
HAL Id: lirmm-03228297
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03228297

Submitted on 18 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fault Tolerant Control Architecture Based on Fault
Trees for an Underwater Robot Executing Transect

Missions
Adrien Hereau, Karen Godary-Dejean, Jérémie Guiochet, Didier Crestani

To cite this version:
Adrien Hereau, Karen Godary-Dejean, Jérémie Guiochet, Didier Crestani. A Fault Tolerant Control
Architecture Based on Fault Trees for an Underwater Robot Executing Transect Missions. ICRA
2021 - 38th IEEE International Conference on Robotics and Automation, May 2021, Xi’an, China.
pp.2127-2133, �10.1109/ICRA48506.2021.9561735�. �lirmm-03228297�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03228297
https://hal.archives-ouvertes.fr


A Fault Tolerant Control Architecture Based on Fault Trees
for an Underwater Robot Executing Transect Missions

Adrien Hereau1, Karen Godary-Dejean1, Jérémie Guiochet2, Didier Crestani1

Abstract— Robotic systems evolving in hazardous and harsh
environment are prone to mission failure or system loss
in presence of faults. This paper presents a fault tolerant
methodology, implemented into a control architecture of an
underwater robot that executes biological monitoring missions.
High level constraint violations (mission, safety, energy, time
and localization) and low level faults (software and hardware
faults) are considered using a method based on fault trees.
These undesirable events are detected and treated by a fault
tolerant module that decides to recover at low level or to give
a feedback to the mission manager which selects the high level
reaction. This fault tolerant architecture has been tested on real
field conditions, and we illustrate our methodology on a set of
selected events. We conclude about reliability improvement of
low cost underwater robots for complex and long missions.

I. INTRODUCTION

Dependability is a key aspect in robotic systems ([1],
[6]). For a mobile robot evolving in a hazardous and harsh
environment, it is difficult to predict all the faults, especially
for underwater robotics. For example, [16] noted a lot of
faults on several glider underwater robots that perform long
missions. 297 missions were performed across the world, 49
of them ended with a critical problem and 9 robots were
lost. The faults can be of various types: sensors, mechanical,
electrical, software or physical damage.

Due to the lack of low-cost efficient hardware, the un-
derwater robot hardware is often expensive since it must
be water proof while withstanding high pressure. This is
also a small market where supply and demand did not lead
to development of affordable and highly efficient industrial
products. In practice, the main problem remains that there
is no easy absolute and precise localization as the GPS
signal is not available under water. The preferred approaches
generally use acoustic (sonar, USBL) or vision sensors which
are often imprecise, slow, expensive and/or sensitive to
environmental conditions. Thus dependability is even more
a challenge for underwater robotics.

In 2019, we developed an underwater robot that performed
transect missions in Mayotte for biological purposes [7].
A transect consists in traveling a horizontal straight line
between two points, while recording marine ecosystem data.
Our robot underwent several physical constraints that were
not well established at that time: pulling force on the
cable, low precision of the low cost sensors. . . To validate
the correct execution of the robot and of the mission, we
designed an oracle test defining 5 property classes: mission,
safety, time, energy and localization. According to this test

1 LIRMM, University of Montpellier, CNRS, Montpellier, France
2 LAAS-CNRS, University of Toulouse, CNRS, UPS, Toulouse, France

methodology, we demonstrated in [7] that our robot was
not reliable enough when performing its mission as many
properties were violated.

The objective of this paper is to present a methodology that
designs a fault tolerant control architecture for a low-cost
underwater robot that executes autonomous missions. The
first step of our methodology is inspired from common fault
forecasting techniques, to describe and predict the possible
occurrence of faults and their consequences using fault trees
implementation. Then we implement in the embedded robot
controller the classical scheme for fault tolerance: detection,
diagnosis and recovery [1]. The originality of our approach
is the two-levels recovery method. Indeed, robots must deal
with undesired events at every level, from the violation of the
high level properties cited above which may cause recovery
actions at the mission management level, to the lower level
events in the system (the faults) which can be resolved by
local reactions.

In section II, we present different approaches proposed
in the literature addressing the fault tolerance in mobile
robotics. Then we describe our robotic system and the
reference mission used to illustrate our methodology in
section III. In section IV, we present the methodology to
deal with high and low level undesired events. We present
the fault tolerant module that detects in real time the presence
of undesired events in the system then we focus on the
recovery functionality. In section V, we propose and analyze
the results of our underwater robotic mission in the field.
Finally we conclude in section VI.

II. RELATED WORK

In this section, we study the existing fault tolerant tech-
niques in the literature. As a first ascertainment, many
approaches relies on strong hypotheses such as the prior
knowledge needed to forecast the faults ([8] [3]). Some
papers are based on the single fault assumption [13], which
is very reductive in an open environment where various faults
can occurs at the same time.

Most of the detection methods rely on model-based ap-
proaches. The main difficulties of these approaches are to
choose the detection thresholds and to determine the robot
model. [19] detects the residuals between a model and
the sensor on a Roomba robot. The detection thresholds
are calculated by an adaptive law. [9] prefers to use a
sensor-based approach for robotic system fault detection and
diagnosis using correlations between sensors. [4] chooses to
detect fault on actuators for underwater robots based on the
energy consumption. A widespread approach is also to use



comparison between sensors to detect invalid sensor data
using multiple data fusions [2].

Many works put their attention on the diagnosis of faults
but few works are relating fault analysis and online diagnosis.
For instance, [8] uses fault tree (FT) analysis to diagnose
the possible cutsets, that are sets of component failures
that could lead to a global system failure. FT are usually
used to find the minimal cutsets of a system and to try to
calculate the probability of an undesired event. The system
is considered as safe if the probability of fault occurrence is
sufficiently low. FT are a good way to inventory faults and
are widely used in aerospace [18]. They have proved their
efficiency in modeling faults in complex systems. Other risk
analysis technique can be used, like in [3] where FMECA
analysis is combined with incidence matrix using residuals
from sensors. From a list of bad residuals, it is then possible
to diagnose a particular fault.

Recovery is the final step of fault tolerance. Recoveries can
intervene at several levels in the architecture. For example
at low level, [13] and [17] deal with recovering flying
drones by compensating faulty actuators with valid ones.
At a higher level, [12] deals with multi-robot applications
and chooses many possible recoveries: change path, reset
algorithm, request or alert human, reset parameters, switch
to wait state. In [11], the recovery is carried at in the decision
layer, where redundant planners are used in case of failures
to replan switching from one planner to another (sequentially
or concurrently). The authors of [5] use FT and can trigger
reactions at different level, depending on the detected faults.
The reactions to preserve the safety are: emergency stop,
controlled stop, restart nodes, change autonomy level. On
the opposite, authors of [10] favor the mission first. They use
the same breakdown of fault categories as ours and propose
to use redundancy and mission replanning if needed. [14]
simply recovers with a replanning of the path of a rover in
order to continue the mission. Other approaches adapt the
level of autonomy of the robot depending on the severity of
the fault [3].

To our knowledge, no real complete architecture success-
fully embeds high level constraint violation management
(mission, safety. . . ) and low level fault management (sensor,
actuators. . . ) for a robot in an open field. We propose then
an architecture that addresses this issue, embedded in the
robotic system described in next section.

III. SYSTEM AND MISSION DESCRIPTIONS
A. System Description

The underwater robot (Fig. 1) is an improvement of a
previous version described in [7]. With 4 vertical and 4
horizontal thrusters (M1 to M8), the robot is a 6 degrees of
freedom (DoF) semi-AUV. It embeds 6 sensors (echosounder,
IMU, pressure, camera, GPS and USBL), and 4 batteries
allowing a 4-hours energy autonomy. The mission is done
autonomously but a communication between the surface and
the robot is provided through a 200 meters Ethernet cable.
The operator can launch or interrupt an ongoing autonomous
mission, and remotely control the robot. The long-term

objective is to remove the cable to perform fully autonomous
tasks.

Fig. 1. The REMI robot

The software control architecture embedded on the con-
troller is shown in the left side of figure 3. It consists of sev-
eral independent modules launched by module manager.
sensors driver is composed of several independent

modules receiving data from the USBL (3D absolute position
= X , Y , depth), the echosounder (altitude), the vertical
camera (surge and sway velocities), the embedded GPS
(X , Y ), the IMU (attitude, rotational speeds, accelerations),
the pressure (depth) and the water leak sensors. Using an
extended Kalman filter and a dynamic model of the robot,
state estimator module processes the sensor data and
the thrust of the propellers to determine the state of the robot
(position and speed).
task controller calculates the desired motor Pulse

Width Modulation (PWM) commands to perform the current
task and sends them to motors driver which commands
the motors through power-switches and speed controllers.
mission manager decides the task to launch from its
knowledge of the actual task, of the desired mission and
of the robot state. surface comm gets the user command
(desired mission or remote control command) and sends back
the supervision information to the surface.

We add fault manager (right side of figure 3) module
that detects and diagnoses the encountered undesired events.
This module is also able to launch low level recovery
actions that do not impact directly the mission execution.
Its description is detailed in section IV.

B. Mission Description

We focus on the transect mission in autonomous mode.
A transect (described in Fig. 2) is basically defined by its
Start Point (SP) and End Point (EP). A virtual straight line
called Transect Line (TL) links SP and EP. A transect can
be executed either at constant depth or constant altitude
according to user needs.

We identify 4 Mission Phases (MP) during the mission.
In initial phase 0 (MP0), the robot dives vertically until a
certain depth and checks

The goal of our work is to allow our robot to execute this
mission autonomously while remaining safe.



Fig. 2. Transect mission description: The robot dives and looks for the
USBL signal. Then its goes to SP, performs the transect and finally goes
back to ship.

IV. METHODOLOGY OF FAULT TOLERANCE

We developed a methodology based on the classical
scheme of fault tolerance [1]: detection-diagnosis-recovery,
preceded by a fault forecasting phase. In this phase, we
perform an analysis of the properties of our system over
several axes and we list them using fault trees (FT). During
the mission execution, we detect undesired events with
classical methods, then we use the FT to diagnose the events
and we recover at two levels: low level for local reactions
and high level for a task change (Fig. 3). This methodology
takes into account all the variability of events that underwater
robots can encounter.

In this section, we describe each step of our methodology,
illustrating them on our case study, but focusing mainly on
the recovery aspect. For that reason, we choose as example
simple events to detect and diagnose, but with different
recovery possibilities.

Fig. 3. Architecture for fault tolerance

A. Fault Forecasting

The first step of our methodology is inspired from fault
forecasting methods, allowing to estimate the present num-
ber, the future incidence, and the likely consequences of
faults [1]. We list the properties the system has to validate
to guarantee a safe and correct execution of the mission, and
we determine the undesirable events that could provoke the
violation of these properties.

List of the properties and the undesirable events of our
case study: To operate a correct and safe mission, the robot
must satisfy several properties. As in our previous works
([10] [7]), we divide these properties into 5 classes. The time
class imposes constraints over the duration of the mission
phases. The safety class imposes constraints to preserve the
integrity of the robot and its environment. The energy class
imposes constraints to make sure there is enough remaining
energy to finish the mission. The localization class imposes
constraints on the precision of the localization. Finally, the
mission class deals with the user-oriented constraints over
the whole mission. In table I, we present the short list of
the properties we focus on in this paper, restricted to classes
Mission, Energy and Safety.

TABLE I
SOME PROPERTIES OF THE TRANSECT MISSION

Class Property Description
Mission P1 The robot must remain close to TL

Safety P2 The robot must remain at safe
distance from the seabed

P3 The robot must be able to control its 6DoF

Energy P4 The robot must have enough
energy to finish the mission

We consider that the violation of a property is a failure of
the system, and faults are the direct or indirect causes of a
failure.

Building fault trees: We use FT to inventory the unde-
sirable events and represent the relations between them, i.e.
between the violation of the properties and the faults. As
seen in section II, FT are often used to forecast undesirable
events and improve the reliability of a system. We use them
in a different way, as we note FT are easy to implement
on an embedded device to run in real time, which will be
useful for the diagnosis phase. For simplicity, we use in the
FT only the basic gates (AND, OR, Transfer) and the basic
events [18].

We build the global FT of the system with 4 sub-fault trees
representing the failures including mission, safety, energy
and localization classes. The time constraint violations are
integrated in the mission sub-fault tree, and the undesirable
events of the system can be present in all the sub-fault trees.

The mission sub-fault tree is built by cutting the mission
into mission phases as explained section III-B. Basically,
there is a failure in the mission if there is a failure in one of
its mission phases. In each phase, a failure is a violation of
a property defined by the user, as for example the violation
of P1.

For the safety sub-fault tree (Fig. 4), we list as failures all
the undesired events that could have important consequences.
For example, we want to avoid any collisions with the
seabed. There are several steps we can consider before a
collision. For that reason, we define a critical zone very close
to the seabed (0.5m) in which the robot must not enter (this is
property P2), and a warning zone (1.1m) before the critical
zone (0.5m). If the robot enters into one of these zones,



an undesired event is detected, but with different recovery
actions. These two cases are represented in Fig. 4 with the
events SAFE 1 and SAFE 1 1.

Regarding safety, we can cite another example as the
violation of P3, which leads to the failure SAFE 2 in Fig. 4.
This could be the consequence of a system fault, as for
example a problem on the actuators.

Fig. 4. Extract of the safety sub-fault tree

B. Detection and Diagnosis

In this article, we use basic fault detection methods which
consist in comparing a data value with a threshold. Also, we
do not illustrate the diagnosis part, supposing the detected
undesired event is sufficient to engage a recovery action.

Example for our case study: In this paper, we focus on
5 undesired events linked with the failures of the properties
described in table I:

E1: violation of P1. We check when the distance between
TL and the estimated position of the robot is superior
to a specific threshold (1m) during more than a certain
time (10s). Basically, we compute the distance between
a point and a line in 3D space.

E2: related to P2: the robot enters the warning zone of
the seabed. We detect this event by checking if the
estimation of the altitude is below a threshold (1.1m).

E3: violation of P2: the robot enters the critical zone. We
detect it as E2 but with a different threshold (0.5m).

E4: M6 (see Fig. 1) is not operational. It can lead to a vio-
lation of P3 if a specific set of other motors are out of
service. We can detect that a motor is down by looking
at its consumption. As shown in Fig. 5, a motor which is
blocked1, consumes more intensity than an operational
one. This figure presents experimental results we have
done on our robot, individually actuating the motors in
different situations and measuring the current intensity
thanks to a power-switch.

1In submarine robotics, this problem is quite common due for example
to corrosion because of the salt residue, or to seaweeds stuck in the screws.

E5: violation of P4. Thanks to a model of the energy con-
sumption of our system2, we estimate the energy needed
for the robot to finish its mission. We also estimate the
energy remaining in the robot. The undesired event is
present if the remaining energy is below the needed
energy to finish the mission (plus a safety margin).

Fig. 5. Mean power-switch current measured for a motor actuated with a
constant PWM input value (1600µs)

C. Recovery

The objective of a recovery is to suppress an undesirable
event or to stabilize it in order to prevent the failure to occur.
Depending on the event detected or diagnosed, there are two
levels of recovery actions: either at local level to prevent
more serious consequences, or at decisional level when it is
necessary to act at the mission level. These recovery levels
are directly linked with the sub-fault trees levels (Fig. 4).
Basically, the occurrence of event at level 1 of a sub-fault
tree is directly sent to the mission manager. This last one
will take the decision to change the task the robot has to
execute, in order to prevent disastrous consequences. On
the other hand, if the detected event is at a lower level,
we try to carry out local recovery actions to prevent this
event to propagate to higher levels. Such recoveries could
be changing parameters of algorithms, restarting software
modules, managing the redundancy. . .

Examples for our case study:
E1 is a level 1 event in the mission sub-fault tree. As a

consequence, the reaction is at high level. The biologists
estimate that being too far from the desired ecosystem
they want to monitor is without interest, so in that case
the mission manager will stop the transect mission.

E2 is a level 2 event (SAFE 1 1). As it exists a low level
recovery (its failure is represented by event SAFE 1 2
on Fig. 4), E2 is then treated locally. The recovery con-
sists in replacing the desired heave command calculated
by the task controller by a command that will bring the
robot towards the surface (here -40 Newtons).

E3 is a level 1 event in the safety sub-fault tree (SAFE 1).
If this event occurs, the previous local recovery planned
to move away from the warning zone has failed. The
recovery is thus at high level and the mission manager
will for example stop the mission, considering that the
risk of collision with the seabed is too high.

E4 is located in the safety sub-fault tree but not at level 1.
The local recovery here is the management of the actu-
ators redundancy, as our robot is over-actuated [15]. It

2Ongoing works adapted from [10] for submarine robots.



consists in rebuilding the actuator configuration matrix
(A), to use only the valid actuators. We also check that
all the DoF may be reached by verifying if the rank
of A is 6. Basically for our robot, there must be 1
or less vertical and 1 or less horizontal motor broken.
In that case, we recalculate the actuator distribution
matrix (A+) as the Moore–Penrose pseudo-inverse of
A. If the rank of the A is inferior to 6, then the robot
cannot control all its degrees of freedom and becomes
uncontrollable (the robot is under-actuated). It is then
a violation of P3 (SAFE 2) that triggers a high level
reaction. In that case, depending on the available DoF,
the mission manager will decide which tasks could still
be done by the robot.

E5 is at level 1 of the energy sub-fault tree, so the reaction
is at high level. Different reactions could be imagined
here, depending on the remaining energy and the pos-
sible tasks. Typically, if the robot could not execute the
core of the transect (MP2), the mission manager will
interrupt the current task and order to go back to the ship
immediately if possible. This could allow for example
to change the batteries of the robot and reprogram the
mission.

V. EXPERIMENTAL RESULTS

In 2020, we performed transect missions in several experi-
mental sites. The goal is to illustrate the behavior of the robot
when it undergoes the previously listed events. For some
of them, we deliberately put the robot in specific situations
leading to these events. The others were simulated.

E1 - Distance to the transect line TL: We perform a
normal transect then pull the cable at t=112s to deflect the
robot from TL during more than 10s. We plot the distance
between the robot and TL over time on Fig. 6.

Fig. 6. Distance to TL during a transect with a detection of E1. We start
pulling the cable around t=112s. At t=127s, the fault manager detects that
the robot is too far from TL for more than 10 seconds. The mission manager
decides then to stop the mission.

As expected, the robot detects that the robot is far from
TL during 10s. This property needs a high-level recovery
action: the information must be given to the mission manager
which decides to stop the mission and the motors. As a
consequence, the robot naturally rises to the surface with
the positive buoyancy and so moves away from TL.

E2 - Distance from the seabed < 1.1m: We run a
transect with a fixed desired depth of 4.5m. The total water
column starts from 6.0m and decreases to 4.5m along the

transect path. As a consequence, when staying at a constant
depth, the robot gets closer to the seabed and finally triggers
E2. On Fig. 7, we plot the depth and the altitude of the robot,
with the targeted depth (which depends on the mission phase)
and a minimal altitude of 1.1m provoking the event.

The robot tries to reach the targeted depth (MP0 and
MP1). Then at the beginning of MP2, it stabilizes around
the targeted depth while the altitude decreases. At t=237s,
the robot reaches the warning zone of 1.1m: an event is
detected, with an available low level recovery.

Thus the robot starts to react by sending a heave command
in order to go up (Fig. 8). Once the robot returns above the
limit altitude, the behavior becomes normal again and the
robot tries to reach the desired depth. Then this behavior is
repeated until the end of MP2 as the water column remains
inferior to (4.5+1.1)m.

Fig. 7. Altitude and depth during a transect with a detection of E2

Fig. 8. Heave command during a transect with a detection of E2. Positive
heave command will make the robot to dive whereas negative command
will make the robot float back to the surface.

E3 - Distance from the seabed < 0.5m: We run a third
transect similar to the second one except that the desired
depth was 7.5m. We also deactivate the detection of E2 in
order to pass below the 0.5m. When the robot reaches the
critical altitude of 0.5m, E3 is detected. Through the mission
manager, the robot decides to stop the mission and to go up
to the surface.

E4 - Controllability of the robot: We run a fourth
transect with a targeted depth of 3m where we simulate that
M6 breaks down 30s after the beginning of MP2. The PWM
commands of the vertical motors are plotted in Fig. 9 and
the depth of the robot in Fig. 10.

When the event is detected, the robot reacts and recovers
at low level. As described in the previous section, the robot



Fig. 9. PWM command of vertical motors during a transect with a detection
of E4. After the recovery, the robot stop sending commands to M6 which
is considered to be out of order. To compensate the loss of M6, the robot
allocates the forces to the other vertical motors M2 and M7.

Fig. 10. Depth during a transect with a detection of E4. The depth remains
stable despite the loss of M6.

reallocates the remaining thrusters. M6 is no longer actuated,
its PWM input command becomes equal to the neutral value
1500µs. As a consequence, the diametrically opposite motor
(M3) is not used for heave command anymore but only for
the robot roll and pitch stabilization. The remaining vertical
motors M2 and M7 deal with the heave command. We also
see on Fig. 10 that the depth remains stable around 3m
despite the loss of one motor, which proves that the fault
tolerance mechanism is efficient.

E5 - Energy management: At this stage, the energy
model of the robot is not yet available. The generation of
this event is then only possible in simulation, with a low
interest to show here.

VI. CONCLUSION

In this paper, we present an original methodology for the
improvement of dependability of an underwater robot exe-
cuting autonomous missions. The first step is the forecasting
of properties defining a correct mission, and of the events
that could prevent these properties to be respected. We used
the well known Fault Trees (FT) to analyse events leading to
the violation of 5 classes of properties: mission, energy, time,
localization, and safety of the robot and its environment.
Then we implement a detection-diagnosis-recovery scheme
in the fault tolerant control architecture embedded on the
robot, using FT for the diagnosis and low level recovery.
Indeed, the recovery management is done at two levels: the
low local level which does not influence the execution of
the mission, and the high decisional level through a mission

manager which changes the task of the robot (not described
in this paper).

We implement this fault tolerant architecture in our robotic
underwater platform and perform some experiments to illus-
trate our methodology. We present and explain experimental
results, performing an in-the-field test campaign of transect
missions, using fault injection to trigger the recovery mech-
anisms. Our approach seems to be able to manage faults
efficiently preventing catastrophic damage while preserving
the mission objective as far as possible.

Many works are needed to completely validate the fault
tolerant architecture on our low-cost underwater robot REMI
for the next monitoring campaign planned in 2021 in Mayotte
with the marine biologists for the BUBOT project3. In the
short term, all the event detection algorithms and low-level
recovery must be implemented, the robot energy model must
be finalized to manage energy-related undesired events, and
the links with the mission manager must be tested in the field.
Moreover, the Mayotte campaign feedback will be useful to
identify new unplanned faults and to identify the limitations
of our approach.

In the long term, we plan to tackle more deeply the man-
agement of the high-level event implementing performance
guaranty using embedded hardware and software resources
allocation or mission modifications. We also envisage to link
the fault management to more classical planning techniques
to enhance the richness, the reliability and the efficiency of
the mission management.

Depending on the mission, the environment and the robotic
system, we can easily adapt our methodology to broader
applicative contexts than submarine robotics, as any au-
tonomous mobile robot is subject to mission, safety and
system failures. More than the technical tools (e.g. adapting
the fault trees to other contexts and events), there are two
important elements of our works that could be useful to
extend in other robotic contexts. First, the consideration of a
two levels recovery mechanism combining low level reactive
management to higher decionnal techniques. Second, the
formalisation of the properties that express the success of
a mission. The importance and the difficulty of this step is
often neglected while it is a key point to design a reliable
system providing the performances desired by the users.

ACKNOWLEDGMENT

This work was partially funded through ANR (the French
National Research Agency) under the ”Investissements
d’avenir” program (PIA) with the reference ANR-16-IDEX-
0006, and by the Occitanie region.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE
Transactions on Dependable and Secure Computing, 1(1):11–33, Jan-
uary 2004.

[2] K. Bader, B. Lussier, and W. Schön. A fault tolerant architecture
for data fusion: A real application of Kalman filters for mobile robot
localization. Robotics and Autonomous Systems, 88:11–23, February
2017.

3www.lirmm.fr/bubot/

www.lirmm.fr/bubot/


[3] D. Crestani, K. Godary-Dejean, and L. Lapierre. Enhancing fault
tolerance of autonomous mobile robots. Robotics and Autonomous
Systems, 68:140–155, June 2015.

[4] V. De Carolis, F. Maurelli, K. E. Brown, and D. M. Lane.
Energy-aware fault-mitigation architecture for underwater vehicles.
Autonomous Robots, 41(5):1083–1105, June 2017.

[5] A. Favier, A. Messioux, J. Guiochet, J.-C. Fabre, and C. Lesire.
A hierarchical fault tolerant architecture for an autonomous robot.
In International Conference on Dependable Systems and Networks
Workshops, Valencia, Spain, June 2020.

[6] J. Guiochet, M. Machin, and H. Waeselynck. Safety-critical advanced
robots: A survey. Robotics and Autonomous Systems, 94:43–52,
August 2017.

[7] A. Hereau, K. Godary-Dejean, J. Guiochet, C. Robert, T. Claverie,
and D. Crestani. Testing an Underwater Robot Executing Transect
Missions in Mayotte. In 21st Towards Autonomous Robotic Systems
Conference, Nottingham, United Kingdom, September 2020.

[8] E. E. Hurdle, L. M. Bartlett, and J. D. Andrews. System fault
diagnostics using fault tree analysis. Proceedings of the Institution
of Mechanical Engineers, Part O: Journal of Risk and Reliability,
221(1):43–55, March 2007.

[9] E. Khalastchi and M. Kalesh. A sensor-based approach for fault
detection and diagnosis for robotic systems. Autonomous Robots,
42:1231–1248, 2018.

[10] P. Lambert, L. Lapierre, and D. Crestani. An Approach for Fault
Tolerant and Performance Guarantee Autonomous Robotic Mission.
In 2019 NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), pages 87–94, Colchester, United Kingdom, July 2019. IEEE.

[11] B. Lussier, M. Gallien, J. Guiochet, F. Ingrand, M.-O. Killijian,
and D. Powell. Planning with Diversified Models for Fault-Tolerant
Robots. In International Conference on Automated Planning and

Scheduling (ICAPS), pages 216–223, Providence, RI, United States,
September 2007.

[12] L. E. Parker and B. Kannan. Adaptive Causal Models for Fault
Diagnosis and Recovery in Multi-Robot Teams. In International
Conference on Intelligent Robots and Systems, pages 2703–2710,
Beijing, China, 2006.

[13] M. Ranjbaran and K. Khorasani. Fault recovery of an under-actuated
quadrotor Aerial Vehicle. In 49th IEEE Conference on Decision and
Control (CDC), pages 4385–4392, Atlanta, GA, USA, December 2010.
IEEE.

[14] P. Robertson and B. C. Williams. Automatic recovery from software
failure. Communications of the ACM, 49(3):41, March 2006.

[15] Benoit Ropars, Lionel Lapierre, Adrien Lasbouygues, David Andreu,
and René Zapata. Redundant actuation system of an underwater
vehicle. Elsevier, 151:276–289, March 2018.

[16] D. L. Rudnick, R. E. Davis, and J. T. Sherman. Spray Underwater
Glider Operations. Journal of Atmospheric and Oceanic Technology,
33(6):1113–1122, June 2016.

[17] M. Saied, B. Lussier, I. Fantoni, C. Francis, H. Shraim, and
G. Sanahuja. Fault diagnosis and fault-tolerant control strategy for
rotor failure in an octorotor. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 5266–5271, Seattle, WA,
USA, May 2015. IEEE.

[18] M Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick, and
J. Railsback. Fault Tree Handbook with Aerospace Applications. Nasa
edition, 2002.

[19] D. Stavrou, D. G. Eliades, C. G. Panayiotou, and M. M. Polycarpou.
Fault detection for service mobile robots using model-based method.
Autonomous Robots, 40(2):383–394, February 2016.


	INTRODUCTION
	RELATED WORK
	SYSTEM AND MISSION DESCRIPTIONS
	System Description
	Mission Description

	METHODOLOGY OF FAULT TOLERANCE
	Fault Forecasting
	Detection and Diagnosis
	Recovery

	EXPERIMENTAL RESULTS
	CONCLUSION
	References

