
HAL Id: lirmm-03227618
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03227618v1

Submitted on 17 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed in-memory data management for workflow
executions

Renan Souza, Vitor Silva, Alexandre Lima, Daniel de Oliveira, Patrick
Valduriez, Marta Mattoso

To cite this version:
Renan Souza, Vitor Silva, Alexandre Lima, Daniel de Oliveira, Patrick Valduriez, et al.. Distributed
in-memory data management for workflow executions. PeerJ Computer Science, 2021, 7, pp.e527.
�10.7717/peerj-cs.527�. �lirmm-03227618�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03227618v1
https://hal.archives-ouvertes.fr

 Corresponding authors: Renan Souza – contact@renansouza.org , Marta Mattoso – marta@cos.ufrj.br

This is the author preprint of an article published at PeerJ Computer Science. Please cite it as:

Souza, R., Silva, V., Lima, A. A. B., de Oliveira, D., Valduriez, P., Mattoso, M. 2021. Distributed in-memory data

management for workflow executions. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.527

Distributed In-memory Data Management for Workflow Executions

Renan Souzaa, e, , Vítor Silvab, f, Alexandre A. B. Limaa, b,

Daniel de Oliveirac, Patrick Valduriezd, Marta Mattosoa,
a COPPE/Federal University of Rio de Janeiro

b Campus Duque de Caxias / Federal University of Rio de Janeiro

c Fluminense Federal University, Brazil

d Inria, University of Montpellier, CNRS, LIRMM, France

e Current affiliation: IBM Research, Brazil

f Current affiliation: Snap Inc., United States

Abstract

Complex scientific experiments from various domains are typically modeled as workflows

and executed on large-scale machines using a Parallel Workflow Management System

(WMS). Since such executions usually last for hours or days, some WMSs provide user

steering support, i.e., they allow users to run data analyses and, depending on the results,

adapt the workflows at runtime. A challenge in the parallel execution control design is to

manage workflow data for efficient executions while enabling user steering support. Data

access for high scalability is typically transaction-oriented, while for data analysis, it is online

analytical-oriented so that managing such hybrid workloads makes the challenge even harder.

In this work, we present SchalaDB, an architecture with a set of design principles and

techniques based on distributed in-memory data management for efficient workflow

execution control and user steering. We propose a distributed data design for scalable

workflow task scheduling and high availability driven by a parallel and distributed in-

memory DBMS. To evaluate our proposal, we develop d-Chiron, a WMS designed according

to SchalaDB’s principles. We carry out an extensive experimental evaluation on an HPC

cluster with up to 960 computing cores. Among other analyses, we show that even when

running data analyses for user steering, SchalaDB’s overhead is negligible for workloads

composed of hundreds of concurrent tasks on shared data. Our results encourage workflow

engine developers to follow a parallel and distributed data-oriented approach not only for

scheduling and monitoring but also for user steering.

Keywords

Parallel Workflow Management Systems; Task Scheduling; User Steering; In-memory High-

Performance database system

mailto:contact@renansouza.org
https://doi.org/10.7717/peerj-cs.527

1. Introduction

With the evolution of computational tools and hardware, the ever-growing amount of data,

and the increasing use of machine learning methods, more and more scientists from a wide

variety of domains both in industry and academia have been using large-scale computers to

conduct their experiments. A widely adopted strategy is to model the experiments as

workflows and execute them using Parallel Workflow Management Systems (WMSs) on

large-scale machines, such as High-Performance Computing (HPC) clusters [11]. Since these

workflows typically execute for long hours or even days, users cannot wait until the end of

the execution to start analyzing the workflow data and fine-tune parameters and convergence

settings [2,11]. Despite solutions for self-tuning based on machine learning [40], decisions

like changing convergence values, the number of iterations, or levels of interpolation still

need human interference, which complements AI-based solutions [19,52]. Supporting user

steering in scientific experiments allows users to run data analyses at runtime (e.g., inspect,

debug, visualize, monitor) that may lead to dynamic adaptation of aspects of the workflow

(e.g., change the input data, parameters, convergence criteria) [6,17,26,29,30].

In our past work with Chiron WMS [34,35], we have shown how users can have a better

understanding of the data being processed in their experiments while the workflows are

executing [42,43]. Then, based on such understanding, users may decide to dynamically

adapt the workflow, such as reduce datasets [49], change user-defined loop conditions [13],

and parameters [5,48]. Chiron adopts an integrated data management solution to store data

dependencies, execution data, domain data, and provenance data all together in the same

database available for monitoring and user steering. Suppose a parallel parameter sweep

workflow with an Activity 1 that uses a parameter X to calculate a value Y, and an Activity 2,

chained with the Activity 1, that delivers a result Z for each input data of Activity 1. Chiron

can answer queries like: “What is the current average value for parameter X leading to the

best Z results?” or “List the status information about the 5 computing nodes with the greatest

number of Activity 1 tasks that are consuming input data that contain parameter X values

greater than 70.” These are simple examples of analytical queries that can get overly complex

as the user explores the data in an ad-hoc way, requiring several joins involving scheduling

tables and different provenance tables. However, Chiron employs a centralized execution

control to schedule tasks, which limits its scalability.

WMSs that are able to scale to thousands of CPU cores in HPC clusters, such as EMEWS

(which runs on top of Swift/T) [24,53] and Pegasus [10,12], do not allow for user steering.

Scalable workflow executions on HPC clusters require managing several types of data, e.g.,

work queues, task data, performance data, provenance data, and other related data structures

used by the workflow execution. Scheduling is fundamental for efficiency and is driven by

work queues, table of events, execution status, and mapping data to tasks [1]. This is

particularly critical in Many-Task Computing (MTC) [39] applications, where thousands of

parallel tasks must be scheduled to multiple computing nodes, and each task consumes input

data, performs computations, and produces vast amounts of data [39]. Since these features

are efficiently supported by DBMSs, WMSs like Pegasus [10,12] have migrated their task

queue scheduling management to a DBMS, but register data for user analyses in a separate

and different DBMS. The EMEWS workflow system [24] makes data available for queries

only after the workflow execution finishes and Pegasus has recently provided a user

monitoring dashboard, but it is disconnected from the workflow engine data. This user data

monitoring approach prevents the WMS from having the human in the loop of the workflow

execution, which is essential for steering. Although user steering has been addressed for

decades in computational steering environments, portals, and application-specific systems

[33] it is still an open problem in the scientific workflow community [2,11,16,30]. To the

best of our knowledge, there is no scalable workflow execution management approach

capable of integrating, at runtime, execution, domain, and provenance data aiming at

supporting user steering.

In this work, we propose a generic architecture with a set of design principles and techniques

for integrating workflow scheduling data management with provenance and domain data to

provide for an efficient user steering support. We call it SchalaDB: scalable workflow

scheduling driven by an in-memory distributed DBMS. The data shared by scheduling and

provenance is only written once, avoiding redundant operations and having less data

movements. Also, the same DBMS cache can improve main memory access. Even though

task queue data and provenance data are small in terms of size, their data management during

the workflow execution is quite complex. The DBMS has to be efficient both for analytical

queries and for concurrent update transactions. As discussed by Chavan et al. [7], the

distributed in-memory DBMS approach is efficient even with mixed transactional and

analytic workloads. A distributed data design is elaborated for providing data to scalable

workflow task scheduling and high availability. Data extraction and ingestion at the DBMS

allow for execution, provenance, and domain data to be available for runtime analytical

queries, enabling users to adapt the workflow execution and improve its overall execution

time based on steering.

To evaluate our approach, SchalaDB’s design principles are implemented in Chiron WMS.

Chiron’s engine is modified by replacing its centralized task scheduler with a distributed one

that obtains data through an in-memory DBMS. We call d-Chiron the resulting WMS that

manages its data using SchalaDB principles [9]. In an extensive performance evaluation, we

run both synthetic and real workflow workloads on an HPC cluster using up to 960 computing

cores. Among other analyses, we show that SchalaDB’s overhead is negligible for workloads

composed of many concurrent long tasks, typical in scientific workflows. Our results

encourage workflow system developers to follow a parallel and distributed data-oriented

approach, such as SchalaDB, not only for scheduling and monitoring, but also for user

steering support.

The remainder of this paper is organized as follows. In Section 2, we discuss the data that

need to be managed during a scientific workflow execution. In Section 3, we present

SchalaDB design, architecture, and techniques. In Section 4, we present d-Chiron as an

implementation of SchalaDB. In Section 5, we show the experimental evaluation. In Section

6, we show related work and we conclude in Section 7.

2. Data Management in Large-scale Workflows

Data management in large-scale scientific workflow execution is a major challenge because

it has to deal with several types of data. We can group these types of data into three

categories: (i) execution, (ii) domain, and (iii) provenance. In this section, we briefly explain

each of them. Although presented separately, we notice that those categories share a lot of

data [34,36,42,43,49]. Storing them separately leads to data redundancy and lack of data

integration support for runtime data analysis.

2.1 Execution Data

Task scheduling is a basic execution control functionality of any WMS. Other parallel

execution control features, such as availability and concurrency are also very important. By

providing efficient parallel access to execution data, there is less contention on scheduling

data structures. More specifically, work queue is the main data structure for task scheduling

in MTC, holding the list of tasks (following specific dependencies) to be scheduled among

the computing nodes (i.e., machine nodes composing an HPC cluster) [39]. Information such

as which tasks should be scheduled to which computing nodes, number of tasks per node,

tasks’ input data, tasks’ duration, and how much memory or computing power were

consumed are examples of execution data to be managed in an MTC scheduler. Dedicated

DBMSs have started to be used by execution engines to manage scheduling.

2.2 Provenance Data

Scientific workflows need provenance data, since they allow for analysis, quality assessment,

reliability, reproducibility, and reusability of the scientific results [8,18]. Provenance data

track which and how processes were utilized to derive each data entity; keep data authorship;

and provide powerful means for analytical queries to perform data reduction, discovery and

interpretation [28]. Such features are considered as important as the scientific achievement

itself, since experiment’s reliability can be compromised otherwise [18]. Provenance data

representation is much more than registering what was executed. The W3C PROV [20]

recommendation allows for a generic and uniform provenance data representation, which

promotes interoperability and data analyses in general. In scientific workflows, provenance

data received PROV specializations, like PROVOne [4] and PROV-DfA [47] to cover

information about workflows’ specifications, agents, activities and data derivation paths.

Provenance data management requires capturing data, explicitly relating them to the

workflow activities and efficiently storing these data to keep workflow high performance

execution.

2.3 Domain Data

Although scientific domain data are typically managed by the simulation programs

composing the workflow, the WMS has to be aware of some of them to manage the dataflow

and register provenance data. Enabling analyses with domain data enhances analytical

capabilities in a WMS. Defining how much domain data should be known by the WMS and

represented in the provenance database is challenging [42].

Domain data management in scientific workflows is intrinsically hard. The scenario typically

involves a high number of raw data files, multiple directories and subdirectories, and a wide

variety of file formats, such as text-based (CSV files and plain-text matrices), and binary-

based (like HDF5, FITS, NetCDF, and SEG-Y). Registering pointers to these large raw data

files with some relevant raw data related to the dataflow is already a significant help in

runtime workflow data analysis [42].

3. SchalaDB: Scalable Distributed Data Management for Workflow Executions

SchalaDB is a reference architecture that follows a set of techniques, based on distributed

data management principles, for scalable user steering support of workflow executions.

Distributed workflow execution control requires managing a large work queue with

concurrent access as well as managing a variety of data about tasks, input and output domain

values, and provenance. Capturing, structuring and loading these data in a DBMS for runtime

data analyses is beneficial to users, but it may interfere on the workflow execution

performance. Our main goal with SchalaDB is to allow users to steer the workflows, based

on runtime analyses of its database, without harming the overall workflow performance when

capturing data for analysis. SchalaDB innovates by exploiting an in-memory high-

performance DBMS as an integrated data provider for workflow execution and user steering.

The motivations to use such a DBMS in SchalaDB are as follows.

First, DBMSs already implement very efficient mechanisms that are essential in HPC, such

as concurrency control and fault recovery. Particularly, guaranteeing Atomicity,

Consistency, Isolation, and Durability (ACID) properties for update transactions is useful

when task-related data management suffers multiple concurrent updates on the work queue

during scheduling. DBMSs, especially those that are cluster-based, enable robust parallel

cache memory usage. Furthermore, data replication and partitioning into multiple nodes are

well studied and implemented in such DBMSs. A partitioned work queue is potentially faster

to query and update than a centralized one. Inserting and removing tasks as well as querying

parallel tasks’ status are operations directly handled by the DBMS.

In the following sections, details about how SchalaDB combines high performance with

powerful data analyses support are given. Section 3.1 presents SchalaDB architecture and

shows how high performance data management techniques can be used considering different

levels of parallelism between workflow execution and a DBMS; in section 3.2, techniques

on how to partition and distribute data in our context – particularly the work queue – are

described; and, section 3.3 shows how distributed data management can be used to implement

execution control relying on the DBMS

3.1 SchalaDB Architecture and Techniques

Several execution control activities (e.g., scheduling, and availability) must be carried out in

the course of a workflow execution. After analyzing and comparing many WMS’

architectures, Liu et al. [27] identify similarities between them and propose a generic WMS

Functional Architecture. Figure 1 shows this architecture, which comprises five layers, each

of them providing services to be used by the layer immediately above. One layer, named

“Workflow Execution Plan (WEP) Execution”, is dedicated to execution control activities or

modules: “scheduling”, “task execution” and “fault tolerance” [27]. Three layers lie above

this one, showing how important these activities are to WMSs. Thus, techniques to improve

them, like those proposed by SchalaDB, benefit WMSs in many ways.

Figure 1. WMS Functional Architecture (adapted from Liu et al. [27]).

SchalaDB also directly contributes to another layer of the WMS Functional Architecture

[27]: the “User Services” layer, more specifically to its “workflow monitoring and steering”,

and “provenance data” modules. Supporting these kinds of services is SchalaDB’s main goal.

The “Presentation” layer has modules responsible for interfacing between the end-users and

the WMS. These are discussed in the next section, when describing the implementation of

SchalaDB in a WMS.

In this section, we give an overview of SchalaDB architecture and how it uses a DBMS to

explore workflow parallel execution control and different levels of parallelism.

In an in-memory DBMS, the nodes that run database operations are often called data nodes,

accessing the distributed memory. Each data node typically contains multiple cores. The

DBMS client nodes are called worker nodes. In a workflow execution, each worker node also

contains multiple cores for parallel and distributed computing of the scientific workflow

activities.

SchalaDB Architecture. In Figure 2, we present SchalaDB architecture. Components

responsible for workflow execution control are organized as a multiple-master/multiple-

worker nodes architecture. Instead of having multiple workflow master nodes that actively

distribute tasks for worker nodes, SchalaDB adopts data nodes to manage data structures like

the Work Queue (WQ) that are queried by worker nodes that demand tasks. In SchalaDB,

WQ data is distributed across 𝐷 data nodes. Each worker 𝑤𝑖 executes workflow tasks (the

actual scientific computation). The number of data nodes is typically much smaller than the

number of worker nodes. The goal is to privilege workflow parallel execution rather than the

database operations, which are much smaller. Connectors are brokers that intermediate the

communication between the DBMS and other components. They are implemented using

DBMS drivers. Supervisor is responsible for adding tasks to the WQ. Secondary supervisor

eliminates the single point of failure by becoming the main supervisor in case the original

main supervisor crashes.

Presentation Layer

User Services Layer

WEP Generation Layer

WEP Execution Layer

Infrastructure Layer

Scheduling
Task

Execution

Fault

Tolerance

Monitoring

& Steering

Information

Sharing
Provenance

Textual

UI

Desktop

Graphic UI

Web-portal

UI

Figure 2. SchalaDB architecture. 𝑾 worker nodes directly accessing the DBMS composed of 𝑫 data nodes.

Allocation flexibility. Except for supervisors (one supervisor, one secondary supervisor),

SchalaDB does not require any specific number of components of each type, as long as there

are at least one of each. Also, more than one component may be allocated to the same physical

node. While this gives a lot of flexibility for workflow execution, these allocation choices

may impact performance. For higher availability and locality purposes, we recommend that

each physical node hosts no more than one component of each kind. For example, one given

physical node may run a data and a worker nodes, but neither two worker nodes nor two data

nodes.

Scheduling. Scheduling adopts a passive multi-master approach where worker nodes obtain

tasks from WQ by querying data nodes. By using a DBMS, the capability of serving multiple

concurrent requests from worker nodes is given. This approach differs from traditional

master-worker WQ implementations where worker nodes request tasks from a master

through regular message passing, such as MPI. By exploiting DBMS concurrency control,

SchalaDB avoids the overhead of developing concurrency control algorithms. Therefore,

having a distributed WQ (i.e., no centralized execution data) reduces contention problems

and improves workflow parallel execution performance. Even if workflow executions of

certain experiments do not demand a distributed WQ, having a distributed in-memory DBMS

to manage it would not negatively impact WMS performance. Besides, such a WMS would

already be prepared for more demanding workloads.

Availability. Each SchalaDB component may be replicated for high availability. Regarding

data managed by the DBMS, data replication techniques can be directly employed for data

nodes automatic failure recovery. Considering worker nodes, each worker wi may improve

availability by connecting and querying the DBMS via different database connectors. In

Figure 2, full gray lines represent links between worker nodes and their respective main or

primary connectors while dashed gray lines represent links between worker nodes and their

backup or secondary connectors. If a connector fails, all worker nodes connected to it are

…

connectorx

supervisor supervisor
secondary

connectorx+1

…

w1

data node1

WQjWQ2WQ1

w2 wj

connector1

…

wk

data nodeD

WQWWQW-1WQk

ww-1 ww

connectorqconnectorq-1connector2

…

In-memory High Performance

DBMS

switched to their secondary ones. Therefore, the secondary supervisor removes the single

point of failure from the supervisor node.

Worker nodes to connectors distribution. Connectors are usually responsible for just

listening to connections from worker nodes. We propose a simple strategy for distributing

worker nodes to connectors. First, if a worker node shares a physical node with a connector,

then this is its primary connector. Then, remaining worker nodes are distributed to connectors

by using a simple round-robin strategy.

Adherence to WMS Functional Architecture. As we can notice, SchalaDB architecture’s

components implement all services or modules described as part of the “WEP Execution”

layer from WMS Functional Architecture [27]. Besides, having a WQ managed by a high-

performance DBMS provides a good basis for the implementation of the “workflow

monitoring and steering” and “provenance data” modules that belong to the “User Services”

layer of the referred architecture. WQ data is part of provenance data. The DBMS makes it

possible to perform complex queries and updates on such data at runtime, enabling workflow

monitoring and steering.

3.2 SchalaDB Techniques for Data Partitioning

In this section, we explain SchalaDB design techniques for data partitioning. DBMSs

typically have several partitioning techniques like round-robin, hashing, and by value ranges

[38]. Considering the number of elements, WQ is typically the largest scheduler data

structure. Without loss of generality, we assume that a Relational DBMS is used for

managing workflow execution data. The same design techniques can be employed with other

data models. This way, we consider WQ is implemented as a relation comprised by tuples

representing tasks.

The first design step is about partitioning WQ data. Our proposal is to hash partition WQ

based on the worker identifier (id) assigned to the task. Considering a SchalaDB architecture

instance with 𝑊 worker nodes, WQ has 𝑊 partitions. The goal here is to initially produce

partitions with similar size. The second design step deals with allocating WQ partitions, i.e.,

assigning partitions to data nodes. Database processing is much lighter than workflow

execution. Therefore, there are usually much more partitions than data nodes. Having more

partitions than data nodes gives flexibility to implement more sophisticated load balancing

techniques without data transfer between data nodes and avoids data transfer and

communication overhead. The third design step is about defining replicas. Replicating

database relations may be advantageous for fault tolerance and query processing. On the

downside, worker nodes typically present highly concurrent transactions during scheduling,

as tasks are very often updated when scheduled, executed and completed, which can be time

consuming. Therefore, SchalaDB adopts one replica for each partition.

Despite having different workers accessing the same data node, data parallelism is improved

when each worker node accesses its own WQ partition as different memory spaces can be

accessed in parallel for each partition. Local processing is also improved because task lookup

for each worker node will go straight to its partition instead of searching in a potentially large

shared partition. This also reduces race conditions among different worker nodes, which

otherwise would be competing for an entire WQ partition. Each worker node 𝑤𝑖 gets or

modifies tasks within its 𝑊𝑄𝑖 partition by submitting queries like “select/update the next

ready tasks in the WQ where 𝑤𝑜𝑟𝑘𝑒𝑟_𝑖𝑑 = 𝑖”. Figure 3 shows an excerpt of a WQ relation

with execution data when a synthetic workflow composed of three activities was running on

a small cluster with two worker nodes, each with two cores, and one data node. Thence, two

worker nodes were running, each one on a different computing node, and the single data

node was managing the WQ with two partitions. This is just an exemplary illustration of the

WQ partitioning with execution data.

4. d-Chiron WMS: An Implementation of SchalaDB

Chiron WMS is open-source software and, to the best of our knowledge, it is the only WMS

that manages execution, domain, and provenance data, jointly, using a DBMS (PostgreSQL)

at runtime, thus enabling enhanced runtime data analyses through SQL. Chiron provides

W3C PROV compliant provenance data. Since Chiron is already based on a DBMS, we opted

for modifying its engine in order to produce, as a proof of concept, a functional

implementation of SchalaDB’s architecture and design principles. Such an effort resulted in

d-Chiron, a distributed WMS that uses SchalaDB design principles. MySQL Cluster [37] was

chosen as its DBMS because it is high performant in HPC, open source, in-memory,

distributed, and performs well both for update transactions and for joining several tables in

ad-hoc queries. This section explains what was modified in Chiron to adhere to SchalaDB,

originating d-Chiron.

Chiron and d-Chiron. With respect to the WMS Functional Architecture (c.f. Figure 1,

[27]), Chiron has some modules in the “Presentation” layer that facilitate its usage in HPC

clusters. One module helps users dispatch the WMS workers in the HPC cluster through a

command line interface (CLI), which is represented by “Textual UI” in the WMS Functional

Architecture. Also, there is a CLI to ease running steering queries to the database. Another

CLI in this layer helps users create domain data tables in the database. In the “WEP

Execution” layer, Chiron has the “scheduling” and “task execution” modules that implement

a centralized execution control with a master-worker scheduling design. In Chiron, only the

master node is able to access the centralized DBMS and to send tasks to the workers using

MPI. In d-Chiron, to implement SchalaDB, we did major modifications in the “WEP

Execution” layer of Chiron. More specifically, the execution control and task scheduling in

d-Chiron is distributed as the workers have now direct access to the DBMS, using SQL

queries, without needing to hop through a master. d-Chiron also implements the supervisor

Task

Id

Act

Id

Worker

Id

Core Command Line Work

space

Fail.

Trials

Std Out Start Time End Time Status

1 1 1 1 ./run a=1.3 b=27.75 c=16.21 /data/act1 0 x=18.71 y=6.77 2017-06-04 09:55:04 2017-06-04 09:55:58 FINISHED

3 1 1 2 ./run a=0.67 b=19.18 c=24.26 /data/act1 0 x=4.58 y=0.39 2017-06-04 09:55:04 2017-06-04 09:55:59 FINISHED

5 2 1 1 ./run a=1.9 b=17.96 c=23.92 /data/act2 2017-06-04 09:56:00 RUNNING

7 2 1 2 ./run a=2.73 b=35.74 c=24.55 /data/act2 0 x=1.74 y=7.17 2017-06-04 09:55:59 2017-06-04 09:56:13 FINISHED

9 3 1 1 ./run a=0.55 b=29.48 c=16.66 /data/act3 READY

11 3 1 2 ./run a=2.6 b=30.1 c=13.66 /data/act3 2017-06-04 09:56:13 RUNNING

2 1 2 1 ./run a=1.49 b=6.64 c=9.22 /data/act1 2017-06-04 09:55:04 RUNNING

4 1 2 2 ./run a=0.17 b=30.65 c=12.61 /data/act1 0 x=8.08 y=8.5 2017-06-04 09:55:03 2017-06-04 09:56:04 FINISHED

6 2 2 1 ./run a=0.54 b=23.45 c=24.57 /data/act2 READY

8 2 2 2 ./run a=2.2 b=13.87 c=19.84 /data/act2 2017-06-04 09:56:05 RUNNING

10 3 2 1 ./run a=0.48 b=18.39 c=16.79 /data/act3 READY

12 3 2 2 ./run a=0.59 b=15.67 c=13.06 /data/act3 READY

Figure 3. Excerpt of a WQ relation with 2 partitions. Background colors represent WQ partitions.

and secondary supervisor nodes of SchalaDB. Chiron and d-Chiron architectures are shown

in Figure 4 and Figure 5, respectively.

Figure 4. Chiron centralized execution control.

Figure 5. d-Chiron distributed control driven by the DBMS.

In Figure 6, we depict the differences between an MPI-driven master-worker scheduling,

typically found in many scheduling systems in HPC solutions, and a distributed and parallel

DBMS-driven distributed scheduling. In the later, there are less “proxies” between a worker

and their tasks, as shown by the numbered items in Figure 6: each item is an operation and

its respective number, the order of execution. In d-Chiron (Figure 6-A), a worker just needs

to query the DBMS to get its tasks, update them, and store results. Using a centralized

architecture (Figure 6-B), as in Chiron, since the centralized DBMS struggles to handle

multiple parallel requests, there is the need for a master node to alleviate a severe bottleneck

at the centralized DBMS. In the centralized architecture, the worker requests are first queued

at the master, which submits queries to the centralized DBMS according to this auxiliary

queue. In the centralized design, an additional acknowledgement message is needed so the

worker can inform the master about tasks’ executions. In summary, because of SchalaDB, d-

Chiron’s workers have direct access to their tasks, whereas, in Chiron, the workers need to

ask a centralized master for tasks. Figure 6-A and Figure 6-B show that scheduling

centralization leads to an increase in the number of processing steps; messages exchanged;

complexity of implementation code regarding scheduling; and to potential bottlenecks during

workflow execution.

workerworker worker

master

centralized

DBMS

MPI

SQL

workersupervisor worker worker

data nodedata node

In-memory High Performance

DBMS

…

SQL

Figure 6. Comparison between centralized scheduling vs. DBMS-driven scheduling.

In Figure 6, we depict the differences between an MPI-driven master-worker scheduling,

typically found in many scheduling systems in HPC solutions, and a distributed and parallel

DBMS-driven distributed scheduling. In the later, there are less “proxies” between a worker

and their tasks, as shown by the numbered items in Figure 6: each item is an operation and

its respective number, the order of execution. In d-Chiron (Figure 6-A), a worker just needs

to query the DBMS to get its tasks, update them, and store results. Using a centralized

architecture (Figure 6-B), as in Chiron, since the centralized DBMS struggles to handle

multiple parallel requests, there is the need for a master node to alleviate a severe bottleneck

at the centralized DBMS. In the centralized architecture, the worker requests are first queued

at the master, which submits queries to the centralized DBMS according to this auxiliary

queue. In the centralized design, an additional acknowledgement message is needed so the

worker can inform the master about tasks’ executions. In summary, because of SchalaDB, d-

Chiron’s workers have direct access to their tasks, whereas, in Chiron, the workers need to

ask a centralized master for tasks. Figure 6-A and Figure 6-B show that scheduling

centralization leads to an increase in the number of processing steps; messages exchanged;

complexity of implementation code regarding scheduling; and to potential bottlenecks during

workflow execution.

d-Chiron DBManager. Instantiating a DBMS in multiple computing nodes is time

consuming and error-prone, even for an experienced user. For this reason, we developed d-

Chiron DBManager. By using this component, the WMS designer simply needs to adjust

installation parameters, like how many of each DBMS components should be instantiated

and on which computing node each of them should run. DBManager automatically

instantiates MySQL Cluster, running its components in the appropriate computing nodes. We

implemented a CLI for the DBManager component. An exemplary sequence of steps for

running a workflow from scratch on an HPC cluster in d-Chiron is shown in Figure 7. First,

DBManager initializes all DBMS components in preconfigured computing nodes (line 1). A

user needs to run line 1 only once to initialize the WMS and DBMS processes in the cluster.

Then, the database is created (line 2). After that, workflow execution is started (line 3).

During workflow execution, the user may run steering queries, as illustrated by line 4. After

workflow completion and user’s analyses, the user may decide to leave the DBMS up for

future runs or, simply execute a shutdown command (line 5) to safely shut down the DBMS.

Data Partitioning in d-Chiron. Here we explain how we use MySQL Cluster to implement

SchalaDB’s data partitioning techniques in d-Chiron. Following SchalaDB techniques, the

number of partitions is set to 𝑊, the number of worker nodes. However, in MTC, several

tasks are managed by the same work queue partition. To reduce the impact caused by

concurrent access to a shared partition, the supervisor circularly assigns a worker id to each

task. Then, each worker 𝑤𝑖 gets or modifies tasks using queries with a selection predicate

“𝑤ℎ𝑒𝑟𝑒 𝑤𝑜𝑟𝑘𝑒𝑟_𝑖𝑑 = 𝑖”.

Additionally, data allocation is delegated to MySQL Cluster as it efficiently balances the

number of partitions per data nodes. We configure MySQL Cluster to replicate all relations

across computing nodes running with replication factor set to one, meaning that each relation

has one replica.

Finally, d-Chiron keeps the runtime analytical support previously available on Chiron.

Domain, execution, and provenance data are still being captured and managed, but in a much

more efficient and fault tolerant way.

5. Experimental Evaluation

In order to assess the benefits of SchalaDB, we perform a series of experiments with d-Chiron

on an HPC cluster with up to 960 cores. This section describes the results obtained and is

organized as follows. In Section 5.1, we present the experimental setup. In Section 5.2, we

analyze several workloads to understand the impact of two dimensions in MTC workflows’

scheduling: number of tasks and task duration. We evaluate long running tasks typical of

scientific workflows as well as short running tasks. In Section 5.3, we analyze overhead

incurred by SchalaDB. Finally, in Section 5.4, we show that our implementation of

distributed in-memory data management in SchalaDB outperforms the implementation of a

scheduler that relies on a centralized approach for the management of data for scheduling of

parallel tasks by two orders of magnitude.

5.1 Experimental Setup

This section describes the workflow, workload, software and hardware resources used for

tests.

Workflow case study. Risers Fatigue Analysis Workflow [49] is a real case study from the

Oil & Gas industry. This workflow calculates the fatigue of ultra-deep oil platform structures,

such as risers. Input data that represent environmental conditions (e.g., as wind speed and

wave frequency) are combined to evaluate stress on the riser's curvatures using seven linked

1. $> ./DChironDBManager --start
2. $> ./DChironSetup --create database
3. $> ./DChironStarter --start
4. $> ./DChironQueryProcessor --q "select * from workqueue where status = 'RUNNING' order by starttime"
5. $> ./DChironDBManager --shutdown

Figure 7. Typical steps for running a workflow with d-Chiron.

workflow activities (Figure 8). As it takes a long time to calculate the fatigue for each

environmental condition, users have to steer the execution so that some parameter ranges

may be pruned out of the execution [49]. This parameter tuning depends on several data

analyses and cannot be pre-programed for automatic pruning. In this workflow,

computational engineers know how to fine tune input parameters values based on the specific

behavior of the current workload. That is, the number of tasks the workflow is expected to

run and how long each of them will take to perform its part of the application computation

(i.e., part of the processing that is exclusively related to the application behavior rather than

processing related to workflow execution control). For this reason, this workflow is a good

use case for our experiments, as we can vary such parameters to generate synthetic workloads

we need for the tests.

Figure 8. Risers Fatigue Analysis workflow.

Workloads. Based on the Risers workflow specification we generated several synthetic

workloads with different combinations for the number of tasks and duration for the workflow

activities. We repeat the experiments until the standard deviation of workflow elapsed times

are less than 1%. The results are the average within the 1% margin.

Software. We use Chiron and d-Chiron. Executables for both systems can be found in the

GitHub repository [9]. Chiron uses Postgres 9.5.1 and d-Chiron uses MySQL Cluster 7.4.9.

Hardware. The experiments are conducted on Grid5000 (www.grid5000.fr) using the

StRemi cluster. Hardware specification is described in Table 1.

Table 1. Hardware specification of the HPC cluster in Grid5000.

#Nodes
#Cores

per node

Total

cores

RAM per

node
Processors Network Storage

42 24 960 48 GB
AMD Opteron

6164 HE

1.7 GHz/12MB

Gigabit

Ethernet

SATA AHCI &

RAID-5

Component-to-node allocation. During the experiments, unless otherwise specified, d-

Chiron components are allocated to the computing nodes in the cluster as follows. Each

computing node runs a d-Chiron worker. Besides, in one of the computing nodes in the

cluster, a supervisor runs alongside with a worker; and, in another node, a secondary

supervisor runs alongside with a worker. Two SchalaDB’s data nodes run on two other

computing nodes in the cluster. Since the database usually has small sizes even for large

workloads, as it stores only workflow’s metadata (preliminary experiments [44,50] show

http://www.grid5000.fr/

SchalaDB’s database with tens of MB for large workloads), we opt for using only two nodes

for running in-memory data nodes with occasional on-disk checkpoints, which is the

minimum to achieve fault-tolerance. We set the maximum number of d-Chiron threads to be

equal to the number of cores of each computing node.

5.2 Scalability Analysis

Scalability refers to the system’s ability to deal with a growth of either the computing nodes

(e.g., addition of nodes) or the workload (e.g., adding more data or tasks) [23]. Varying the

number of computing nodes is straightforward. With respect to workload variation in MTC

workflows, workloads are composed of thousands of tasks that must run in parallel and each

one may last for seconds, minutes, or even hours [39]. Usually, the longer the task, the more

complex it is, requiring complex scientific computations or extensive data manipulations.

We assess three types of scalability analysis: (a) Strong scaling (also known as speedup test),

which intends to analyze how workflow execution time varies when we increase the number

of computing nodes, but maintain the same workload. Ideally, the performance increases

proportionally to the amount of computing nodes added. (b) Weak scaling, which intends to

analyze how workflow execution time varies when we proportionally increase both the

number of computing nodes and the workload, so that workload per processor remains

constant. Ideally, the execution time should remain constant. (c) Workload scalability, which

refers to analyzing how workflow execution time varies when we vary the workload but

maintain the number of computing nodes fixed. Ideally, performance’s variation should be

proportional to workload variation. Since we consider a workload as composed of two factors

(task duration and number of tasks), we can further fix one of them and increase the other in

order to give finer understanding about the system’s performance.

In the scalability analyses performed in this section, we set a base execution time for

comparisons. When the workload is small, it is possible to execute the system running on a

single CPU core and use this time as the base. However, most of the workloads used in this

section would take weeks or months to completely finish on a single core, prohibiting this

kind of execution. For this reason, in each experiment in this section we specify the base

result, e.g., when the least amount of parallel processes was used, and plot a linear execution

time according to this base time.

Experiment 1: Strong scaling with variation on the number of threads per process. In

this experiment, we investigate d-Chiron’s strong scalability and the impact caused by

concurrency on a larger cluster. Four cluster setups were employed: 120, 240, 480, and 960

cores (5, 10, 20 and 40 nodes, respectively). In order to investigate concurrency, for each

setup we executed experiments varying the number of threads used by each worker: 12, 24

and 48 threads. Base execution time is set to the smallest number of cores evaluated, i.e., 120

cores. We used a workload with 13 thousand tasks with mean task duration of 1 minute each.

The results are in Figure 9(a), where we plot six curves: one for each setting of number of

threads per process, along with calculated execution time for each setting if linear speedup

was achieved. For simplicity, we refer to the latter curves as “linear time” or “linear

executions”, according to the context.

Figure 9. Scaling analyses: (a) strong scaling and (b) weak scaling.

Figure 9(a) shows that d-Chiron speedup attains close to linear in almost all cases. d-Chiron’s

speedup was almost linear with 12 and 24 threads per process for all configurations of nodes.

However, it started to degrade speedup in the configuration with 48 threads per process and

40 allocated nodes (i.e., 960 cores in x-axis) since the number of threads was the double of

the number of available cores (1920 SchalaDB workers). Despite of this speedup

degradation, strong scalability experiment provides an important result, as we can use all

CPU cores of a large cluster to perform the actual scientific computation of the managed

application and d-Chiron still maintains high scalability.

Experiment 2: Weak scaling. Now we analyze how d-Chiron performs when we add

computing nodes as we add more tasks to the workload. More specifically, we measure the

execution time on 10 computing nodes (240 cores), 20 nodes (480 cores), and 39 nodes (936

cores) running about six, 12, and 23.4 thousand tasks, respectively. The mean task duration

is one minute in these workloads. Figure 9(b) shows the results, where the base time is for

the smallest number of cores tested (i.e., 240) and the linear time means that by doubling the

workload and number of computing nodes, ideally the execution time should remain

constant. We use 24 threads per processor since it provided the best performance versus

efficient usage of the available computational resources in the Experiment 1.

d-Chiron succeeds with weak scalability, as its curve remains close to the linear line. With

240 cores executing about 6 thousand tasks, the workflow finishes in 29 minutes. In 480

cores executing 12 thousand tasks, it takes 32.7 min. Ideally, it should also have taken about

29 minutes, i.e., 3.5 min (or 12%) longer than the if linear scalability was achieved. With 936

cores nodes running about 23.4 thousand tasks, it takes 39 min, i.e., 10.4 min (or 35%) longer

than the linear time. Considering that d-Chiron is running up to almost 24 thousand tasks,

from which 936 tasks are running in parallel and distributed among 39 computing nodes with

24 cores each, and that the linear time ignores intrinsic parallel management overhead, we

find that these results are satisfying. Moreover, d-Chiron maintains a DBMS with online data

for user queries and monitoring, which also introduces overhead, despite their advantages.

This overhead is the subject of another experiment.

These results lead us to further investigate d-Chiron’s performance by exploring a wider

variety of workloads. Even though in MTC scientific workflows, tasks are considered to be

200 400 600 800 1000

0

50

100

150

200

250

300 400 500 600 700 800 900

30

40

50

60

70

80
7 5 10 0 12 5 15 0 17 5 20 0 22 5

103

long-term, i.e., they may take many seconds or few minutes on average each [39], we now

evaluate d-Chiron on a wider variety of workloads, including short-term tasks. The objective

is to analyze d-Chiron’s performance when we scale the workload in two dimensions: number

of tasks and task duration. We run two experiments on 39 computing nodes (936 cores): fixed

task durations, varying number of tasks; and fixed number of tasks, varying task duration.

Experiment 3: Workload scalability – fixed task duration, varying number of tasks. In

this experiment, we analyze how d-Chiron performs when we vary number of tasks: from

small (about 4.6 thousand), to mid (about 12 thousand), and large (about 23.4 thousand); and

fixing two different task durations: short tasks (mean task duration of 5 seconds) and long

tasks (mean task duration of 60 seconds). Similarly to the previous experiments, Figure 10(a)

shows linear time for each setting; in this case, for each task duration (5s and 60s). We set

the base case for the linear time to be the smallest number of tasks tested.

Figure 10. Workload scalability analysis when varying (a) number of tasks and (b) task duration on average.

In this experiment, d-Chiron attains close-to-linear performance for both task durations, for

all number of tasks tested. For 5s, d-Chiron performs 2.7% and 6.3% worse than linear for

12 thousand and 23.4 thousand tasks, respectively. For 60s, d-Chiron performs 1.1% and

1.88% away from linear for 12 thousand and 23.4 thousand tasks, respectively. Therefore,

by analyzing the increase in number of tasks, we see that d-Chiron’s performance tends to

decrease when the number of tasks increases, for both task durations (5 seconds and 60

seconds). More tasks mean larger WQ and more parallel management overhead. Also, the

performance loss is slighter for the workload composed of longer tasks (60 seconds) than for

short tasks (5 seconds). This result indicates that for longer tasks, d-Chiron attains higher

scalability. We analyze this in more details in the next experiment.

Experiment 4: Workload scaling – varying task duration, fixed number of tasks. In this

experiment, we analyze task duration variation more deeply to see how d-Chiron performs

when we vary mean task duration from short (5 seconds as mean task duration) to longer

(120 seconds), fixing two different number of tasks: small (4.6 thousand) and large (23.4

thousand, about 5 times larger).

We plot the linear line by setting the base result (where d-Chiron achieves best performance)

as the longest task durations evaluated in this experiment, i.e., the workload with mean task

duration of 120 seconds. So, for instance, for a fixed number of tasks, if d-Chiron takes 𝑇

5 10 15 20

103

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

0

10

20

30

40

50

60

minutes to execute the workload composed of 120-seconds tasks, it should ideally take

approximately 120/60 ∗ 𝑇 minutes to execute the workload composed of 60-seconds tasks.

Figure 10(b) shows two linear curves, one for each fixed number of tasks evaluated (4.6

thousand and 23.4 thousand).

Analyzing the curves for 4.6 thousand tasks, we see d-Chiron runs close to the linear curve.

We see that the longer each task takes, the closer to linear d-Chiron’s performance tends to

be. For the worst result, i.e., for very short-term tasks, d-Chiron runs 4.6 thousand tasks in

3.1 minutes, whereas the linear would be in 0.6 minutes. Comparing the lines for 23.4

thousand tasks with the lines for 4.6 thousand, we see that d-Chiron is farther from the linear

line. The worst result also occurs for the workload of 5-second tasks, but for longer tasks, d-

Chiron performs well, even for the higher number of tasks. For example, for 60-second tasks,

d-Chiron runs in 39.6 minutes, whereas the linear would be in 32 min (about 20% away from

linear).

Key findings: From Experiments 3 and 4, we can conclude that our implementation of

SchalaDB performs better when tasks take longer, i.e., when they are more complex, which

is the expected workload for real scientific workflows as discussed in Section 5.1. Also, as

the number of tasks increases, the performance difference between short and long tasks

becomes more significant. The reason for this is that too many small parallel tasks overload

WQ, introducing large parallel management overhead and jeopardizing task scheduler’s

performance. In d-Chiron’s case, most of this overhead is caused by an excessive amount of

accesses to the DBMS in order to retrieve tasks from WQ. However, SchalaDB was designed

targeting at scientific workflows, where real workloads are typically composed of long-

lasting complex tasks, making runtime analysis a requirement.

5.3 Assessing DBMS Impact on Performance

In this section we measure every single DBMS access and see how they compare with the

overall workflow execution time. Regarding software and hardware settings used for all

experiments in this section, we use 39 computing nodes (936 CPU cores) in StRemi cluster.

Experiment 5: Analysis of time spent accessing the DBMS. In this experiment, we want

to further understand the details of the overhead caused by DBMS accesses during workflow

execution. In addition to the number of tasks, we investigate how much the spacing between

multiple parallel accesses to the database (mimicked by the task duration) affects the

performance, and how much of the total workflow time was dominated by DBMS accesses.

We measure the elapsed time of every single query on the database made by each node at

runtime. Then, for each node, we add up all elapsed times. As each node executes in parallel,

we consider the time spent accessing the DBMS in a workflow execution as the maximum

sum obtained this way.

We execute eight workloads composed of 23.4 thousand tasks each, with the following mean

task durations, in seconds: 1, 2, 3, 4, 5, 10, 30 and 60s. Each workload represents different

DBMS access patterns, varying from frequent concurrent accesses from many requesting

worker nodes (1 second tasks) to more sparse accesses (60 seconds tasks). The results are in

Figure 11, where the black bar represents the time spent in the DBMS and the gray bar

represents the total workflow time, which include the time spent by the actual application

being managed by the WMS and some other times – not related to DBMS accesses – spent

for workflow execution management. These DBMS accesses occur in parallel and in

background with the other operations.

Figure 11. Analyzing impact of DBMS accesses in d-Chiron.

From Figure 11, we can identify a pattern for workloads where concurrent accesses occur

more frequently (more evident from 1 to 3 seconds): the more frequent the concurrent DBMS

accesses are, the greater the time spent accessing the DBMS. For such frequent accesses in a

significant amount of tasks (23.4 thousand) and cores (936), the DBMS struggles to deal with

so many frequent concurrent transactions, making it a bottleneck. This experiment also

reveals that for workloads with such frequent accesses the DBMS access time is very close

to the overall execution time. In other words, the overall execution time was almost

completely dominated by time spent doing DBMS accesses. This result is important because

we see that when the workload is composed of tasks that take at least 5 seconds, the DBMS

access times do not depend on task duration. Thus, the negative impact of DBMS accesses is

more significant for workloads composed of short-term tasks because the WMS takes more

time performing DBMS accesses than application computation. However, when the

workflow execution time is at least greater than two times the time spent with DBMS

accesses, which happens for tasks that take about 25 seconds on average, the overhead

introduced by the DBMS-based scheduler solution pays off, as the DBMS is not

overwhelmed by so many concurrent transactions. Since DBMS operations run in

background, for workloads dominated by tasks with mean duration of 25 seconds, d-Chiron

is highly scalable as the DBMS overhead starts to become negligible when compared to

application computation time.

Therefore, when the application computation time is greater than the time spent in accessing

the DBMS, the overhead is amortized. This is the scenario where d-Chiron achieves best

performance and is the case for most scientific applications, which often process workloads

composed of tasks that take longer than one minute.

Experiment 6: Describing d-Chiron’s accesses to the DBMS. In this experiment we

analyze the time spent by main DBMS accesses at runtime by the workers. The results are in

percentages with respect to the time spent by all DBMS accesses. We use the same workloads

presented in Experiment 5. Since the number of DBMS accesses is proportional to the

number of tasks in all workloads from Experiment 5 (i.e., 23.4 thousand tasks), in this

Experiment 6 we only present results for the workload with tasks with mean duration of 10

seconds. In Figure 12, we show percentages of time spent by each kind of DBMS access,

0

5

10

15

20

25

30

35

40

relatively to the total time spent by all DBMS accesses. The total time is obtained as in

Experiment 5, for the 10 seconds workload.

Figure 12. Analyzing DBMS accesses through specific SQL queries.

These accesses are all related to task scheduling. Tasks need to be inserted in the WQ as

“READY” tasks. Then, each worker retrieves ready tasks, updates their status to

“RUNNING”, executes them, and finally updates their status to “FINISH”. We can see that

getREADYtasks by itself accounts for more than 40% of all DBMS accesses. Combined with

getFileFields, these two operations represent 44.7% of read-only time spent accessing the

DBMS. The other seven functions in Figure 12 are update operations and they account for

53% of the time spent accessing the DBMS. The remaining 2.3% are distributed over several

shorter DBMS operations, both reads and writes. These are all update transaction-like query

patterns (reading or writing specific rows of the WQ relation), confirming the main query

pattern for task execution in d-Chiron, even though interactive analytical queries are also

executed by users during workflow execution, as we show in Experiment 7.

These results also help to understand why DBMS access time is not only sensitive to mean

task duration, but also to the number of tasks. The greater the number of tasks, the greater

the number of those concurrent queries that need to update specific parts of the WQ relation.

Each update makes the DBMS deal with distributed concurrency control, which is a complex

operation. When these queries are not so frequent (i.e., for longer task duration), concurrency

is not so severe, making d-Chiron to achieve better performance.

Experiment 7: Running user analytical queries at runtime. Most of the experiments so

far tested d-Chiron performance to understand how the DBMS-driven scheduling behaves

under different workloads. In this experiment, we want to validate that the performance

enhancements obtained after modifying Chiron according to SchalaDB principles,

originating d-Chiron, do not affect system’s ability to support user steering through runtime

analytical queries. The support is maintained because d-Chiron still manages runtime

provenance, execution, and domain data in its database. Data schema in d-Chiron is quite the

same as in Chiron, it remains W3C PROV compliant. Therefore, in this experiment, we

confirm that user steering support is maintained. Also, we intend to analyze performance

overhead added to the workflow execution time by running such queries. For this, we run 8

typical user analytical queries in the Risers Fatigue Analysis domain during workflow

execution. Their natural language descriptions are in Table 2 and their corresponding SQL

code are available on GitHub [9], where we also provide the implemented data schema.

Queries from Q1 to Q6 analyze execution metadata and are of high importance for debugging

and execution profiling. Q7 uses execution and provenance data, being an example of a query

that relates dataflow output data of the fourth activity with output data of the second one,

associated to deviations in execution time. Finally, Q8 represents a user that has analyzed Q7

results, made a decision, and then adapts the workflow by modifying input data for an

intermediate workflow activity at runtime, illustrating d-Chiron’s user steering capabilities.

We execute the workflow using a previously tested workload: 23.4 thousand tasks with mean

task duration of 5 seconds each. We choose this workload because, as assessed in the previous

experiments, workloads dominated by short-term tasks (such as 5-seconds lasting tasks) are

more susceptible to higher latencies in d-Chiron due to a higher concurrent scenario. Thus, it

is expected that if the overhead caused by the steering runtime queries is not high for this

adversarial scenario, the overhead would remain low in a more favorable scenario with less

concurrency. We conduct the experiment as follows. Using the 936 cores of the cluster, we

run the workflow first without executing the set of steering queries, and then running each

query in intervals of 15s during workflow execution. The results are in Figure 13.

Figure 13. Comparing overhead with and without runtime queries.

0 0

2 5

5 0

7 5

10 0

12 5

15 0

17 5

20 0

Table 2. Analytical queries executed at runtime.

Q1
Considering just tasks that started from one minute ago to now, determine tasks status, number of

tasks that started, finished, and the total number of failure tries ordered by node.

Q2

Given a node hostname, for each task, determine task status and the total size in bytes of the files

consumed by the tasks that finished in the last minute. Order the results in descending order by

bytes and ascending order by task status.

Q3
Determine the hostname(s) of the nodes with the greatest number of tasks aborted or finished with

errors in the last minute.

Q4 Given a workflow identification, show how many tasks are left to be executed.

Q5

Considering workflows that are running for more than one minute, determine the name(s) of the

activity(ies) with the greatest number of unfinished tasks so far. Also, show the amount of such

tasks.

Q6
Determine the average and maximum execution times of tasks finished for each activity not

finished. Show the name of the activity and order by average and maximum time descending.

Q7

List cx, cy, cz, and raw data file path (output parameters produced in Pre-Processing activity) only

when Calculate Wear and Tear activity produces f1 value greater than 0.5 and when the average

time for the tasks in Calculate Wear and Tear activity takes more than average to finish.

Q8
Based on a previous runtime analysis, modify input values to be consumed by the Analyze Risers

activity, i.e., modify the input data for the next ready tasks for Analyze Risers activity.

Results show that the workflow execution time is approximately the same (less than 5% of

difference between the scenarios with and without queries) no matter if running or not the

queries at each 15 seconds, meaning that the overhead they cause is negligible. This happens

because the database is managed by the DBMS and it is mostly composed of metadata rather

than big raw data, which reside in files on disk, as discussed in the last experiment. Thus,

queries run very fast (in the order of hundreds of milliseconds each) due to the reduced

amount of data stored and parallel query processing in the in-memory DBMS. Additionally,

in a typical scenario, there are not multiple scientists simultaneously monitoring the

execution of a same workflow. This way, analytical queries are not expected to be executed

very often. Even in situations where dashboards are employed for monitoring workflows,

issuing queries more frequently (e.g., with refreshing intervals of one second), there is a small

impact in workflows’ execution times. In a previous work [49], we performed an experiment

that submitted 30 parallel queries at every second against a d-Chiron’s database and observed

an overhead of 3.19% in an execution that lasted 17 min.

5.4 Centralized vs. Distributed Execution Control and Task Scheduling

Finally, the last experiment aims at evaluating the impact of decentralization on the

scheduling and management of parallel tasks execution, our main goal when proposing

SchalaDB. For this, we compare d-Chiron with Chiron.

Experiment 8: Chiron vs. d-Chiron. We evaluate four typical combinations of workloads

of the risers workflow: (a) medium number of short tasks – 5 thousand tasks with mean task

duration of 1 second each; (b) medium number of long-term tasks – 5 thousand tasks with

mean task duration of 16 seconds; (c) large number of short tasks – 20 thousand tasks with

mean task duration of 1 second; and (d) large number of long-term tasks – 20 thousand tasks

with mean task duration of 16 seconds. Error! Reference source not found. shows the

execution times with 936 cores.

Figure 14. Comparing d-Chiron with Chiron.

In the best setting (i.e., large number of short tasks), d-Chiron runs 91% faster than

centralized Chiron. By analyzing all results together, we see that the centralized WQ

scheduling in Chiron clearly does not scale on this number of cores since it takes

approximately the same time executing (a) and (b) and also (c) and (d); hence, almost no

performance gain. d-Chiron, on the other hand, completely executes the workload (a) 48%

faster than workload (b), and executes (c) 42% faster than (d). Thus, either in large workloads

with short-term tasks, or in smaller workloads with long-term tasks, or any combination of

these, the in-memory DBMS-driven MTC scheduler outperforms the centralized DBMS-

0

10

20

30

40

50

60

70

80

based one. This is because Chiron’s centralized design struggles much more than d-Chiron’s

design following SchalaDB, which allows for direct access from worker nodes to the WQ

managed by an in-memory DBMS.

6. Related Work

We discuss recent workflow execution approaches that take advantage of a DBMS, as

SchalaDB proposes. There are DBMS provenance-based systems that support runtime data

analysis, which may help workflow adapting [41,45,46,51], but they are disconnected from

the workflow execution engine. There are several advantages when the workflow engine

integrates workflow execution data and provenance in a unified data management solution.

Provenance databases share a lot of information used in task scheduling like tasks, task

parameter values, task input data values, dependencies, and task execution time. These

information allow for analyses of task execution time, detecting outliers, in addition to a task

execution derivation path with its associated input and parameter data [13,26,29].

Several scheduling approaches are moving towards using a DBMS to support their

algorithms, like Radical Pilot [31] and Ray [32]. Since scheduling needs high concurrent

update transactional support, most solutions adopt MongoDB or similar document DBMSs.

Querying MongoDB added with provenance data allows for monitoring the workflow

execution. However, similarly to other WMSs that use a DBMS for scheduling, a document-

oriented DBMS has limited capabilities for analytical queries, particularly queries that join

multiple collections like the ones in Table 2. Next, we analyze WMS related approaches.

EMEWS [22] is a workflow system that uses the Swift/T [14,53] workflow engine, a highly

scalable solution, for task scheduling. To keep its scalability, Swift/T engine stores analytical

data in log files, which are loaded to a relational DBMS only when the workflow execution

finishes, i.e., for post-mortem analysis. Still, there are different databases using different

DBMSs and data models to manage, and the user does not have access to the data for

scheduling, jeopardizing the user steering support. Moreover, e-Science Central [22] is

another WMS that uses a graph-oriented DBMS to store execution data at runtime and, after

execution, it inserts execution data into a relational DBMS for post-mortem analysis.

Pegasus is a scalable WMS that has been used for a large number of real world scientific

applications, like LIGO for gravitational wave discovery [10,12,15]. Pegasus uses a DBMS

to store workflow data, which is available for the user to do runtime execution monitoring

and debugging, but provides a different one through a dashboard for event monitoring, which

makes it difficult to do integrated data analyses for user steering.

Stampede [21] is a similar approach to SchalaDB in the sense that it is a DBMS based

execution monitoring tool that can be plugged into a WMS. Stampede adopts a centralized

DBMS solution and has been evaluated with two different WMSs (Pegasus and Triana) to

show its monitoring facilities. However, it is also a solution that does not integrate monitoring

to domain or provenance data.

FireWorks is a scalable WMS [25] that also has a DBMS-driven workflow execution engine.

FireWorks uses data stored in MongoDB, a document-oriented DBMS, to manage states in

queues of the tasks. Querying MongoDB allows for monitoring the workflow execution.

However, similarly to other systems that use a DBMS for scheduling, a document-oriented

DBMS has limited capabilities for analytical queries that join multiple collections. Moreover,

its provenance data representation does not contemplate domain, execution, and provenance

data in a same database.

Chiron [34,35] collects provenance data following user’s interests and uses a relational

DBMS to integrate provenance, execution, and domain data both for the management of

parallel execution of tasks and to allow for runtime analytical queries. Chiron is W3C PROC

compliant, which helps users in using a uniform provenance data representation for different

workflows. However, Chiron employs a centralized approach for the management of data for

scheduling of parallel tasks, severely limiting its scalability. Although the DBMS is

continuously populated with data for analyses, Chiron implements a traditional master-

workers architecture, where the central master node is the only one that is able to access the

centralized DBMS. This not only introduces two single points of failure (at the master node

and at the centralized DBMS), but also, when the number of worker nodes or the WQ is large,

Chiron suffers from performance limitations.

We are not aware of any approach that supports user steering and attains high performance

workflow execution on large clusters. SchalaDB addresses open challenges described by the

scientific community [2,11,16], such as enabling human in the loop for steering and data-

aware workload scheduling. When provenance, domain and execution data are all related,

integrated in the same database, a user can run analytical queries to help steering [13,49],

analyze the results and monitor performance with domain data [43] at runtime. Like Chiron,

SchalaDB takes advantage of in-situ processing. According to Ayachit et al. [3], in-situ

processing uses network or shared memory to pass intermediate results. This is the case of

the workflow engine working with in-memory distributed DBMS to support workflow data

management. Provenance databases register entities (e.g., intermediate results) that are used

by workflow activities and that are generated by them. When the workflow intermediate

results are directly passed by the workflow engine to the in-memory provenance database,

data movements are avoided, particularly IO with logs. Additionally, the workflow engine

can make use of these data for runtime optimizations or adaptive scheduling, without

jeopardizing the workflow execution performance.

7. Conclusion

In this paper, we proposed SchalaDB, an architecture and a set of techniques based on

distributed data management for efficient workflow execution control and for user steering

support. Distributed data management techniques such as distributed concurrency control,

in-memory data processing, fault tolerance, and others improve the implementation effort in

managing scheduling data and other distributed workflow execution data. Using the same

DBMS also for workflow provenance data analysis makes the solution more appealing for

applications when both high performance and runtime data analyses are essential.

To evaluate its architecture and techniques, we implemented SchalaDB by modifying the

management of data for parallel task scheduling and for runtime data analysis of an existing

WMS, called Chiron, and we call d-Chiron the newer version with SchalaDB. With

SchalaDB we were able to remove all message passing communication related to tasks

scheduling, which was present in original Chiron. This approach reduces source code

complexity and effort on developing an efficient distributed concurrency control. By doing

this, SchalaDB addresses issues inherent to dataflow management, such as data pipelining.

We ran several experiments to validate the scalability of the implementation. We showed that

SchalaDB supports scalability very well when executing thousands of long-term tasks (that

last at least one minute each), with high scalability in all cases with longer tasks. It is known

that tasks in scientific applications require complex calculations usually taking more than a

minute each to execute [39]. Finally, we showed that because of SchalaDB, d-Chiron is at

least two orders of magnitude faster than original Chiron. Therefore, in addition to attaining

high efficiencies on up to 960 cores in an HPC cluster for typical scientific workloads

SchalaDB manages provenance, domain, and execution data in the same DBMS providing

complex runtime analytical queries, as shown in the experiments. We expect these results to

motivate workflow execution engine scientists and engineers to adopt a data-centered

solution in their engines. Future work will investigate how SchalaDB can explore different

hardware architectures, including GPUs, to manage machine learning workflows.

Acknowledgments

This work was funded by CNPq, FAPERJ and Inria (HPDaSc associated team). The

experiments were carried out using the Grid'5000 testbed from Inria

(https://www.grid5000.fr). The authors would also like to thank Pedro Paiva Miranda for his

help during the development of d-Chiron.

References

[1] Anglano, C., Brevik, J., Canonico, M., Nurmi, D., Wolski, R. Fault-aware scheduling for Bag-of-Tasks applications

on Desktop Grids. IEEE/ACM Int. Conf. on Grid Computing, 56–63, 2006.

[2] Atkinson, M., Gesing, S., Montagnat, J., Taylor, I. Scientific workflows: past, present and future. Future Generation

Computer Systems, 75:216–227, 2017.

[3] Ayachit, U., Bauer, A., Duque, E.P.N., Eisenhauer, G., Ferrier, N., Gu, J., Jansen, K.E., Loring, B., Lukić, Z., Menon,

S., Morozov, D., O’Leary, P., Ranjan, R., Rasquin, M., Stone, C.P., Vishwanath, V., Weber, G.H., Whitlock, B.,

Wolf, M., Wu, K.J., Bethel, E.W. Performance Analysis, Design Considerations, and Applications of Extreme-scale

in Situ Infrastructures. ACM/IEEE Supercomputing, 79:1-79:12, 2016.

[4] Butt, A.S., Fitch, P. ProvONE+: A Provenance Model for Scientific Workflows. Web Information Systems

Engineering, 431–444, 2020.

[5] Camata, J., Silva, V., Valduriez, P., Mattoso, M., Coutinho, A.L.G.A. In situ visualization and data analysis for

turbidity currents simulation. Computers & Geosciences, 110(C):23–31, 2018.

[6] Cario, R.L., Banicescu, I. A load balancing tool for distributed parallel loops. Proceedings of the International

Workshop on Challenges of Large Applications in Distributed Environments, 2003, 39–46, 2003.

[7] Chavan, S., Hopeman, A., Lee, S., Lui, D., Mylavarapu, A., Soylemez, E. Accelerating Joins and Aggregations on

the Oracle In-Memory Database. 2018 IEEE 34th International Conference on Data Engineering (ICDE), 1441–

1452, 2018.

[8] Davidson, S.B., Freire, J. Provenance and Scientific Workflows: Challenges and Opportunities. SIGMOD, 1345–

1350, 2008.

[9] d-Chiron. GitHub Repository. Available at: http://github.com/hpcdb/d-Chiron

[10] Deelman, E., Ferreira da Silva, R., Vahi, K., Rynge, M., Mayani, R., Tanaka, R., Whitcup, W., Livny, M. The Pegasus

workflow management system: Translational computer science in practice. J. Computational Science:101200, 2020.

[11] Deelman, E., Peterka, T., Altintas, I., Carothers, C.D., Kleese van Dam, K., Moreland, K., Parashar, M.,

Ramakrishnan, L., Taufer, M., Vetter, J. The future of scientific workflows. International Journal of HPC

Applications, 32(1):159–175, 2017.

[12] Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R., Chen, W., Ferreira da Silva,

R., Livny, M., Wenger, K. Pegasus, a workflow management system for science automation. Future Generation

Computer Systems, 46:17–35, 2015.

https://www.grid5000.fr/

[13] Dias, J., Guerra, G., Rochinha, F., Coutinho, A.L.G.A., Valduriez, P., Mattoso, M. Data-centric iteration in dynamic

workflows. Future Generation Computer Systems, 46(C):114–126, 2015.

[14] Duro, F.R., Blas, J.G., Isaila, F., Wozniak, J.M., Carretero, J., Ross, R. Flexible Data-Aware Scheduling for

Workflows over an In-memory Object Store. 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid), 321–324, 2016.

[15] F. da Silva, R. Pegasus and LIGO. Pegasus SWMS. Available at: https://pegasus.isi.edu/2016/02/23/pegasus-and-

ligo, 2016.

[16] F. da Silva, R., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R., Deelman, E. A characterization of workflow

management systems for extreme-scale applications. Future Generation Computer Systems, 75:228–238, 2017.

[17] Foster, I., Ainsworth, M., Allen, B., Bessac, J., Cappello, F., Choi, J.Y., Constantinescu, E., Davis, P.E., Di, S., Di,

W., Guo, H., Klasky, S., Dam, K.K.V., Kurc, T., Liu, Q., Malik, A., Mehta, K., Mueller, K., Munson, T., Ostouchov,

G., Parashar, M., Peterka, T., Pouchard, L., Tao, D., Tugluk, O., Wild, S., Wolf, M., Wozniak, J.M., Xu, W., Yoo,

S. Computing just what you need: online data analysis and reduction at extreme scales. Int. European Conf. on

Parallel and Distributed Computing, 3–19, 2017.

[18] Freire, J., Koop, D., Santos, E., Silva, C.T. Provenance for Computational Tasks: A Survey. Computing in Science

and Engineering, 10(3):11–21, 2008.

[19] Gil, Y., Honaker, J., Gupta, S., Ma, Y., D’Orazio, V., Garijo, D., Gadewar, S., Yang, Q., Jahanshad, N. Towards

human-guided machine learning. Proceedings of the 24th International Conference on Intelligent User Interfaces,

614–624, 2019.

[20] Groth, P., Moreau, L. W3C PROV - An Overview of the PROV Family of Documents. Available at:

https://www.w3.org/TR/prov-overview/, 2013.

[21] Gunter, D., Deelman, E., Samak, T., Brooks, C.H., Goode, M., Juve, G., Mehta, G., Moraes, P., Silva, F., Swany,

M., Vahi, K. Online workflow management and performance analysis with Stampede. Proceedings of the 7th

International Conference on Network and Service Management (CNSM), 1–10, 2011.

[22] Hiden, H., Woodman, S., Watson, P., Cala, J. Developing cloud applications using the e-Science Central platform.

Philosophical Trans. Royal Soc., 371(1983):20120085, 2013.

[23] Hoefler, T., Belli, R. Scientific Benchmarking of Parallel Computing Systems: Twelve Ways to Tell the Masses

when Reporting Performance Results. Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, 73:1-73:12, 2015.

[24] J, O., Nt, C., Jm, W., C, M., G, A. Extreme-scale Dynamic Exploration of a Distributed Agent-based Model with the

EMEWS Framework. IEEE Transactions on Computational Social Systems, 5(3):884–895, 2018.

[25] Jain, A., Ong, S.P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, G.-M.,

Hautier, G., Gunter, D., Persson, K.A. FireWorks: a dynamic workflow system designed for high-throughput

applications. Concurrency and Computation: Practice & Experience, 27(17):5037–5059, 2015.

[26] Klijn, W., Diaz-Pier, S., Morrison, A., Peyser, A. Staged deployment of interactive multi-application HPC

workflows. 2019 International Conference on High Performance Computing Simulation (HPCS), 305–311, 2019.

[27] Liu, J., Pacitti, E., Valduriez, P., Mattoso, M. A Survey of Data-Intensive Scientific Workflow Management. Journal

of Grid Computing, 13(4):457–493, 2015.

[28] Magagna, B., Goldfarb, D., Martin, P., Atkinson, M., Koulouzis, S., Zhao, Z. Data Provenance. Towards

Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach

for Common Challenges, Z. Zhao and M. Hellström, eds., Springer International Publishing, 208–225, 2020.

[29] Marchant, D., Munk, R., Brenne, E.O., Vinter, B. Managing Event Oriented Workflows. 2020 IEEE/ACM 2nd

Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP), 23–28, 2020.

[30] Mattoso, M., Dias, J., Ocaña, K.A.C.S., Ogasawara, E., Costa, F., Horta, F., Silva, V., de Oliveira, D. Dynamic

Steering of HPC Scientific Workflows. Future Generation Computer Systems, 46(C):100–113, 2015.

[31] Merzky, A., Turilli, M., Maldonado, M., Santcroos, M., Jha, S. Using Pilot Systems to Execute Many Task

Workloads on Supercomputers. arXiv:1512.08194 [cs], 2018.

[32] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M.I.,

Stoica, I. Ray: A Distributed Framework for Emerging {AI} Applications, 561–577, 2018.

[33] Mulder, J.D., van Wijk, J.J., van Liere, R. A Survey of Computational Steering Environments. Future Generation

Computer Systems, 15(1):119–129

[34] Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M. An algebraic approach for data-centric

scientific workflows. PVLDB, 4(12):1328–1339, 2011.

[35] Ogasawara, E., Dias, J., Silva, V., Chirigati, F., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M. Chiron: A Parallel

Engine for Algebraic Scientific Workflows. Concurrency and Computation: Practice & Experience, 25(16):2327–

2341, 2013.

[36] Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M. SciCumulus: A Lightweight Cloud Middleware to Explore Many

Task Computing Paradigm in Scientific Workflows. International Conference on Cloud Computing, 378–385, 2010.

[37] Oracle. MySQL Cluster Evaluation Guide, White Paper, Oracle, 2020.

[38] Özsu, M.T., Valduriez, P. Principles of Distributed Database Systems. 4 ed. New York, Springer, 2020.

[39] Raicu, I., Foster, I.T., Zhao, Y. Many-Task Computing for Grids and Supercomputers. ACM/IEEE Supercomputing

workshops: MTAGS, 2008.

[40] Shu, T., Guo, Y., Wozniak, J., Ding, X., Foster, I., Kurc, T. In-situ Workflow Auto-tuning via Combining

Performance Models of Component Applications. arXiv:2008.06991 [cs], 2020.

[41] Silva, V., Campos, V., Guedes, T., Camata, J., de Oliveira, D., Coutinho, A.L.G.A., Valduriez, P., Mattoso, M.

DfAnalyzer: Runtime dataflow analysis tool for Computational Science and Engineering applications. SoftwareX,

12:100592, 2020.

[42] Silva, V., Leite, J., Camata, J.J., de Oliveira, D., Coutinho, A.L.G.A., Valduriez, P., Mattoso, M. Raw data queries

during data-intensive parallel workflow execution. Future Generation Computer Systems, 75:402–422, 2017.

[43] Silva, V., Neves, L., Souza, R., Coutinho, A.L.G.A., de Oliveira, D., Mattoso, M. Adding domain data to code

profiling tools to debug workflow parallel execution. Future Generation Computer Systems, 110:422–439, 2020.

[44] Souza, R. Controlling the Parallel Execution of Workflows Relying on a Distributed Database. MS Thesis, Federal

University of Rio de Janeiro, 2015.

[45] Souza, R., Azevedo, L., Thiago, R., Soares, E., Nery, M., Netto, M., Brazil, E.V., Cerqueira, R., Valduriez, P.,

Mattoso, M. Efficient Runtime Capture of Multiworkflow Data Using Provenance. IEEE International Conference

on e-Science, 1–10, 2019.

[46] Souza, R., Azevedo, L.G., Lourenço, V., Soares, E., Thiago, R., Brandão, R., Civitarese, D., Brazil, E.V., Moreno,

M., Valduriez, P., Mattoso, M., Cerqueira, R., Netto, M.A.S. Workflow Provenance in the Lifecycle of Scientific

Machine Learning. arXiv:2010.00330 [cs], 2020.

[47] Souza, R., Mattoso, M. Provenance of Dynamic Adaptations in User-Steered Dataflows. Provenance and Annotation

of Data and Processes, 16–29, 2018.

[48] Souza, R., Silva, V., Camata, J.J., Coutinho, A.L.G.A., Valduriez, P., Mattoso, M. Keeping track of user steering

actions in dynamic workflows. Future Generation Computer Systems, 99:624–643, 2019.

[49] Souza, R., Silva, V., Coutinho, A.L.G.A., Valduriez, P., Mattoso, M. Data reduction in scientific workflows using

provenance monitoring and user steering. Future Generation Computer Systems, 110:481–501, 2020.

[50] Souza, R., Silva, V., Oliveira, D., Valduriez, P., Lima, A.A.B., Mattoso, M. Parallel Execution of Workflows Driven

by a Distributed Database Management System. ACM/IEEE Int. Conf. for HPC, Networking, Storage, and Analysis

(Supercomputing), 1–3, 2015.

[51] Suriarachchi, I., Plale, B. Crossing analytics systems: a case for integrated provenance in data lakes. IEEE

eScience:349–354, 2016.

[52] Wang, D., Weisz, J.D., Muller, M., Ram, P., Geyer, W., Dugan, C., Tausczik, Y., Samulowitz, H., Gray, A. Human-

AI Collaboration in Data Science: Exploring Data Scientists’ Perceptions of Automated AI. Proceedings of the ACM

on Human-Computer Interaction, 3(CSCW):211:1-211:24, 2019.

[53] Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T. Swift/T: Large-Scale Application

Composition via Distributed-Memory Dataflow Processing. Proceedings of the 13th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), 95–102, 2013.

	1. Introduction
	2. Data Management in Large-scale Workflows
	2.1 Execution Data
	2.2 Provenance Data
	2.3 Domain Data

	3. SchalaDB: Scalable Distributed Data Management for Workflow Executions
	3.1 SchalaDB Architecture and Techniques
	3.2 SchalaDB Techniques for Data Partitioning

	4. d-Chiron WMS: An Implementation of SchalaDB
	5. Experimental Evaluation
	5.1 Experimental Setup
	5.2 Scalability Analysis
	5.3 Assessing DBMS Impact on Performance
	5.4 Centralized vs. Distributed Execution Control and Task Scheduling

	6. Related Work
	7. Conclusion
	Acknowledgments
	References

