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Simultaneous haptic guidance and learning of task parameters during
robotic teleoperation – a geometrical approach

Thibault Poignonec∗1, Florent Nageotte1, Nabil Zemiti2 and Bernard Bayle1

Abstract— Haptic guidance can improve accuracy and dex-
terity during the teleoperation of a robot, but only if the model
of the task used to provide the assistance is accurate. In medical
robotics, the registration of a task from pre-operative planning
from medical images to the robot’s task-space can be erroneous.
Additionally, the deformability of the environment can require
online correction of a planned task. Therefore, we propose a
method to update the geometry and the registration of a path-
following task online. This model is simultaneously used to
physically guide the user during the teleoperation. Experimental
results obtained on a haptic interface show the validity of the
approach for a simulated 2D task.

I. INTRODUCTION

In surgical robotics, teleoperation allows for dexterous and
ergonomic manipulation of surgical tools. Although most
systems are used in direct teleoperation, tremendous efforts
have aimed at developing more advanced forms of assistance.
Among these, haptic guidance is a promising way to enhance
the surgeon’s skills and to make surgery safer [1]. Classic
approaches consist in constraining the user by applying
forces to the master robot, either to prevent the slave robot
from entering a restricted area or to guide the user along a
path. Respectively referred to as Forbidden-Region Virtual
Fixtures and Guidance Virtual Fixtures [2], these methods
can be seen as a form of haptic shared-control, which consists
in mixing user inputs with a guidance trajectory through
physical interaction [3]. In such schemes, a guidance path
must be defined, either from pre- or intra-operative planning.

Pre-operative planning can only be used if the task is
correctly registered in the slave robot’s frame. The defor-
mations and displacements of the organs invalidate off-line
planning, and the task must be adapted online. This advocates
for adaptive guidance systems that are able to plan or re-
plan online from intra-operative images. However, vision-
based approaches for surgical task planning have many
limitations, such as the presence of occlusions, the sparsity
of visual features, or the lack of stereoscopic vision. The
resulting task planning and adaptation may therefore be
inaccurate. Moreover, the surgeon might base his gestures on
information not contained in the images such as knowledge
or experience.

Regardless of the origin of the modeling errors, if the
model of the task used to generate haptic guidance is
incorrect, the user will have to apply forces to the master
interface to return the tool toward a more desirable position.
Such interventions from the human operator can either be
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ignored, be facilitated through the reduction of the rendered
stiffness, or be exploited to refine the guidance model.

In recent years, these challenges have become very pop-
ular, especially in the field of collaborative robotics. Two
approaches have been proposed to update task models from
user inputs. The first assumes that the user will interact with
the interface by rendering a mechanical impedance. If inter-
action forces are minimized over time, the modeling errors
will likewise be minimized. Methods have been proposed to
deform trajectories, both parametric [4] and non-parametric
[5], [6], from interaction forces. However, these interaction
forces only provide limited information for learning.

Another approach consists in assuming that the user can
overcome the guidance forces and perform the desired trajec-
tory, even though the guidance is incorrect. In this case, the
position of the robot can be seen as a noisy demonstration of
the desired trajectory. Existing studies use this assumption
to infer the user’s intentions in the form of a goal [7] or
a preferred policy [8]. But only a few contributions adapt
an existing model as in [9], [10], where the trajectory
is updated iteratively through consecutive demonstrations.
Although iterative learning is pertinent to teach a robot
how to perform a task, it is insufficient to update it during
its execution. To do so, a recent work uses a window of
recent tool poses to update the geometry of virtual fixtures
[11]. They rely on the detection of tool/tissue interactions
to collect observations about the desired task in order to
move the passive Virtual Fixture. But as the method requires
a means to measure or estimate distal forces, it cannot be
applied to flexible or cable-driven robots, among others.

The present work focuses on path-following tasks, rele-
vant for various Minimally Invasive Surgery (MIS) robotic
applications such as optical biopsies [12], dissections [13],
or ablations. The registration of the task is a critical issue in
surgical robotics and is hence of special interest to us. We
propose to use a variable size window of sampled master
robot positions to adapt online the geometry of the task
model. The geometry of the path, defined by a parametric
model, is corrected independently from the dynamical aspect
of the task. As in previous work, sample positions are consid-
ered to be noisy observations of a desired trajectory [10], [4].
But here, a sliding window of past observations is retained,
and the learning is only performed when enough information
has been collected. To this end, we propose a criterion that
is used to supervise the learning and dynamically adapt the
size of the window. The task model is updated while it is
simultaneously used to physically guide the user, allowing
for in-situ correction of the task from only user inputs.



First, the problem, background and used notations are
introduced in section II. After detailing the proposed adaptive
size window method in section III, experimental results are
provided in section IV, demonstrating that the approach can
cope with planning errors.

II. PROBLEM FORMULATION

A. Teleoperation and haptic guidance

In the following the teleoperation of a robot is considered
in order to perform a remote trajectory-following task. At the
master-side, the user manipulates a haptic interface whose
planar or 3D Cartesian position x(t) ∈ Rm is mapped to
the slave workspace to obtain the slave position reference.
This position-position mapping, as well as the positioning
of the slave robot, are assumed sufficiently accurate so that
positions can be considered indifferently in either workspace.
In the following, the master side is chosen for the sake of
clarity.

The user’s desired trajectory is denoted xd(t). This trajec-
tory is planned from the visual feedback provided by a static
camera and performed by manipulating the master interface.
In order to guide the user during the task execution, guidance
forces fg(t) are applied by the master using Cartesian
impedance control, which allows for compliant tracking of a
reference position denoted as xg(t). The impedance control
law is defined as follows:

M(t)¨̃x(t) +Dd(t) ˙̃x(t) +Kdx̃(t) = fh(t) (1)

with x̃(t) = x(t) − xg(t), Dd(t), Kd ∈ Rm×m define the
desired impedance, M(t) ∈ Rm×m is the natural Cartesian
inertia of the master robot and fh(t) is the external force,
applied by the user to the robot. Kd is set constant and Dd(t)
is chosen to impose a critically damped behavior using the
factorization design method [14], [15]. To impose the behav-
ior, guidance forces fg(t) are computed considering that the
robot’s Cartesian dynamical model (after compensation for
gravity) is M(t)ẍ(t) = fg(t) + fh(t).

As the accelerations are low and the mass of the interface
is negligible compared to the human arm and hand, the
inertial term is neglected. The guidance forces are

fg(t) = −Kdx̃−Dd(t) ˙̃x (2)
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Fig. 1. Desired task, guidance model, and notations used throughout this
work. (A) The guidance and the desired trajectories, both defined in the
master robot frame of reference, are illustrated along with the guidance
force fg and the one applied by the human fh. Errors are exaggerated
for the purpose of illustration. (B) Positions of interest xg , x , and xc.
Associated errors x̃ and x̃c are also illustrated.

A model of the task is necessary to guide the user and, as
in previous work [4], it is considered that learning a complete
model of the user intentions is intractable. They are restricted
and modeled by a predefined family of parameterized curves
g(θ, ψ) including both the desired path xd and the guidance
path xg . The two parameters θ ∈ Rn and ψ∈R, respectively
encode the path geometry and the position along it.

If the user’s desired trajectory xd(t) belongs to this family
of curves, then there is a set of parameters θ∗ and a function
ψ∗(t) that minimize the modeling error ‖xd(t)−g(θ, ψ(t))‖.
The haptic guidance should aim at guiding the motion of the
robot along this desired trajectory, but the desired parameters
θ∗ and advancement profile ψ∗(t) are unknown. Although
an estimate for these can be obtained from pre-operative
planning or from intra-operative data, it is not guaranteed
to accurately represent what the user desires. During the
execution of the task, the guidance reference xg(t) is then
generated from an estimation of the desired task:

xg(t) = g(θ̂, ψ̂(t)) (3)

These estimates could be erroneous, or become so during
the task execution. The online refinement of the different
parameters θ̂ and the advancement policy ψ̂(t) is therefore
a critical issue.

C. Motion along the path

There are several ways to define the position along the path
ψ(t) depending on what is known about the desired velocity
profile. A straightforward approach is to simply constrain
the motion of the robot on the path, a method referred to
as Guidance Virtual Fixture [2]. A classic implementation
is to define the guidance reference xg(t) as the point on the
guidance path minimizing the distance to robot position x(t):

xg(t) = g(θ̂(t), ψc(t)) (4)

ψc(t) = arg min
ψ

d(x(t), g(θ̂(t), ψ)) (5)

with d(A,B) the distance between the points A and B.
Alternatively, if the velocity profile is known, a function

ψ̂(t) can be used to move the reference along the path to
actively pull the user forward. This approach is not well
adapted to the present case, since the user continuously ma-
nipulates the interface and could disagree with such imposed
motion. Although methods to stop the advancement [16] or
adjust it [17] have been proposed, they lack the interactivity
required for teleoperation.

In this work, a local linear model ψ̂(t) = at + b is
learned online and is used to compute the guidance reference
trajectory xg(t). First, the closest point on the path is
computed from (5), yielding an associated ψc(t). The model
of ψ̂(t) is then updated by minimizing a cost defined as a
linear combination of the squared positioning and velocity
errors Lψ = e2ψ + ė2ψ , with eψ = ψc− ψ̂(t). The update rule
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Fig. 2. Synopsis of the proposed method: (A) A haptic guidance is
provided from a reference xg(t) = g(θ̂(t), ψ̂(t)). (B) A variable size
window learning algorithm learns the geometrical parameters of the task
θ[k] from a series of observations x(t) = x̂d(t). The size of the window
N is controlled to guarantee that the window contains sufficient information.
If this criterion is unmet, the learning is suspended until more sampled user
positions are available. At each iteration, the points associations are updated
to take parameters changes into account. (C) New parameters estimates θ̂[k]
are sent to the guidance loop and filtered to ensure smooth transitions.

uses the damped Gauss-Newton method [18] as follows:

ψ̂(t) = at+ b (6)[
ȧ

ḃ

]
= α

(
JTψ Jψ

)−1
JTψ

[
eψ
ėψ

]
; Jψ =

∂ψ̂∂a ∂ψ̂
∂b

∂
˙̂
ψ
∂a

∂
˙̂
ψ
∂b

 (7)

where α ∈]0; 1[ is a learning factor used to tune the behavior
of the guidance. This allows to filter ψ̂(t), smoothing the
motion along the path and preventing undesired jerk. It can
be observed that if the value of α is close to one, the resulting
behavior will be the one obtained with eq. (4) and (5).

III. METHOD

In this work, we aim to update a task model online to
cope with possibly significant changes between pre-operative
planning and in-situ realization. These changes can arise
from registration errors or be due to a change of the
environment. Either way, changes in the desired parameters
θ∗ might happen, leading to inaccurate haptic guidance. We
present a method to update the geometry of a parametric path
online from user actions. The general synopsis is illustrated
in fig.2, and it is detailed in the following sections.

A. Sliding window learning

It is assumed that in case of conflicts between the guidance
and the user, the latter can overcome applied forces to
perform the desired trajectory. This hypothesis can be invalid
in some cases, since it has been shown that a too large
discrepancy between guidance and desired trajectory can
impede the execution of the task [19]. Here, applied forces
are very low (under 5N) and the user can easily overcome
them. The position of the robot x(t) is considered to be a
noisy observation of the desired trajectory x(t) = xd(t)+ε(t)
or x(t) = g(θ∗, ψ∗(t)) + ε(t), with ε(t) the noise. In order
to minimize the guidance errors between guidance reference
xg(t) and user desired position over time, the guidance task
model parameters must be updated. To do so, the learning
of the parameters θ is re-framed as a non-rigid registration
problem, fully independent from the motion along the path.

The user inputs x(t) are sampled periodically to form a
trace of N observations x[k − i] spanning a finite temporal
horizon. With t the current time and Ts the sampling period
(see fig. 2), we write x[k − i] = x(t − iTs). It can be
observed that if the task model changes with the update of
θ̂[k], the values of ψc(t) computed at times t = t− iTs will
no longer be solutions of (5). Therefore, points associations
must be re-computed at each step k of the learning loop
according to (5) with the updated parameters θ̂[k]. These
point correspondences between user input and guidance path
can be used to define errors ‖x̃c‖, the smallest distances
between x[k − i] and the guidance path (see fig. 1). This
distance is computed from ψc[k− i], the re-evaluation of the
position along the path according to (5), such that x̃c[k−i] =
x[k − i]− g(θ̂[k], ψc[k − i]) .

The learning of the task parameters θ∗ is formulated as a
quadratic optimization problem, minimizing the cost function
Lθ defined as follows:

Lθ[k] =
1

N

N−1∑
i=0

‖x̃c[k − i]‖2 (8)

To minimize this cost function over time and subsequently
reduce task modeling errors, a damped Gauss-Newton op-
timization is implemented. This method is highly tractable
for online schemes and allows the learning rate to be tuned,
a desirable property for online registration-like algorithms
[20]. With λ the learning rate, the parameters update rule is

θ̂[k] = θ̂[k − 1]− λ
(
Jθ[k]TJθ[k]

)−1
Jθ
T [k]x̃c[k] (9)

where Jθ[k] ∈ RNm×n and x̃c[k] ∈ RNm×1 are defined as

x̃c[k] =

 x̃c[k]
...

x̃c[k − (N−1)]

 , Jθ[k] =

 Jθ[k]
...

Jθ[k−(N−1)]

 (10)

with Jθ[k − i] = ∂g(θ,ψ)
∂θ

∣∣∣∣
θ=θ̂[k],ψ=ψc[k−i]

A critical issue is the management of the window size
N . At the initialization, the window is empty and N is
set to zero. As new observations are sampled, the window
expands towards maximal size Nmax, whose choice depends
on available computational power. However, N only defines
a temporal windowing of the observations, whereas the
sampling should also be based on a geometrical criterion:
observations must homogeneously span both a temporal and
a spatial horizon. Intuitively, a large number of observations
do not give any information about the task if no displacement
has occurred. Similarly, if the observations are too sparse
spatially, they might not be sufficient to learn the correct task.
A naive choice of the window size can lead to degenerated
cases, impeding the accuracy and stability of the learning.
This advocates for an adaptive size window based on the
evaluation of the richness of the collected observations.

B. Automatic window size management
In order to adapt the size of the window, it is necessary

to have a way of evaluating if the window contains enough
information. Let us assume for now that there is a function
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Fig. 3. Illustration of the estimation of future guidance reference position
xg(t+∆t) from the N available observations x̂d(k). (A) Estimation of the
covariance Σ̂f (∆t) of xg(t+ ∆t) at t = t+ ∆t. (B) Same, but averaged
over a finite horizon t ∈ [t; t+ ∆t].

γ such that if γ 0 γmax, the window of size N is sufficient
for a meaningful and stable learning. The size of the window
should therefore verify the inequality γ 0 γmax, with γmax
a manually tuned threshold. New observations are sampled
one at a time, such that the optimal size for the window
varies slowly. We propose to similarly expand or shrink the
window used for learning by unitary increments:{

Nmin += 1 if γ[k] > sγmax and Nmin<Nmax
Nmin −= 1 if γ[k]<sγmax and Nmin>1

(11)

where Nmin is the minimal size of the window verifying
the criterion γ 0 γmax and s < 1 is a coefficient used to
ensure a margin in the minimal window size Nmin. Finally,
the actual size N [k] used for the learning is chosen such
that N [k] = Nmin[k] and the parameters are only updated if
γ[k] 6 γmax (see fig.2).

To implement this scheme, such a criterion γ[k] must be
devised. One method consists in back-propagating expected
observations covariance Σ̂obs through the model to estimate
the covariance matrix of the parameters θ̂. To this end, the
component of the observations’ covariance tangent to the
guidance path has to be ignored, as these errors have been
compensated during the points association stage described in
section III-A. Let Pi be the projection matrix to the plane
normal to Ti, the vector tangent to the path defined as Ti =
ẋg [k−i]
‖ẋg [k−i]‖ . The Jacobian matrices Jθ[k−i] associated to each
observation contained in the minimal window are projected
to the corresponding normal planes such that

Jproj [k] =

P0 0

. . .
0 PNmin−1


 Jθ[k]

...
Jθ[k − (Nmin − 1)]

 (12)

By assuming that the observation noise, which corresponds to
the user accuracy in following the desired path, is isotropic
and Gaussian, the variance projected to the normal plane
is Σ̂obs = σ0IN(m−1)×N(m−1). The covariance of the
uncertainty on the parameters can be obtained as follows:

Σ̂θ =
(
JTprojΣ̂−1

obsJproj

)−1

= σ0

(
JTprojJproj

)−1

(13)

Σ̂θ could directly be used to define a criterion, but this would
require to know beforehand what uncertainty on the parame-
ters is acceptable – not a trivial question. Furthermore, doing
so would yield a task-dependent criterion that would have to
be hand-crafted. To cope with these issues, the parameters’
estimated covariance matrix is used to predict the uncertainty

XY 
plane

A B

       Path to follow

Virtual slave robot

Fig. 4. Experimental setup: (A) 3 DOF haptic interface (Omega 3, Force
Dimension) manipulated by the user. The task is defined in the horizontal
XY plane. (B) Visual feedback featuring a dot and a curve, respectively
representing the XY position of the virtual slave robot and the path that the
user is asked to follow. This display of the “desired path” allows for an
objective assessment of the learning performance.

of the guidance reference xg(t) further along the path (see
fig.3). Let Jf (∆ψ) be the Jacobian of g(θ̂[k], ψ̂[k] + ∆ψ)
with respect to the parameters θ projected to the normal plane
as in (12) and Σ̂f (∆ψ) the covariance of g(θ̂[k], ψ̂[k]+∆ψ)
normal to the path defined as follows:

Σ̂f (∆ψ) = Jf (∆ψ)Σ̂θJf (∆ψ)T (14)

The criterion γ[k] is computed as the ratio between the
accuracy expected for a single observation and for the
guidance reference position in the near future. In the case of a
2D task, the projected covariances matrix Σ̂obs and Σ̂f (∆ψ)
are reduced to scalar values, respectively σ0 and σf :

γ[k] =
σf [k]

σ0
= Jf (∆ψ)

(
JTprojJproj

)−1

Jf (∆ψ)T (15)

For 3D tasks, γ[k] could be defined as a ratio between
matrices’ determinants or eigen values, among others. In
practice, the actual criterion γ[k] used in this algorithm is
averaged over the interval [ψ[k], ψ[k] + ∆ψ[k]] to reduce
local variations (see fig. 3.B). The threshold γmax is chosen
considering that the guidance should at least be as accurate
as the user input and if possibly more (γmax[k] � 1) .
The criterion γ is computed from eq. (15), where ∆ψ[k] is
defined as in (16) in order for the prediction to cover both a
temporal and spatial horizon, respectively denoted as ∆tmin
and ∆xmin:

∆ψ[k] = max(∆tmin
ˆ̇
ψ[k], ∆xmin

∥∥∥∥∥∂g(θ̂[k], ψ̂[k])

∂ψ

∥∥∥∥∥
−1

) (16)

IV. EXPERIMENTAL RESULTS

The proposed method for online task update is imple-
mented to evaluate its performance on a 2D task. A first
experiment shows that the method can correctly learn task
parameters online. Another case-study illustrates interesting
challenges that can arise in some situations.

A. Setup

The master robot is a 3DOF haptic interface Omega 3
from Force Dimension and a simulated robot and environ-
ment serves as the teleoperated robot (fig. 4). The task is
constrained to the XY plane through the rendering of a
higher stiffness kplane in the Z direction, such that Kd =
diag(kg, kg, kplane) where kg is the guidance stiffness. The
haptic loop runs at 1 kHz, and the learning loop runs at 10
Hz (hence Ts = 0.1 s). The method is implemented with the



parameter values given in table IV-A. In order to smooth the
transitions introduced by the update of θ̂[k], the parameters
actually used for the guidance θ̂(t) are filtered (see fig. 2.C)
by a first order filter with a time constant of 1 s.

The experiment is as follows. A path is displayed on the
screen, along with a dot representing the position of the slave
robot (fig. 4). The user is asked to manipulate the haptic
interface to follow the path with the virtual “robot”, with no
constraint on the velocity. The path displayed on the screen
is considered to define the ground truth for the geometrical
part of the desired task g(θ∗, ψ).

Section Name Value Unit(s)

II-C a, b (at t = 0) 0.0, 0.0 –
α 0.001 –

III-A λ 0.2 (set to 2Ts) –

III-B
Nmax (limit) 200 –
γmax, s 0.2, 0.8 –

∆tmin, ∆xmin 0.5, 0.01 s, m resp.
IV-A kg , kplane 200, 1500 N/m

TABLE I
PARAMETERS VALUES USED FOR THIS EXPERIMENT.

B. Online rigid registration from user inputs
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Fig. 5. Snapshots of the different positions of interest at different times
throughout the experiment. All positions are expressed in millimeters with
the scale displayed in the bottom-left figure. In the area (A), a discontinuity
in the closest points search can be observed. The filtering of ψ̂(t) proposed
in section II-C prevents the appearance of jerk in the guidance.

Let us first consider the case of a task whose geometry is
defined by a spline Γ rigidly registered in the robot’s frame
of reference such that

g(θ, ψ) = R(θ1)Γ(ψ) + t(θ2:3) (17)

=

[
cos θ1 − sin θ1
sin θ1 cos θ1

]
Γ(ψ) +

[
θ2
θ3

]
where R and t are planar rotation and translation, ψ ∈ [0; 1]
encodes the position along the path and θi is the ith compo-
nent of the parameters vector θ. The desired parameters are
θ∗= [0 5 −5] and the estimated parameters are initialized
at θ̂(t=0) = [9 −10 5] (in [deg. mm mm] ).

The execution of one learning step (fig.2.B) takes 20 ms on
average, well under the 100 ms needed to run at a frequency
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100
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Fig. 6. (Top) In-plane components (x and y) and Euclidean norm of the
guidance forces fg(t). (Bottom) Cost function Lθ[k].

Fig. 7. (Top) Evolution of the estimated parameters and comparison with
the ground truth. Only the parameters θ̂(t) used for generating the guidance
reference are shown, except for θ̂1[k], included to show the effect of the
filter. (Bottom) Absolute error on estimated parameters |θ∗i (t)− θ̂i(t)|.

of 10 Hz. While the initial parameters estimation error is
large, as visible on fig.5, it is significantly reduced once the
updates are allowed by the window size manager at t ∼ 9s.
This event is triggered when the criterion defined by (15) is
met (fig.8). The update of the estimated parameters is then
propagated to the parameters used to guide the user (fig.7).
The cost function Lθ (fig.6) converges toward 0.2 mm2. The
residual error can be explained by the accuracy of user
positioning, as the mean value of ‖x̃c(t)‖ when the guidance
parameters are correct has been evaluated at 0.35 mm. As
expected, the intensity of the guidance forces decreases along
with the task modeling errors (fig. 6). It can be noted that
once geometric parameters are correctly estimated, residual
forces are mostly tangent to the guidance path. These forces
are created by errors on the estimation of the desired position
and velocity along the path ψ̂(t) (see fig.9).

The criterion γ is subject to local variations and conse-
quently, the minimal size of the window Nmin varies (fig. 8).
This variation on γ can partly be imputed to points matching
updates, but even when the parameters have converged, some
variations remain, suggesting than the cause is the forward
propagation of the co-variance. First, the sensitivity of the
task model to one parameter or another, mainly the rotation
here, changes depending on the location along the path.
Second, the derivative of the path is not constant, and a re-
parameterization by arc length could reduce the variations.

The model of the velocity profile ψ̂(t) follows ψc(t) as
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Fig. 8. (Top) Evolution of the criterion γ[k] and threshold γmax, displayed
on a log-scale. (Center) Zoom of the figure above it. (Bottom) The window
shrinks or expands to keep the criterion within a predetermined range. The
maximal size of the window Nmax = 200 is never reached.
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Fig. 9. Advancement along the path: estimated model ψ̂(t) and value of
ψc(t) associated to the closest point xc(t) = g(θ̂[k], ψc(t)).

intended (see fig.9). The residual tracking error eψ has two
identified sources: the discontinuities in ψc(t) due to local
minima and variations in the user’s velocity. The latter is
low in this experiment, since the input motion is smooth
(no stopping or major slowing down). Local minima appear
when the position of the robot is further away from the path
than the radius of curvature of the path. In this case, the
iterative orthogonal projection (see eq.5) is not guaranteed to
converge towards the closest point [21]. Since the distance
minimization method used is robust and can cope with local
minima, the closest point “jumps” and creates discontinuities.
This phenomenon, well described in [22], is visible at t ∼ 8.4
s in figure 9 and in the area (A) at t = 8.5 s (fig.5). By filtering
ψc(t) using (7), the jerk tangent to the path is reduced.

C. Second experiment: parametric sinusoidal path

This second task is defined by a sinusoidal path Γ
registered in the robot frame of reference such that
g(θ, ψ) = R(θ1)Γ(θ4:5, ψ) + t(θ2:3), with R and t de-
fined as in eq. (17), and Γ(θ4:5, ψ) =

[
θ4ψ θ5 sinψ

]
.

Task parameters are θ̂(t=0) = [9 −50 1 5 15] and
θ∗= [0 −40 0 4 35]. θ4 and θ5 encode the spatial
period and the amplitude of the sinus respectively. The same
protocol as in section IV-C is followed. It should be noted
that this scenario has been chosen on purpose so as to reveal
some of the important issues that need to be discussed. In
this experiment, the error on the parameters estimation is
well reduced over time and the estimated task is visually
correct after about 15 s of interaction (fig.10). The user
motion becomes smoother as the desired task parameters are
learned, showing that the quality of the guidance improves,
and with it the quality of the tracking of the desired path.
However, it can be observed in fig. 10 that the parameter θ̂5
encoding the amplitude of the sinus converges slowly. This is

-50 0 50

-20
0

20
40

Fig. 10. (Top) Snapshots of the different positions of interest at different
times throughout the experiment. See figure 5 for the legend, that is not
included here due to limited space. (Bottom) Evolution of the parameter
θ̂5(t) encoding the amplitude of the sinusoidal task.

due to incorrect point associations between the sample user
positions and the path, arising near the crests of the sinus as
in the zoom in fig.10. The cause is the same as for the local
minima discussed in section IV-B.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a novel method to update
the geometry of a parametric task model from only user
position inputs. Contrary to iterative approaches, the task
model is learned while simultaneously used to physically
guide the user, allowing online correction of the haptic
guidance. Experiments show that the path parameters can be
learned online when they are initially erroneous. Overall, this
method shows great potential to overcome large registration
or planning errors in physically guided teleoperation.

The presence of local minima in the distance minimization
optimization can create discontinuities in ψc that have been
filtered. But in some cases, it can cause the point-matching
step in the learning of θ̂ to yield temporarily erroneous
information. This is shown in the second experiment, where
the sinusoidal curve’s strong curvature impedes the learning
of one of the parameters. However, this could be handled by
using more advanced point set registration techniques [23].

The results are already quite satisfactory, and ongoing
work aims at improving the method. A next step could
involve detecting possible online changes in order to refresh
the window. Furthermore, an adaptive stiffness scheme such
as the one presented in [9] could improve the capacity of the
user to execute the desired trajectory when the parameters
estimation error is very large. In this work, as the stiffness
of the impedance controller is constant, the question of the
passivity has not been discussed. It would be interesting to
assess if the guidance system can be passive and if not, to
implement a method to enforce it [24], [11].
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