
HAL Id: lirmm-03241639
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03241639

Submitted on 28 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Highly-Adaptive Mixed-Precision MAC Unit for Smart
and Low-Power Edge Computing

Guillaume Devic, Maxime France-Pillois, Jérémie Salles, Gilles Sassatelli,
Abdoulaye Gamatié

To cite this version:
Guillaume Devic, Maxime France-Pillois, Jérémie Salles, Gilles Sassatelli, Abdoulaye Gamatié. Highly-
Adaptive Mixed-Precision MAC Unit for Smart and Low-Power Edge Computing. NEWCAS 2021 -
19th IEEE International New Circuits and Systems Conference, Jun 2021, Toulon (virtual), France.
pp.1-4, �10.1109/NEWCAS50681.2021.9462745�. �lirmm-03241639�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03241639
https://hal.archives-ouvertes.fr


Highly-Adaptive Mixed-Precision MAC Unit for
Smart and Low-Power Edge Computing

Guillaume Devic, Maxime France-Pillois, Jérémie Salles, Gilles Sassatelli, Abdoulaye Gamatié
LIRMM, Univ Montpellier, CNRS, Montpellier, France

first.last@lirmm.fr

Abstract—Machine learning algorithms are compute- and
memory-intensive. Their execution at the edge on resource-
constrained embedded systems is challenging. Data quantization,
i.e. data bit-width reduction, contributes to reducing de-facto the
memory bandwidth requirement. In order to best exploit this
bit-width reduction, a prevailing approach consists of tailored
hardware accelerators. Another approach relies on general-
purpose compute units with Single Instruction Multiple Data
(SIMD) support for reduced data bit-width precision, as in ARM
Cortex-M [1] or RISC-V based RI5CY [2] processors. However,
such processors only handle a few predefined bit-width ranges,
e.g. 8-bit and 16-bit only for the ARM SIMD.

This paper proposes a flexible architecture of Multiply-and-
Accumulate (MAC) unit allowing asymmetric multiplication for
operand sizes in powers of 2, up to 32 bits. The synthesis of this
architecture in 28nm FD-SOI technology shows 10% and 25%
reduction in area and dynamic power respectively, compared to
the RI5CY MAC unit. From the energy-efficiency point of view,
up to 50% improvements are achieved.

Index Terms—Multiply-and-Accumulate units, MAC, Machine
Learning, Edge-Computing, Quantization

I. INTRODUCTION

Internet-of-Things heavily relies on cloud resources that
process sensor data acquired and transmitted by edge devices.

Given the ever-increasing volume of transmitted data, this
centralized approach quickly leads to network bandwidth
saturation, which is detrimental to response time [3]–[5]. An
alternative approach lies in edge computing which advocates
to bring compute resources closer to the edge devices. In
particular, smart edge computing executes Machine Learning
(ML) algorithms on mobile devices for faster decision making
and control. These algorithms are often compute- and memory-
intensive and further require large data storage. Therefore,
their use at the edge is a real design challenge, which calls
for combined hardware and software optimizations [6].

Among the popular techniques aiming at mitigating the
impact of ML algorithm execution on mobile (or embedded)
devices, data quantization is very popular. This technique
consists in compressing the volume of data (e.g. the weights
of an artificial neural network) by reducing the bit-width
representation [7]. However, to preserve the initial properties
and accuracy of a given ML algorithm, bit-width reduction
must be applied on a case by case basis. In Deep Neural
Networks (DNN) [8], [9] for instance quantization cannot
be applied uniformly and must be decided on a per-layer
basis. Some studies have shown the relevance of using mixed-
precision representations [10], where different data types are

described with their most appropriate bit-widths. The precision
reduction can even go down to 1 bit. Note that to effectively
exploit such a precision level, the hardware must be adapted
(the decided precision requires resizing the network).

To fully benefit from quantization and mixed-quantization
techniques, custom hardware support is required. This often
takes the form of low-power hardware accelerators dedicated
to ML workloads. Another solution consists in revisiting
the general design of microprocessors w.r.t. the quantization
requirements. ML algorithms heavily rely on the Multiply-
and-Accumulate (MAC) operation. The basic multiply unit of
microprocessors generally allows performing only one MAC
iteration per clock cycle. The addition of a Single-Instruction
Multiple-Data (SIMD) unit enables to increase the number
of MAC iterations per clock cycle. Besides the additional
hardware required for SIMD, the supported operations are
usually restricted to bit-widths of 16-bit and/or 8-bit [1]. For
embedded systems, this is inefficient both in terms of area
overhead and power consumption. For instance, we estimated
the MAC unit of the open-source RISC-V RI5CY core [2],
which consumes about 40% of the total power [11] of the
core.

In this work, we propose a flexible MAC unit architecture.
Our solution is able to support data bit-width representations
between 32 and 2 bits and enables to perform asymmetric
bit-width operations. A comparison with the MAC unit of the
RISC-V RI5CY core reveals reductions of 25% and 10% in
power consumption and area respectively.

The remainder of the paper is organized as follows: Section
II reviews related work and discusses the motivations of this
work. Section III presents our MAC unit architecture. The
experimental results are shown in Section IV. Section V
concludes the paper.

II. RELATED WORK

Over the past decade, various approaches have been pro-
posed for efficient execution of ML algorithms, and in par-
ticular DNNs at the edge. In the sequel, we first discuss
hardware accelerator based approaches and then concentrate
on the design of MAC units for DNNs.

Hardware accelerators for DNNs. The first family of
approaches focuses on the design of specific circuits that
exclusively fulfill a given function. For instance, such a
function can represent either a layer of a DNN, or even an
entire network [12], [13].



The second family of approaches rather promotes the re-
alization of different DNN models on the same circuit [8],
[9], [14], [15]. Here, the considered solution integrates several
processing elements that enable to perform massively parallel
MAC operations. It is similar to GPU architectures but is more
energy efficient. The corresponding hardware accelerators can
be implemented either on FPGAs or as ASICs.

The last family of approaches differs from the above two
by higher flexibility. Indeed, the previous accelerators are
restricted to DNN execution only. General-purpose approaches
based on multicore architectures allow to execute any kind of
workload. For instance, the SIMD feature commonly offered
by modern CPUs allows parallelizing MAC operations for
DNN execution. For instance, the ARM M-Cortex CPU pro-
vides SIMD support for 16 and 8-bit data [1]. The promising
RISC-V RI5CY CPU [2] also supports SIMD operations from
16 to 2 bits via an ISA extension [11].

Figure 1 summarizes the aforementioned approaches for
executing ML workloads in an edge computing context, ac-
cording to power consumption and flexibility.

Fig. 1: Different hardware approaches for ML execution in
edge computing context

Focus on MAC unit design. In a recent survey [16],
four types of scalable precision MAC architectures dedicated
to deep learning accelerators are presented: Bit-serial [17],
Multibit-serial [18], Subword-Parallel [8] and Divide-and-
Conquer [15], [19]. Among all these architectures, Divide-
and-Conquer stands out for its higher flexibility. The reference
hardware accelerator implementing such a MAC architecture
is Bit Fusion [15]. It uses several 2-bit × 2-bit multipliers to
handle variable bit-width multiplications up to 8-bit × in 1
clock cycle. It can support 16-bit multiplication at the cost
of more clock cycles. Partial products from these 2-bit × 2-bit
multipliers are accumulated before reaching the output.

How does our approach differ from literature? We
leverage the Divide-and-Conquer strategy to devise flexible
and low-power MAC unit. Unlike previous works, this unit
is designed for a general-purpose CPU. It handles classical
multiplications as well as MAC operations, for input data
ranging from 2 to 32 bits. Moreover, the flexibility of our
solution supports asymmetric bit-width inputs, imposed by
mixed-precision quantization. For example, a mixed-precision
DNN may require 4-bit × 8-bit MAC operations. When a
classical CPU handles this asymmetric operation with its
SIMD support, both operands are resized to the bit-width
that is closer to the larger operand bit-width (i.e. 8-bits in

the best case in our example). Unfortunately, this “resizing”
imposes the use of more hardware than strictly necessary,
inducing unnecessary power consumption. To address this
issue, our MAC unit is able to activate the minimal required
hardware for achieving a 4-bit × 8-bit MAC operation resulting
in interesting energy savings.

III. MULTIPLY-ACCUMULATE UNIT ARCHITECTURE

The proposed MAC unit aims to be integrated into a 32-bit
microprocessor. It handles multiplication and MAC operations
for data up to 32 bits in 1 clock cycle. We first present the
principle of the considered binary multiplication. Then we
describe the implementation of the MAC unit.

A. General principle of binary multiplication

Figure 2 1 illustrates the binary multiplication principle.
Here, there are two 4-bit operands A and B: the former
is multiplied by each bit of the latter. The partial products
resulting from this multiplication are appropriately shifted
before being finally added together. The bit-by-bit products are
performed using AND gates. Then, the results of this operation
are added by a half/full adder to obtain the final result.

Fig. 2: Illustration of binary multiplication

Figure 2 2 is the schematic of a 4-bit × 4-bit multiplier.
It is the most common form of a multiplier. However, other
approaches are possible, like decomposition.

Indeed, instead of performing a 4-bit × 4-bit multiplication,
one can perform the same multiplication, in four independent
2-bit × 2-bit multiplications as illustrated in Figure 2 3 . The
final result is obtained by adding with a proper shift the four
results from the 2-bit × 2-bit multipliers as shown in Figure
2 4 . Finally, Figure 2 5 shows the diagram of the basic
blocks required to perform the decomposed multiplication.

B. Multiply-Accumulate unit description

The proposed MAC unit architecture is composed of three
distinct parts: the multipliers, the adders, and the accumulator.
Figure 3 shows a simplified schematic of this architecture: a
line of 2-bit × 2-bit multipliers on the upper part, the adders
and shifts in the middle, the shift control on the left, the output
multiplexer on the right, and the accumulator at the bottom.

To support 32-bit multiplication in 1 clock cycle, our MAC
unit is composed of 256 independent 2-bit × 2-bit multipliers.



Fig. 3: Schematic representation of the multiplier

Indeed, in Section III-A we explained a 4-bit multiplication
requires 4 independent 2-bit multiplication ((4/2)2). There-
fore, for a 32-bit multiplication, 256 independent 2-bit × 2-bit
multipliers are required ((32/2)2).

To facilitate the configurability and the adaptability of the
multiplier, the addition of the partial products is performed
by 2-input adders. As mentioned in Section III-A, during the
addition step of the partial products, a bit shifting must be
performed. To reduce the number of shifts, for each adder one
of these inputs is shifted beforehand. As shown in Figure 3,
a maximum of 8 adder levels is necessary to carry out the
multiplications. The multiplication results are captured at the
outputs of the 2-bit × 2-bit multipliers and each adder level.

Finally, the accumulator allows the MAC operation to
be performed. A dedicated register stores the intermediate
value of the previous accumulation. The intermediate value
is returned to the accumulator via Op C depicted in Figure 3.

(a) Representation of data contained in a 32-
bit register for each data bit-width

(b) Number of available opera-
tions for each data bit-width

TABLE I: Details on supported operands and operations.

The 32-bit op A and op B operands represented in Figure 3
can be used for SIMD operations. They could be loaded with
2-bit × 16-bit, or 4-bit × 8-bit, or 8-bit × 4-bit, or 16-bit × 2-bit
operands as shown in Table Ia. When used in SIMD mode,
the proposed multiplication/MAC module can perform parallel
operations in 1 clock cycle as specified in Table Ib.

IV. EXPERIMENTAL RESULTS

The first part of this section describes the experimental
environment setup. Then, the second part exposes the gains

achieved by our proposal compared to the MAC unit imple-
mented in the open-source RI5CY core [2], [11].

A. Experimental setup

The proposed MAC unit is developed in SystemVerilog, as
the RI5CY. The RI5CY MAC unit available on a dedicated
Github page is based on the redundancy of hardware multi-
plier. It realizes the execution of two 16-bit × 16-bit and four
8-bit × 8-bit operations respectively by two 16-bit and four
8-bit independent multipliers It does not support 4-bit × 4-bit
and 2-bit × 2-bit configurations. We add these matching the
description provided in [11] and the required syntax.

The tools used to perform simulation and synthesis are
respectively ModelSim and Synopsys Design Compiler. The
simulation enables the verification of the functionality of the
proposed MAC unit. Also, it allows the acquisition of the
switching-activity for the two evaluated MAC architectures
necessary for accurate power estimation. The synthesis pro-
vides area and power cost in the selected technology, which is
the 28nm FD-SOI technology at 200MHz. To emulate mixed-
precision quantized operands, the assessment of the MAC
units is accomplished with different bit-widths data according
to Table Ib. The operand values are randomly generated
by python scripts. This data is then loaded into the 32-bit
input registers of the MAC architectures with a SystemVerilog
benchmark. For each tested bit-width, the input registers of the
MAC units are loaded 1000 times with different values.

B. Power, Area, and Energy

The first information given by the architecture synthesis is
the area. It is respectively 10830µm2 and 9930µm2 for the
RI5CY MAC unit and for our proposed MAC architecture. Our
proposal provides a reduction of 10%, compared to RI5CY
MAC unit, which is about 40% of the total CPU area.

Fig. 4: Dynamic power provided by Synopsys Design Com-
piler including switching-activities from simulated testbench.

Figure 4 shows the evolution of the static and dynamic
power consumption for both MAC architectures. The dynamic
power of our solution increases progressively according to the
data bit-width. Indeed, our solution is very fitted and only
activates the hardware required for a specific bit-width. In
fact, the Divider-and-Conquer principle required to perform
a multiplication is proportional to the operands bit-width.



The dissipated power is directly related to the number of ac-
tivated logical gates. This is why the 32-bit × 32-bit operations
which use all the logic of the multiplier consume more power.
Compared to RI5CY, the power consumption is higher for
32-bit × 16-bit and 32-bit × 32-bit operations. Our presumable
explanation is a less optimized logical component placement
during synthesis. Indeed, our MAC unit is composed of several
connections distributed over the circuit, reducing the possible
optimization space. It also explains the slightly higher static
power compared to RI5CY despite a smaller area. As for the
MAC of the RI5CY core, we notice two levels of dynamic
power. The highest level corresponds to the values of operands
with the same bit-width, and the lowest level corresponds to
the values of operands with asymmetric bit-width. Explained
by the presence of extra zeros to fit with the asymmetric bit-
width. On average, the dynamic power dissipated by our MAC
architecture is 25% less than that measured for the RI5CY.

To compare the energy-efficiency of both solutions, Figure
5 reports the number of operations per mW. For both MAC
architectures, the best energy efficiency is at the lowest bit-
widths. A drop in energy efficiency occurs from 16-bit data.
On average the energy-efficiency is 50% higher for our pro-
posed MAC unit compared to that of RI5CY CPU. In [10],
the MobileNet V2 convolutional neural network (CNN) [20]
where the activations and weights are respectively quantized
to 8b and 4b, achieves a 71% top-1 accuracy. Considering the
300M MACS operations composing this CNN, our proposal
enables to save 43% to the RI5CY MAC unit.

Fig. 5: Energy efficiency determined from dynamic power

V. CONCLUSION AND PERSPECTIVES

Hardware limitations of embedded systems at the edge
severely restricts the range of usable ML algorithms. Emerging
solutions such as quantization allow a reduction in the impact
of the execution of these algorithms. However, the efficiency
of quantization depends on custom hardware support. Today,
this support is provided by the use of SIMD compute units.
However, SIMD units are limited by the natively supported
bit-widths (usually 16-bit and 8-bit). In this paper, we propose
a flexible MAC unit architecture that with support for every
possible power of 2, from 2 to 32 bits. The MAC unit
of the open-source RI5CY core is used as a reference for

evaluating the proposed architecture. Our work shows the
proposed architecture is more efficient in dynamic power by
25% and also 50% more energy efficient. The area of our
solution is even slightly lower by 10% compared to the RI5CY
core MAC unit. Future work include the integration of the
proposed MAC unit to typical low-power cores, e.g. RI5CY
[2] or Cortus APS25 [21].

REFERENCES

[1] “Dsp for cortex-m,” https://developer.arm.com/architectures/instruction-
sets/dsp-extensions/dsp-for-cortex-m, accessed: 28/01/2021.

[2] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “A near-threshold RISC-V
core with DSP extensions for scalable iot endpoint devices,” CoRR, vol.
abs/1608.08376, 2016.

[3] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato, “A
survey on network methodologies for real-time analytics of massive iot
data and open research issues,” IEEE Communications Surveys Tutorials,
vol. 19, no. 3, pp. 1457–1477, 2017.

[4] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. M.
Barnaghi, and A. P. Sheth, “Machine learning for internet of things
data analysis: A survey,” CoRR, vol. abs/1802.06305, 2018.

[5] D. Georgakopoulos, P. P. Jayaraman, M. Fazia, M. Villari, and R. Ranjan,
“Internet of things and edge cloud computing roadmap for manufactur-
ing,” IEEE Cloud Computing, vol. 3, no. 4, pp. 66–73, July 2016.

[6] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[7] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst,
“Minimum energy quantized neural networks,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers, 2017, pp. 1921–1925.

[8] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “DVAFS:
trading computational accuracy for energy through dynamic-voltage-
accuracy-frequency-scaling,” in DATE. IEEE, 2017, pp. 488–493.

[9] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-serial deep neural
network computing,” vol. 16, no. 1, 2017, pp. 80–83.

[10] Q. Jin, L. Yang, and Z. Liao, “Adabits: Neural network quantization
with adaptive bit-widths,” CoRR, vol. abs/1912.09666, 2019.

[11] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi, and L. Benini, “Xpulpnn:
Accelerating quantized neural networks on RISC-V processors through
ISA extensions,” in DATE. IEEE, 2020, pp. 186–191.

[12] K. Abdelouahab, M. Pelcat, C. Bourrasset, F. Berry, and J. Sérot,
“Tactics to directly map CNN graphs on embedded fpgas,” CoRR, vol.
abs/1712.04322, 2017.

[13] S. I. Venieris and C. Bouganis, “fpgaconvnet: A framework for mapping
convolutional neural networks on fpgas,” in FCCM. IEEE Computer
Society, 2016, pp. 40–47.

[14] Y. Chen, J. S. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ISCA.
IEEE Computer Society, 2016, pp. 367–379.

[15] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural networks,” vol. abs/1712.01507, 2017.

[16] V. Camus, L. Mei, C. Enz, and M. Verhelst, “Review and bench-
marking of precision-scalable multiply-accumulate unit architectures for
embedded neural-network processing,” IEEE Journal on Emerging and
Selected Topics in Cir. and Sys, vol. 9, no. 4, pp. 697–711, 2019.

[17] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo, “UNPU: A
50.6tops/w unified deep neural network accelerator with 1b-to-16b fully-
variable weight bit-precision,” in ISSCC. IEEE, 2018, pp. 218–220.

[18] S. Sharify, A. D. Lascorz, P. Judd, and A. Moshovos, “Loom: Exploiting
weight and activation precisions to accelerate convolutional neural
networks,” CoRR, vol. abs/1706.07853, 2017.

[19] D. Shin, J. Lee, J. Lee, and H. Yoo, “14.2 DNPU: an 8.1tops/w
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” in ISSCC. IEEE, 2017, pp. 240–241.

[20] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Inverted residuals and linear bottlenecks: Mobile networks for classifi-
cation, detection and segmentation,” CoRR, vol. abs/1801.04381, 2018.

[21] A. Gamatié, G. Devic, G. Sassatelli, S. Bernabovi, P. Naudin, and
M. Chapman, “Towards energy-efficient heterogeneous multicore archi-
tectures for edge computing,” IEEE Access, vol. 7, 2019.


