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Abstract—In this paper, we showcase the innovative con-
cept of implementing Oscillatory Neural Networks (ONNs) for
neuromorphic computing with beyond-CMOS devices based on
vanadium dioxide to mimic neurons and resistors to emulate
synapses. We explore ONN technology potentials from device to
analog circuit-level simulations. We report that ONN behaves like
an associative memory and can implement energy-based models
such as Hopfield Neural Networks on edge devices. Finally, as a
proof of concept, a reconfigurable digital ONN is implemented
on FPGA for pattern recognition tasks.

Index Terms—Oscillatory neural networks (ONN), Internet-of-
Things (IoT), Edge Artificial Intelligence (edge AI), Neuromor-
phic Computing, Beyond-CMOS devices, Technology Computer-
Aided Design (TCAD), FPGA

I. INTRODUCTION

Classical computing based on the von Neumann paradigm
suffers from the communication bottleneck between memory
and processor, which causes a significant limitation for data
processing. To keep up with the ever-increasing data growth
from connected IoT devices and intelligent agents [1], referred
to as “data deluge,” there are tremendous efforts to develop a
novel computing paradigm inspired by brain-like computing
to process the data where data is available meaning at the
edge devices. This has resulted in industry and academic
communities investigating in-memory computing by exploring
novel material, devices, circuits, and architecture design styles

This work was supported by the European Union’s Horizon 2020 research
and innovation programme, EU H2020 NEURONN (www.neuronn.eu) project
under Grant 871501.

to enable massive parallelism and energy-efficient computing
[2].

Over the last decades, computing with artificial neural
networks (ANNs) and convolutional neural networks (CNNs)
have revolutionized Artificial Intelligence (AI) in every aspect
of society from healthcare, autonomous driving, entertainment,
among others. Yet, these powerful neural networks run on
classical systems such as CPUs, GPUs, or TPUs, which suffer
from energy inefficiency and deployment at the edge [3].
Alternatively, a new class of artificial neural networks based
on coupled oscillators or Oscillatory Neural Networks (ONN)
draws a lot of interest as a low power computing paradigm that
can enable online learning and inference at the edge [4]. ONN
is based on analog computing, where information is encoded
on the phase relations between oscillators with the key concept
of ”let physics compute” [5], [6].

The novelty in ONNs is to harness the rich dynamics of
coupled oscillators to compute in the phase domain rather
than amplitude domain as in other artificial or spiking neural
networks. This means that the signal amplitude can be ex-
tremely low, resulting in a low power computing solution [7].
Oscillators physically emulate neuronal oscillatory behavior
(e.g., brain waves), and resistors emulate synaptic coupling be-
tween neurons. Such architecture enables in-memory comput-
ing where both processing (oscillators) and memory (synapses)
constitute a truly parallel analog computing architecture.

ONN computational capacity has been studied and proved
by mathematicians for decades [5], but hardware implemen-
tations were limited. The emergence of energy-efficient and
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Fig. 1. ONN as associative memory, like a Hopfield Neural Network (60
oscillators in this example). Every oscillator is coupled to all others via
resistors. Gray-scale images represent the ONN phase state. ONN stores
pattern ’D,’ which can be retrieved from noisy input patterns. ONN phase
state evolves such that the conceptual Hopfield energy [5] reaches a minimum
corresponding to a stored pattern.

compact oscillators based on vanadium dioxide (VO2) incites a
new interest in ONN implementation. Up to 6 VO2-oscillators
have been coupled experimentally [7], and it is expected
that this number will increase with the progress on device
fabrication.

In this work, we perform device to circuit-level ONN
simulations based on VO2-oscillators. We have developed
a design tool flow to allow material properties, device to
circuit-level modeling for exploring the potential of ONN
computing. We report on performances and energy-efficiency
up to 60 coupled VO2-oscillators for pattern recognition, like
a Hopfield Neural Network (HNN) [8]. Finally, as a proof-
of-concept, we developed a digital ONN architecture and
implemented it in an FPGA for testing AI workloads.

II. ONN COMPUTING PARADIGM

A. Phase-based computing

A large number of physical phenomena can be modeled in
terms of interacting oscillator dynamics. In biology, cellular
processes such as the glycolytic system of muscle cells have
oscillatory behavior [9]. From neuroscience, there is evidence
that biological oscillators are synchronized through coupling
via signaling messengers like hormones [9]. Also, neurons can
sometimes be represented as oscillators [10] and recent brain

Rext

Fig. 2. Experimental and simulated I-V curves (up to IMT switching) of VO2

device (thickness 200 nm, width 100 µm and length 5 µm) [22]. Rext is a 5
kΩ external resistor.

studies [11] have demonstrated that signals from a sensory
cortex can affect activity in another one by synchronizing
neural oscillations. This suggests that phase-based computing
possesses benefits that can be biomimetically exploited in
hardware, such as ONNs.

In ONNs, information is encoded in the phase between os-
cillators, and the first oscillator is used as reference [12]. ONN
input is the initial ONN phase state, which evolves until it
settles to a stable fixed point. ONN output is given by the final
oscillator phases that take binary values ∆Φout ε{0◦; 180◦}.
ONN phase state evolution can be interpreted as the mini-
mization of an energy function in the phase space [5], as in
HNNs. Conceptually, ONN inference consists of exploring the
energy landscape to reach the minima that correspond to stable
phase states. ONN’s initial state corresponds to an initial point
in energy space that reaches a local minimum after a settling
time.

B. ONN as an associative memory
ONN behaves like an associative memory when oscillators

are fully connected, i.e., every oscillator is connected to
all others via resistors. In this case, ONN training consists
of storing patterns that can be retrieved with partial input
information (like a noisy input) [5]. Conveniently, binary phase
states ∆Φ = 180◦ and ∆Φ = 0◦ can be represented as
black and white pixels of an image, respectively (a pixel
corresponds to a single oscillator). In this work, we explore
pattern recognition application by simulating coupled VO2-
oscillators as an associative memory (Fig.1).

III. ONN DEVICES TO CIRCUITS

A. VO2 device
Vanadium dioxide (VO2) is a transition metal oxide that

undergoes a phase change at 340 K, close to room tempera-
ture: it switches from an insulating monoclinic M1 phase to a
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Fig. 3. a) VO2-oscillator circuit. b) Example of VO2 I − V curve and
evolution of the device voltage. VO2 hysteresis behavior is used to produce
oscillations by biasing the VO2 device in its Negative Differential Region
(NDR).

metallic rutile R phase, with a sharp change in resistivity up
to 5 orders of magnitude. Such insulator-to-metal transition
(IMT) is reversible, making VO2 suitable for switches and
memory devices. The mechanism of the IMT is not yet fully
understood. However, it is now believed that a strong electron-
electron correlation and an electron-phonon interaction both
play an important role: this suggests a Mott-Peierls transition
mechanism [13]. Moreover, the properties of the phase transi-
tion of VO2 can be tuned, for instance, by doping with metal
atoms, by introducing defects, and by induced stress at the
interface of grain boundaries [14].

Experimental results indicate that self-heating initiates the
IMT of VO2 in biased devices [15]. Electrothermal simulations
at the device level assist in 1) understanding the underlying
device physics and 2) switching mechanism. We have devel-
oped a dedicated technology computer-aided design (TCAD)
procedure to simulate VO2 devices. We use doping density
to mimic the temperature-dependent change of resistivity
inside the VO2 channel. The match between experimental and
simulated data provides a good fit (Fig. 2), confirming that
self-heating prompts IMT transition.

In ONN circuits, IMT and metal-to-insulator transitions
(MIT) of VO2 devices are exploited to design relaxation
oscillators [18]. When VO2 device’s voltage V is above a
threshold VH , its current flow induces IMT switching, and the
device stays in the metallic state as long as V remains larger
than a lower threshold VL. When V < VL, VO2 transitions to
an insulating state (MIT). Thus, VO2 has a hysteresis in its
I − V curve (Fig.3b) that is used in oscillatory circuits.

To embed the VO2 device description into circuit-level
simulations, we developed a tool flow TCAD-SPICE, where
the role of TCAD is to assist compact modeling for circuit
simulations. Specifically, VO2 metallic and insulating resis-
tances, associated with both voltage thresholds, serve as input
to a SPICE VO2 model [16].
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Fig. 4. a) Two identical VO2-oscillators coupled by a resistor RC that can
be disconnected via switches. b) The starting-time of the second oscillator
is delayed via VDD2 to set an initial phase, and the switches are closed to
compute.

B. VO2-oscillator

Similar to Schmitt-trigger based oscillators, we use VO2

hysteresis behavior to design compact relaxation oscillators.
We bias the VO2 device with a resistor RS in series (Fig.3a).
To obtain oscillations, the load line IL intercepts VO2 I − V
characteristic in its Negative Differential Region (NDR). In
this case, the output capacitor CP charges through the VO2

device in the metallic state and discharges through RS when
the VO2 device is in an insulating state. VL and VH VO2

threshold voltages define the oscillation amplitude. For a given
VO2 device, RS and CP set the oscillation frequency (in this
work RS=20 kΩ and CP =500 pF gives f=46.3 kHz). The
oscillating output signal is the voltage across CP , and the
input is the supply voltage starting time. To set an initial input
phase between two oscillators, we delay the starting time of
the second oscillator’s supply voltage with respect to the first
oscillator.

C. Two coupled-oscillators circuit

Fig.4a shows the smallest ONN consisting of two oscillators
coupled by a resistor RC . We insert switches in series with
RC to decouple oscillators during initialization [17]. To set
an input phase state ∆Φin between two oscillators, we delay
the second oscillator’s supply voltage starting time, as shown
in Fig.4b. Once all oscillators are turned on, we close the
switches to couple the oscillators.
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Fig. 5. a) ∆Φout extracted after convergence for every set of parameters
(RC ,∆Φin). Positive weights are mapped to small coupling resistances,
whereas negative weights are implemented with large RC . At RC = R0

C , two
distinct states are memorized, corresponding to the right-hand side patterns.
b) Output voltages of the two oscillators for RC = R0

C . Left: ∆Φin = 80◦

and the oscillators converge to a stable in-phase state. Right: ∆Φin = 100◦

and the oscillators converge to a stable out-of-phase state.

After a few cycles, both oscillators settle to a stable phase
state, and we can measure their phase difference. Both ∆Φin

and RC influence the final phase state outcome ∆Φout. Fig.5a
shows ∆Φout obtained for various RC and inputs ∆Φin. We
observe that a small RC << R0

C induces ∆Φout = 0◦,
whereas a large RC >> R0

C leads to ∆Φout = 180◦, as
already noticed in [18]. These phase states can be represented
by two distinct patterns stored in ONN via RC values. Par-
ticularly, for RC = R0

C , we equally retrieve both patterns
by adjusting ∆Φin (Fig.5b). In other words, two coupled
oscillators behave like an associative memory, where RC

contains the memory, and ∆Φin is the input to recall a stored
pattern. In the next section, we demonstrate this concept to
60 coupled oscillators using the same initialization procedure
and scaling coupling resistances.

IV. ONN PATTERN RECOGNITION

To showcase the associative properties of a larger VO2-
ONN architecture, we perform circuit-level simulations of
60 fully-coupled VO2-oscillators. There are 60x59/2=1770
different synapses, all modeled by ideal resistors that values
are determined during the ONN training [17]. In hardware,
synapses could be implemented by a resistive cross-bar array
with programmable resistors or memristors [2].

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6

Fig. 6. Six training patterns ξk with 60 black and white pixels used in this
example. ξki = 1 if pixel i is white and ξki = −1 otherwise. Synaptic weights
are computed using the Hebbian rule [5] and are then mapped to coupling
resistances to perform circuit simulations.

A. Training and Inference

We study a simple pattern recognition application where
six patterns ξk are stored in ONN representing letters ’A’
to ’F’ (Fig.6). To train the ONN, we use the Hebbian rule
[5], which gives synaptic coefficients based on ξk. We map
Hebbian coefficients to coupling resistances, as described in
section 3 (Fig.5a).

The recognition operation consists of associating an input
pattern to one of the training patterns. A black pixel i
corresponds to ∆Φin

i = 180◦ that is set by delaying VDDi

by Tosc/2. A white pixel corresponds to an oscillator in
phase with the reference oscillator, thus without any delay.
Gray pixels are initialized by delaying oscillators between 0
and Tosc/2. When the input is sufficiently close to one of
the training patterns, ONN retrieves it after a few oscillation
cycles. Sometimes, ONN converges toward spurious patterns
when the input is too noisy (Fig.7a). In that case, ONN cannot
be considered as accurate.

B. ONN performances

We add random noise to training patterns to generate a
test set, where noisy pixels take values between -1 and +1.
We vary the amount of noise from 0 to 50% of the number
of pixels, and we report on ONN recognition accuracy as in
Fig.7b. Pattern recognition is unacceptable if a single output
pixel differs from the original training pattern. If we tolerate
two wrong output pixels, the recognition accuracy increases,
meaning that ONN sometimes locks to spurious patterns that
are close to the training patterns. Evaluating ONN accuracy
with the test set, we observe that ONN has more than 60% of
accuracy for test images with up to 30% of noise.

During the test set evaluation, we report an average settling
time of 3.9 oscillation cycles (i.e., the required time for the
ONN to reach a stable phase state), in accordance with the 4-5
cycles observed in experiments [19]. ONN operates fast thanks
to coupled oscillators that work in parallel. We compute the
average energy associated with ONN inference and report it
on Table I. We notice that the total energy consumption for
60 VO2-oscillators is E60 ≈ 3.9 x 60 x E/cycle, with E/cycle

the energy consumed by a single oscillator during one cycle.
Hence, we expect a linear energy scaling for larger ONNs.
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Fig. 7. a) Left: pattern ’E’ with 20 randomly altered pixels is applied to the
ONN and successfully identified after a few oscillations. Right: pattern ’D’
with 28 randomly altered pixels is not identified as the ONN converges to an
unknown phase state. b) ONN recognition accuracy with respect to the number
of noisy input pixels. For each configuration, 100 simulations are performed
using random test patterns. Performances decrease significantly for more than
30 % of input fuzzy pixels.

Based on this observation, we compute the ONN energy for
28x28=784 oscillators required to perform pattern recognition
on the MNIST dataset.

In this work, we simulate ”slow” oscillators (f=46.3 kHz) to
reproduce experiments that were conducted with a large load
capacitance CP =500 pF and high supply voltage VDD=2.5V.
However, if VO2 devices are scaled down with smaller load
capacitances and lower supply voltage, we expect a reduced
energy footprint [19]. Thus, we apply our ONN energy esti-
mation for scaled VO2 devices reported in literature [7], [19].

Moreover, we compare our ONN energy prediction with
an example of a state-of-the-art edge processor [25], which
implements an HNN for pattern recognition. In HNN [8],
at least N(N-1) MAC (multiple-accumulate) operations are
required to compute the HNN state. We estimate the processor
energy consumption as N(N-1)EMAC and assuming 1 MAC
≈ 2 OP. Our ONN energy estimation is optimistic as we do
not consider all the peripheral circuits to initialize and read-out
ONN. Nevertheless, the trend shows that ONN can be a very
competitive architecture for less than 800 neurons, as ONN
with scaled VO2 devices [19] would allow a 4000x energy
reduction compared to state-of-the-art edge processor [25].

C. ONN on FPGA

We implement a digital ONN-on-FPGA to quantitatively
assess the performance metrics of ONN architectures in real-
world applications. Our ONN-on-FPGA is inspired by a hybrid

TABLE I
ONN ENERGY FOOTPRINT

This work ONN [7] Scaled ONN
prediction [19]

Coral Edge
TPU [25]

E/cycle or
EMAC

2.15 nJ 120 pJ 50 fJ 1 pJ

E60 494 nJ 28 nJ 11.7 pJ 3.5 nJ
E784 6.6 µJ 367 nJ 153 pJ 614 nJ

analog-digital solution [26], but we have implemented a fully
digital architecture [27]. Digital neurons oscillate at 488 kHz.

We use pattern recognition as a testbed as it is a typical
edge AI task. For instance, one could embed low-power ONNs
into edge camera systems for image post-processing, noise
filtering, or object detection at the interface with sensors. Here,
we perform image recognition with a 60-neurons ONN-on-
FPGA using the same training set previously defined (Fig.6).

ONN synaptic weights are computed offline via Matlab
using the Hebbian learning rule [5]. Weights are subsequently
hardcoded inside the FPGA. Fig. 8 describes the experimental
procedure that has been set up. Images are streamed by a cell
phone and captured by a camera. Then images are re-scaled to
60 pixels to fit the ONN size and used as input to the ONN-on-
FPGA. Finally, the output image is re-scaled to be displayed
on an HDMI screen once synchronization is achieved.

We evaluate ONN-on-FPGA performances on a test set
composed of 30 corrupted training patterns. Only 6 test
patterns could not be retrieved correctly (80% recognition
accuracy). We measured the time required from ONN ini-
tialization to the end of the computation. It has resulted in
an average of 13µs (7.8µs initialization and 5.2 µs settling
time), demonstrating the real-time computation capability of
our ONN-on-FPGA.

V. CONCLUSIONS

In this work, we presented an innovative concept for neu-
romorphic computing based on oscillatory neural networks
implemented with beyond-CMOS devices such as vanadium
dioxide (VO2) to emulate neurons and resistors to implement
synapses. We explored the ONN technology from devices,
circuits to architecture-level implementation. To do so, we
developed a dedicated TCAD procedure for VO2 device
simulation to capture its resistive switching mechanism in
circuit simulations. Then, we investigated the dynamics of
two VO2-oscillators coupled by a resistor, showing that they
naturally behave like an associative memory. We also assessed
the performances of larger ONNs and showed that ONN
is a competitive paradigm for edge applications thanks to
their energy efficiency. Finally, we reported on an ONN-on-
FPGA as a proof-of-concept for real-world pattern recognition
applications.

As future directions for our work, we aim to complete the
entire simulation toolchain from Density Functional Theory
(DFT) to TCAD to circuit simulation by designing customized
compact models. This will provide precise assessments of



Fig. 8. Workflow of image recognition procedure by digital ONN-on-FPGA; close to each image are indicated the pixel sizes.

ONN power, performance, area, and reliability. Finally, we
are exploring the real-time capability of ONN-on-FPGA for
other edge AI applications such as autonomous motion-control
systems for robotics.
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