. Let X ⊆ V (G∗) be a set of cuts cleaning all ambiguous edges in
(G∗,M∗, ω), let ci be a variable gadget and let q` be a clause gadget. Let s = 1
under the cut score and s = 2 under the weight score. We suppose that we start
by cutting the vertices in the variable gadgets, and then we cut the vertices in the
clause gadgets. There is a set X ′ of cuts with score(X ′) ≤ score(X) that also
cleans all ambiguous edges and
(a) score(X ′ ∩ V (ci)) ≥ s|ψi| and score(X ′ ∩ V (q`)) ≥ 2,
(b) if score(X ′ ∩ V (ci)) = s|ψi|, then X ′ ∩ V (ci) is either

⋃
j≤|ψi|{u

i
j} or⋃

j≤|ψi|{u
i
j} (in X ′, cuts are only on positive sides or only on negative sides),

(c) score(X ′ ∩V (q`)) = 2 if and only if X ′ contains a vertex adjacent to q` (the
score is two in a clause gadget iff it has been isolated by a cut in an adjacent
variable gadget, meaning that the variable satisfies the clause).

Proof. (a): For each j ≤ |ψi|, we need to remove two edges to clean the ambigu-
ous edges {uij , uij}, which can be done only by cutting at least one vertex among
{vij−1, uij , uij , vij}. Thus, we need to remove at least 2|ψi| edges with at least |ψi|
cuts, that is score(X ′ ∩ V (ci)) ≥ s|ψj |. In the clause q`, we need to remove at
least two edges in the inner cycles, which can be done by cutting at least two
vertices. Thus, we have score(X ′ ∩ V (q`)) ≥ 2.
(b): Note that cutting all vertices in either

⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j} suffices to

remove all ambiguous path in ci. In that case, we have score(X ′∩V (ci)) = s|ψi|.
If X contains some uij and does not contain uij+1 for some j, then we need a
extra cut to linearize {vij , vij} (and analogously for uij) which will increase the
score by one. Hence, if |X ∩ V (ci)| = s|ψi|, we can suppose that X contains ei-
ther

⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j}. If X contains a cut in some vij or some vij , then

since the edge {vij , vij} is already clean by a cut in {uij , uij+1}, we can can re-
move the cut in X ′.
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b`2

r`3
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Fig. 6: A cut of size two in q` when
one incident edge to q` is cut.
Dashed edges and vertices are part
of the cut.

(c): We need to remove at least two non-zero
weighted edges from the inner cycle of C`.
Suppose that all literals of C` occurs posi-
tively. Suppose by symmetry that {b`1, b`2} ∈
X ′. If the leaving edge incident to r`3 is
cut, then all ambiguous edges of C` are de-
stroyed. Otherwise, we need to remove one
more non-zero weighted edge from q` which
must add another cut (see Figure 6). ut

We are now able to prove Theorem 7.

Proof. of Theorem 7
Recall that Monotone 3-SAT remains NP-complete if the input formula

is planar [2] and, in this case, since each gadget is planar and the edges between
the clause gadget and the variable gadget can be placed in any order on the
gadgets, the graph produced by Construction 1 can also be assumed to be planar.
Since, clearly, Semi-Brutal Cut ∈ NP, it remains to show that Construction 1
is correct, that is ϕ is satisfiable if and only if the solution graph (G∗,M∗, ω)
resulting from Construction 1 can be linearized with a score of (3s+ 2)m.

“⇒”: Let β be a satisfying assignment for ϕ. Then, for each variable xi and
for all j ≤ |ψi|, we cut the vertices uij if β(xi) = 1 and the vertices uij otherwise.
As β is satisfying, this removes at least one edge adjacent to each clause gadget.
Thus, according to Lemma 2(c), we can clean the matching edges in each clause
gadget qj with a score of two. Since we also cut either the vertices uij or the
vertices uij for each vertex gadget, we conclude that all matching edges of the
result are clean, and we have a score of 2m+

∑
i s|ψi| = (2 + 3s)m.

“⇐”: Let X ⊆ V be the set of vertices such that cutting each vertex of
X destroys all ambiguous paths in (G∗,M∗, ω) and score(X) = (3s + 2)m.
According to Lemma 2(a), each variable gadget has a score of s|ψi| and each
clause gadget has a score of two. Moreover, by Lemma 2(b), for each variable
gadget ci, we can suppose that X ∩ V (ci) equals

⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j}. In

the former case, we set β(xi) = 1 and, in the latter, we set β(xi) = 0. To show
that β satisfies ϕ, assume that there is a clause C` that is not satisfied by β.
Then, none of the edges incident to q` is cut which, by Lemma 2(c), contradicts
the fact that the score of q` is equal to two. ut

6.2 Hardness in Dense Graphs

We can see that if we add some zero weighted non-matching edges on a solution
graph, it does not change the weight score of an optimal solution. This observa-
tion leads to the following result.

Corollary 2. Let G be a class of graphs such that, for any planar, subcubic,
bipartite graph G, G contains a supergraph of G. Then, Semi-Brutal Cut is
NP-complete on G under the weight score.
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Concerning the cut score, in some classes of dense graphs, SBC can be solved in
polynomial time (see Section 5.2). However, we show in this part an example of a
class of dense graphs where computing an optimal solution for SBC is NP-hard
under the cut score. A graph G is a split graph if we can partition its vertices
into two sets I and C inducing an independent set and a clique, respectively. We
show that SBC is hard to compute in split graphs by doing a reduction from the
well-known Vertex Cover problem, defined below.

Vertex Cover (VC)
Input: An undirected graph G and a number k ∈ N.
Question: Is there a V ′ ⊆ V (G) with |V ′| ≤ k intersecting all e ∈

E(G)?

Construction 2 Let G be an instance of Vertex Cover, we suppose that G
is connected. We construct the following solution graph G∗ as follows:
1. for each vertex v of G, construct a matching edge v1v2,
2. for each edge uv of G, add the non-matching edges v1u2 and u1v2, and
3. for each pair of vertices (u, v), add the edge u1v1.
The set of v1 (resp. v2) vertices form a clique (resp. is independent). Thus, G∗
is a split graph. Note that all matching edges are ambiguous.

a b

c d

a2

a1

b2

b1

c2 c1

d2

d1

Fig. 7: Construction 2 transforms left instance into right instance, where gray
vertices form an independent set and white vertices form a clique.

Theorem 8. Semi-Brutal Cut is NP-hard under the cut score on split graphs.

Proof. We show that G has a size-k vertex cover if and only if using k cuts
suffices to clean all matching edges in G∗.

“⇒”: Let V ′ be a vertex cover of G. For each vertex v ∈ V ′, cut the vertex
v1 in G∗. Suppose that there is a matching edge v1v2 that is not clean. There is
an edge v2u1 that is not removed by a cut. Then, neither of the two vertices u
and v belong to V ′ and the edge uv is not covered in G, contradicting the fact
that V ′ is a vertex cover.

“⇐”: Let X be a solution of SBC under the cut score for G∗. For each
v ∈ V (G), suppose that v2 6∈ X, since otherwise, X ′ = (X \{v2})∪{v1} is also a
solution and |X ′| ≤ |X|. For each vertex v1 ∈ X, add the vertex v in the vertex
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cover ofG. If there is an edge uv that is not covered, then {u1, u2, v1, v2}∪X = ∅,
and since (u1, u2, v1, v2) is a cycle, the matching edges u1u2 and v1v2 are not
clean. ut

Recall that Vertex Cover cannot be solved in 2o(n) time unless ETH8 fails
[17]. Since Construction 2 is linear on vertices and edges, we obtain the following
result.

Corollary 3. There is no algorithm solving Semi-Brutal Cut with cut score
in 2o(n) in split graphs.

7 Non-Approximability

In this section, we prove approximation lower bounds for Semi-Brutal Cut.
First recall the definition of L-reduction between two hard problems Π and
Π ′, described by Papadimitriou and Yannakakis [28]. This reduction consists of
polynomial-time computable functions f and g such that, for each instance x of
Π, f(x) is an instance of Π ′ and for each feasible solution y′ for f(x), g(y′) is
a feasible solution for x. Moreover, let Π ′′ ∈ {Π,Π ′}, we denote by OPTΠ′′ the
value of an optimal solution of Π ′′ and by valΠ′′(y′′) the value of a solution y′′
of an instance of Π ′′. There are constants α, β > 0 such that:
1. OPTΠ′(f(x)) ≤ αOPTΠ(x) and
2. |valΠ(g(y′))−OPTΠ(x)| ≤ β|valΠ′(y′)−OPTΠ′(f(x))|.

7.1 Reduction from Max 3-SAT(4)

In the following, we present an L-reduction from the classical problem Max
3-SAT(4) to Semi-Brutal Cut under the cut score.

Max 3-SAT(4)
Input: A boolean formula ϕ in exact 3-CNF where every variable occurs

in four clauses.
Task: Find an assignment that satisfies a maximum number of clauses.

Our goal is to reuse Construction 1 to reduce Max 3-SAT(4), such that
each unsatisfied clause in φ causes an additional cut in G∗. Indeed, if there is
no optimal solution with a score of 5m in G∗ (that is, if ϕ can not be satisfied),
then we can spend an “extra” cut per unsatisfied clause to solve G∗. The inverse,
however, does not hold if there is a variable xi that occurs two times positively
and two times negatively. Indeed, by cutting five vertices in Ci, we may be able
to satisfy the four clauses where xi occurs (see Figure 8). Thus, in the following,
we modify Construction 1 slightly.

8 The (widely believed) “Exponential Time Hypothesis” (ETH) states that the boolean
satisfyability problem (SAT) cannot be solved in 2o(n) time, where n is the number
of variables of the input formula.
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Fig. 8: Matching edges are bold. Example of variable gadget ri which occurs
two times positively and two times negatively in Construction 1 (Left) and
Construction 3 (Right). The cut-vertices are dashed. We can see that we need to
add a cut in Construction 3 in order to remove all the edges leaving the gadget.

Construction 3 We reuse Construction 1 and change some variable gadgets.
Let xi be a variable which two times positively and two times negatively. Before
building the gadget ci, we modify the clauses order in ψi by interleaving positive
and negative clauses. Other variable gadgets remain unchanged.

The resulting graph G∗ is bipartite and subcubic. An example of a variable
gadget defined in Construction 3 is given in Figure 8. Notice that, if we do not
take in account the weight on the edges, all clauses are symmetric. Thus, the
properties (a) and (c) of Lemma 2 hold. We can add the following property:

Lemma 3. Let X ⊆ V (G∗) be an optimal set of cuts that cleans all matching
edges in (G∗,M∗, ω), let ci be a variable gadget. There is a set X ′ of cuts with
score(X ′) = score(X) that also clean all matching edges, and X ′∩V (ci) is either⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j}.

Proof. Recall that X covers the edges of M∗ and, by Lemma 2(a), score(X ∩
V (ci)) ≥ |ψi|. By symmetry, suppose that xi occurs mostly positively in ϕ. If xi
occurs four times positively, then replacing X∩V (ci) by

⋃
j≤|ψi|{u

i
j} in X yields

a solution X ′ as sought. Thus, suppose that xi occurs three times positively. Let
C` be the clause where xi occurs negatively and let z denote the neighbor of uij
in c`. If score(X ∩ V (ci)) > |ψi|, then replacing X ∩ ci by

⋃
j≤|ψi|{u

i
j} plus z

yields a solution X ′ as sought. Finally, if score(X∩V (ci)) = |ψi|, then X already
corresponds to X ′ as, otherwise, some ambiguous edge vijv

i
j is not clean.

Suppose now that xi occurs two times positively and two times negatively.
Note that one cut in ri′ is not enough to clean all ambiguous edges and cutting
either the vertices {ui′1 , ui

′

2 } or the vertices {ui
′

1 , u
i′

2 } cleans all matching edges in
the variable gadget. Further if X cuts {vi′1 , vi

′

2 } or {vi
′

1 , v
i′

2 }, then we can instead
cut {ui′1 , ui

′

2 } or {ui
′

1 , u
i′

2 }, respectively, without creating ambiguous edges. Sup-
pose without loss of generality that {ui′1 , ui

′

2 } ⊆ X. Suppose further that there is
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some u ∈ X ∩V (ri′)\{ui
′

1 , u
i′

2 }. Then, there is some clause gadget qn linked to u
since, otherwise,X\{u} is also a solution, contradicting optimality ofX. Since all
matching edges of ri′ are already clean, the cut can only remove the edge between
u and qn. Let z be the neighbor of u in qn. InX, the two non-matching edges inci-
dent to z must be removed, otherwise it contradicts the optimality ofX. Thus, we
can replace u by its neighbor in qn without changing the score of X. By swapping
the one or two cuts in X∩V (ri′)\{ui

′

1 , u
i′

2 }, we obtain X ′∩V (rj) = {ui′1 , ui
′

2 }. ut

Theorem 9. It is NP-hard to approximate Semi-Brutal Cut to any factor
better than 1 + 7(ε4−1)

41·ε4 under the cut score, even on subcubic bipartite graphs.

Proof. First, note that it is NP-hard to approximate Max 3-SAT(4) to any
factor ε4 ≤ 1.00052, unless P = NP [4]. Recall that in an optimal solution of
Max 3-SAT(4), at least 7/8 of the clauses are satisfied [15], yielding

OPT (ϕ) ≥ 7m/8. (1)

To show that Construction 3 constitutes an L-reduction, let f be a function
transforming any instance ϕ of Max 3-SAT(4) into an instance I of Semi-
Brutal Cut as above, let X be a feasible solution for I corresponding to the
properties of Lemma 2(a), Lemma 2(c) and Lemma 3, and let g be the function
that transforms X into an assignment as constructed in the proof of Theorem 7:
each variable xi is set to true if X cuts uij for all j, and false, otherwise. By
Lemma 3, for each clause gadget q` without an adjacent vertex in X, the “extra”
cut occurs in q`. Hence, we can linearize I with one more cut for each of the at
most m/8 unsatisfied clauses in ϕ. Thus,

OPT (I) ≤ 5m+ m/8
(1)
≤ 41/7OPT (ϕ) (2)

An important obstacle to overcome (and reason why Construction 1 is not
enough for Theorem 9) is that an approximate solution to SBC might spend
extra cuts in variable gadgets in order to “change the assignment” of a variable
xi mid-way. However, since each variable occurs at most four times, this only
happens for variables that occur two times positively and two times negatively.
Now, with our modification to Construction 1 and by Lemma 3, we can observe
that each extra cut occurs in an unsatisfied clause gadget. Thus, the number of
satisfied clauses of ϕ and the clause gadgets in which we have to spend extra
cuts add up to m. Hence,

6m = val(g(X)) + val(X) = OPT (I) +OPT (ϕ) (3)

Thus, we constructed an L-reduction with α = 41/7, β = 1 and, since ε4 ·
val(g(X)) ≤ OPT (ϕ), we conclude

val(X)
(3)
= OPT (I) +OPT (ϕ)− val(g(X))

≥ OPT (I) + (1− 1/ε4) ·OPT (I)

(2)
≥ (1 +

7(ε4 − 1)

41 · ε4
) ·OPT (I) ut
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Fig. 9: The graph produced by Construction 4 and on input ϕ = (x1 ∨ x2) ∧
(¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2). Matching edges are bold and all non-matching edges
have weight one.

Note that, by losing the bipartition property, we can use Construction 3 to show
that it is hard to approximate SBC on subcubic graphs to any factor better than
(7(ε4−1))/(65·ε4)) ≈ 1.000056 using [31]. However, we show in the next subsection
how to obtain a better lower bound under the weight score for such graphs.

7.2 Reduction from MAX 2-SAT

We now present an L-reductions from the classical problem MAX 2-SAT to
Semi-Brutal Cut under both scores.

MAX 2-SAT (Max 2-SAT)
Input: A boolean formula ϕ in conjunctive normal form where each

clause Ci contains exactly two variables.
Question: Find an assignment maximizing the number of satisfied clauses.

Let ϕ be an instance of MAX 2-SAT with n variables x1, . . . , xn and m
clauses C1, . . . , Cm. For each variable xi, let ψi be the list of indices ` such that
C` contains xi. Let (G∗,M∗, ω) be a solution graph and u be a vertex of G∗, we
denote by ω(u) the sum of the weight of the non-matching edges incident to u.

Construction 4 Let ϕ be an instance of MAX 2-SAT. We construct the fol-
lowing solution graph (G∗,M∗, ω).
1. For each xi, construct a matching edge uiui ( variable edge).
2. For each clause Cj, construct a matching edge v1j v2j ( clause edge).
3. For each clause Cj, let xk be the tth variable of the clause. If xk occurs

positively in the clause, then add the edge vtjuk and ω(vtjuk) = 1. Otherwise,
add the edge vtjuk with ω(vtjuk) = 1.

4. Finally, for each variable matching edge uiui, add a matching edge si1si2. If
ω(ui) < ω(ui), add an edge si1u1 with ω(si1u1) = ω(ui) − ω(ui). If ω(ui) >
ω(ui), add an edge si1u1 with ω(si1u1) = ω(ui)− ω(ui).

We can suppose that no variable occurs exclusively positively or exclusively
negatively in the formula, thus each matching edge except the si1si2 is ambiguous.
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An example of a graph produced by Construction 4 is given in Figure 9. A
normalized solution is a solution that contains exactly one cut per ambiguous
edge. The following lemma shows that we can transform any solution into a
normalized solution with the same weight score.

Lemma 4. Let X be a solution of a solution graph (G∗,M∗, ω). There is a
normalized solution X ′ with score(X ′) ≤ score(X) under the weight score.

Proof. Since X is a solution of SBC, after removing all non-matching edges
incident to a cut, all ambiguous edges are clean. We construct X ′ by choosing
one degree-one vertex per ambiguous edge. Clearly, X ′ is a solution and since
each edge removed by X ′ is also removed by X, we have score(X ′) ≤ score(X).

In this, we suppose that each solution is normalized under the weight score. If a
cut in a clause edge v1j v2j is adjacent to a cut in a variable edge, then we say that
the clause edge v1j v2j is satisfied. If no extremity of a clause edge v1j v2j is adjacent
to a cut in a variable edge, we say that the clause edge v1j v2j is unsatisfied.

Definition 2. Let ϕ be a MAX 2-SAT instance, let (G∗,M∗, ω) be the graph
produced by Construction 4, and let X be a normalized solution for it. An as-
signment S for ϕ corresponds to X if, for all matching edges uiui, we have
ui ∈ X ⇒ S(xi) = 1 and ui ∈ X ⇒ S(xi) = 0.

Lemma 5. Let X be a normalized solution for (G∗,M∗, ω), produced by Con-
struction 4 and let S be its corresponding assignment. Let m′ be the number of
unsatisfied clauses in S. There is a solution X ′ such that score(X ′) = 2m+m′ ≤
score(X) and S is the corresponding assignment of X ′.

Proof. Suppose there is a clause edge v1j v2j that is neither satisfied nor unsatisfied.
Thus, there is a cut vertex adjacent to v1j v2j that is not adjacent to the cut vertex
of v1j v2j . Suppose that the cut vertex in v1j v2j is v1j . We can takeX ′ = X∪{v2j }−v1j .
Since the edge incident to v2j is already removed, we have score(X ′) ≤ score(X).
S is the corresponding assignment of X ′ since we do not change the cuts in the
variable edges. Hence, we can suppose that X ′ does not contain any clause edge
that is neither satisfied nor unsatisfied.

Let uiui be a variable edge. We have ω(ui) = ω(ui) = |ψi|. Thus, the sum of
the weight removed by the cuts in the variable edges is equal to

∑
i≤n |ψi| = 2m.

Let v1j v2j be a clause edge. If v1j v2j is satisfied, then its cut does not increase the
weight of X ′ since the non-matching edge incident to this cut is already removed
by the cut in the variable edge. If v1j v2j is unsatisfied, then the cut in {v1j , v2j }
increases by one the weight of X ′. Since the sum of weight removed by the cuts
in the unsatisfied clause-edges correspond to the number of unsatisfied clause,
we have score(X ′) = 2m+m′. ut

Theorem 10. Semi-Brutal Cut cannot be approximated to any factor better
than 1 + ε2−1

3·ε2 under the weight score.

We have ε2 ≈ 1.06, if the Unique Game Conjecture is true [19] and ε2 = 22/21,
if P 6= NP [15].
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Proof. First, we can see that a random assignment satisfies each clause with
probability 3/4 and hence it is not hard to find an assignment that satisfies 3m/4
clauses, yielding

OPT (ϕ) ≥ 3m/4. (4)

Similarly to proof of Theorem 9, we show that Construction 4 constitutes an L-
reduction. Let f be a function transforming any instance ϕ of MAX 2-SAT into
an instance I of Semi-Brutal Cut as above. Let X be a feasible normalized
solution for I corresponding to the property of Lemma 5. And let g be the
function that construct the assignment of ϕ which corresponds to X. Hence,

OPT (I) ≤ 2m+ m/4
(4)
≤ 3 ·OPT (ϕ), (5)

and by Lemma 5, we have

3m = val(g(X)) + val(X) = OPT (I) +OPT (ϕ). (6)

Thus, we constructed an L-reduction with α = 3 and β = 1. Since ε2·val(g(X)) <
OPT (ϕ), we conclude

val(X) ≥(1 +
ε2 − 1

3 · ε2
) ·OPT (I) ut

MAX 2-SAT(3) is restricted subproblem of MAX 2-SAT where the number
of occurrences of the variable is bounded by three. Berman and Karpinski [3]
show that MAX 2-SAT(3) cannot be approximated to a factor better than
ε′2 ≤ 2012/2011 unless P = NP. In that subproblem, the maximum degree of
the graph provided by Construction 4 is restricted to three. Using the same
arguments as for Theorem 10, we obtain:

Theorem 11. It is NP-hard to approximate Semi-Brutal Cut within any
ratio better than (1 +

ε′2−1
3·ε′2

) under the weight score, even on subcubic graphs.

Samewise, we can use the inapproximability result on MAX 2-SAT(3) to
build a L-reduction to Semi-Brutal Cut under the cut score on subcubic
graphs.

Theorem 12. It is NP-hard to approximate Semi-Brutal Cut within any
ratio better than (1 +

9(ε′2−1)
11·ε′2

) under the cut score, even on subcubic graphs.

Proof. Let (G∗,M∗, ω) be a solution graph produced by Construction 4 and let
X be an optimal solution in (G∗,M∗, ω) for SBC under the cut score. Let uiui be
a variable edge, suppose by symmetry that xi occurs two times positively and one
time negatively. Suppose that uiui does not contain a cut. If the neighbor vt

′

j′ of
ui belongs to X, then we can swap vt

′

j′ and ui in X. Otherwise, the two neighbors
vtj and vt

′

j′ belong to X and then the set of cuts X ′ = X ∪ {ui} \ {vtj , vt
′

j′} is also
a solution of SBC and |X ′| < |X|, contradicting the optimality of X. Thus, each
variable edge contains at least one cut. Each cut in a variable edge can clean
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up to two clause edges. If a variable edge contains two cuts, then one of these
cuts only serves to clean one clause edge v1j v2j , and then we can transfer this cut
into v1j v2j . Hence, we can suppose that each variable edge contains exactly one
cut. Then, the number of cuts in the clause edges corresponds to the number of
unsatisfied clauses in the corresponding assignment of X. Note that, if a set of
cuts is not optimal, it is easy to transform it into another set with a better cut-
score and such that each variable edge contains exactly one cut. The number of
variables in a MAX 2-SAT(3) is equal to 2m/3. Let f denote the function that
transforms any instance ϕ of MAX 2-SAT(3) into an instance of Semi-Brutal
Cut as in Construction 4. Let X be a solution of SBC in I that contains exactly
one cut per variable edge and let g be the function that construct the assignment
of ϕ which corresponds to X. We have,

OPT (I) ≤ 2m/3 + m/4
(4)
≤ 11/9 ·OPT (ϕ), (7)

and
5m

3
= val(g(X)) + val(X) = OPT (I) +OPT (ϕ). (8)

We constructed an L-reduction with α = 11/9 and β = 1 and we obtain:

val(X) ≥(1 +
9(ε′2 − 1)

11 · ε′2
) ·OPT (I) ut

7.3 Strict Reduction from Vertex Cover

Strict-reduction is the simplest type of approximation-preserving reduction [9].
In a strict reduction, the approximation ratio ρΠ′ of a solution y to an instance
f(x) of a problem Π ′ must be at most as good as the approximation ratio ρΠ
of the corresponding solution g(y) to instance x of problem Π. In other words:

ρΠ′(f(x), y) ≤ ρΠ(x, g(y)).

The proof of Theorem 8 shows that Construction 2 is a strict reduction from
Vertex Cover, which leads to the following result.

Theorem 13. If Vertex Cover can not be approximated to a ratio better
than ρ, then neither can Semi-Brutal Cut on split graphs under the cut score.

In order to find an inapproximability result on the general case for SBC under
the cut score, we reduce Vertex Cover problem, defined in Section 6.2 and
we use the following construction.

Construction 5 Let G be an instance of VC, create a solution graph G∗ as
follows: for each v ∈ V (G), add a new path vv1v2v3 and set vv1, v2v3 ∈ M∗.
Call the resulting graph G∗ and note that E(G∗) ⊇ E(G) and the ambiguous
edges of G∗ are exactly the edges vv1 and ∆(G∗) = ∆(G) + 1.

Theorem 14. If Vertex Cover can not be approximated to a ratio better
than ρ on graphs with bounded degree ∆, then neither can Semi-Brutal Cut
on graph with bounded degree ∆+ 1 under the cut score.
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Fig. 10: A forbidden path xuvy (left) and the result of cutting all its vertices
(right).

Proof. We show that G has a size-k vertex cover if and only if using k cuts
suffices to clean all matching edges in G∗.

“⇒”: Let V ′ be a vertex-cover of G. Then, cutting all vertices of V ′ in G∗

leaves no edge of E(G). The remaining graph is a collection of alternating paths
of length three and, thus, all matching edges are clean.

“⇐”: Let X be a solution of SBC under the cut score for G∗. Let Y := {v |
{v, v1, v2, v3} ∩ X 6= ∅} and note that |Y | ≤ |X|. Now, if Y is not a vertex
cover of G, then there is an edge uv ∈ E(G) such that Y ∩ uv = ∅. Then, none
of {u3, u2, u1, u, v, v1, v2, v3} is cut, implying that neither uu1 nor vv1 is clean,
contradicting the fact that X is a solution of SBC.

Hence, Construction 5 is a strict reduction, transferring non-approximability
results of Vertex Cover to Semi-Brutal Cut under the cut score. ut

Vertex Cover is also non-approximable within a factor of 1.3606 under NP 6=
P [11] and within a factor 2−ε, ε > 0 under UGC [18]. Let G be an instance of VC,
the maximum degree of the graph produced by Construction 5 is equal to∆(G)+
1. Berman and Karpinski [3] show that if the instance of VC has a maximum de-
gree three, four or five, then VC can note be approximated to a ratio better than
145/144, 79/78, 74/73, respectively. Thus, this results hold for SBC under the cut
score, for solution graphs with maximum degree four, five and six, respectively.

8 Approximable Cases

In this section, we propose one greedy approximation algorithm for each score.

Cut score: Our approximation algorithm works similarly to the well-known clas-
sical 2-approximation for Vertex Cover that just returns the extremities of
any maximal matching. Contrary to Vertex Cover, our forbidden structures
are not edges, but ambiguous edges. Thus, we have to consider length-four paths
containing an ambiguous edge, and we will cut all four of their vertices. In the
following, we call a path xuvy forbidden if xu and vy are non-matching edges
and uv is an ambiguous edge (see Figure 10).

Lemma 6. Let Q be a maximal packing of vertex-disjoint forbidden paths in
(G∗,M∗, ω), let X be any solution for SBC under the cut score on (G∗,M∗, ω).
Then, (a) cutting all vertices of Q cleans all ambiguous edges in G∗and (b) X ∩
p 6= ∅ for all p ∈ Q.
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Fig. 11: Tightness of the approximation ratio for the cut-score greedy algorithm.
Matching edges are bold. The approximation algorithm for the cut score provides
a solution {v1, v2, u2, u3} whereas an optimal solution is {v2}.

Proof. (a): Let H be the result of cutting all vertices of Q in G∗. Towards a
contradiction, assume that H contains an ambiguous edge uv. By definition,
there are two non-matching edges xu and vy in H. But then, the path xuvy is
a forbidden path, contradicting the maximality of Q.

(b): Let H be the result of cutting all vertices of X in G∗. Let xuvy ∈ Q
be a forbidden path in (G∗,M∗, ω) and assume towards a contradiction that
X ∩ xuvy = ∅. Then, none of the edges of xuvy are removed when cutting the
vertices of X, that is, xuvy survives in H. Then, however, uv is ambiguous in
H, contradicting X being a solution for (G∗,M∗, ω). ut

With Lemma 6, we can show that any maximal packing of forbidden paths
constitutes a 4-approximation for Semi-Brutal Cut under the cut score.

Theorem 15. A 4-approximate solution to Semi-Brutal Cut under the cut
score can be computed in linear time. This ratio is tight.

Proof. A packing of forbidden paths in (G∗,M∗, ω) can be computed by scanning
all matching edges uv and, if uv is ambiguous, then xuvy is a forbidden path
for any non-matching edges xu and vy. By removing x, u, v, and y from G∗, we
make sure that the resulting packing is vertex-disjoint. Thus, such a packing can
be produced in linear time.

Let Q be any maximal vertex-disjoint packing of forbidden paths in (G∗,M∗,
ω). By Lemma 6(a), the vertices of Q form a solution for SBC. To show that
this solution is 4-approximate, consider any optimal solution X for (G∗,M∗, ω).
By Lemma 6(b), X intersects each path in Q. Since the paths in Q are mutually
vertex disjoint and each of them contains exactly four vertices, we conclude that
Q contains at most four times as many vertices as X. The ratio is tight, as shown
by Figure 11. ut

Weight score: Let (G∗,M∗, ω) be a solution graph and let X ⊆ E \M∗ be a
set of non-matching edges. For a vertex v, we let ωX(v) denote the sum of the
weights of all non-matching edges incident with v that are not in X. More for-
mally, we define ωX(v) :=

∑
e∈E\(M∗∪X) ω(e) ·χe(v), where χe(v) := |e∩{x}| is

the characteristic function of e. The principle of our algorithm is to successively
visit each ambiguous edge and cut the edges incident to the extremity with the
lowest value of wS , where S contains all previously cut edges.
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Algorithm 1: Greedy Algorithm for the weight score
Data: A solution graph (G∗,M∗, ω).
Result: A set X ⊆ E \M∗ whose removal cleans all matching edges.

1 X ← ∅ ;
2 A← list of extremities of ambiguous edges;
3 while A 6= ∅ do
4 u← argminx∈A ωX(x);
5 remove the two extremities of the ambiguous edge containing u from A;
6 add all non-matching edges incident with u to X;

7 return X;

x y u v

Fig. 12: Tightness of the approximation ratio for the weight-score greedy algo-
rithm. Edges are bold (∈ M∗), solid (∈ Xopt) or dashed (∈ X) and all edges
have weight one. Thus, ω(X) = 2 and ω(Xopt) = 1.

Theorem 16. In O((|V |+ |E|) log |V |) time, Algorithm 1 computes a solution
for Semi-Brutal Cut under the weight score with an approximation ratio of 2
and this ratio is tight.

Proof. Since each time some extremities are removed from A, the ambiguous
edge they belonged to has been cleaned, there are no more ambiguous edge
remaining when A = ∅. Thus, the set X that is returned is indeed a solution. Let
Xopt be an optimal solution. Let uv denote the ambiguous edge of G∗ considered
in step i of Algorithm 1, let Xi be the set of edges added to X in step i. If
Xopt contains all non-matching edges incident to u, then let Qi contains them.
Otherwise, Xopt contains all non-matching edges incident to v, and we let Qi
contain those. Then, ω(Xi) ≤ ω(Qi) for all i and, thus, ω(X) ≤

∑
i ω(Qi).

Further,
⋃
iQi = Xopt and, since each edge of G∗ occurs in at most two sets

Qi, we conclude
∑
i ω(Qi) ≤ 2ω(Xopt). The claimed approximation factor of two

follows and, by Figure 12, it is tight.
Concerning the running time, the list of ambiguous edges is build in O(|E|+

|V |) with a depth-first search algorithm. The sorting of this list can be done in
O(|V | log |V |). Maintaining the sorting of the list at each cut yields a O((|V |+
|E|) log |V |). ut

Corollary 4. Semi-Brutal Cut is APX -complete under both scores.

9 Conclusion

In this paper, we present complexity and approximation results obtained for a
theoretical problem occurring in modern-day production of genomic sequences.
We consider two variants of the problem, depending on the optimality criterion
(number of cuts vs. weight of cuts). We show that the complexity of both variants
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depend heavily on the input topology. To this end, we explore the demarcation
line between polynomial-time computability and NP-hard cases for sparse and
dense classes of graphs. Finally, we present simple constant-factor approximation
algorithms for both optimization goals. Interesting open questions include the
existence and design of efficient FPT algorithms, and/or kernel techniques.
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