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On relation between totality semantic and syntactic
validity

Thomas Ehrhard* Farzad Jafarrahmani† Alexis Saurin*‡

Abstract

In this paper, we present a denotational semantic for non-wellfounded
proofs of µLL∞, linear logic extended with least and greatest fixed points,
by adapting the categorical semantics of µLL∞ [EJ21]. Two instances of
this categorical setting are REL (category of sets and relations), and NUTS
(category of sets equipped with a notion of totality and relations preserving
it) which is studied in [EJ21]. In particular, we relate validity condition for
non-wellfounded proofs and totality of NUTS. More precisely, we show each
µLL∞ valid proof will have interpreted as a total element in NUTS.

1 Introduction

µLL is a version of propositional Linear Logic with least and greatest fixed points
extending propositional µMALL with exponentials [Bae12]. In [Dou17] and [BDS16],
the µMALL∞ system, which is multiplicative and additive linear logic with two
rules for unfolding fixed-points, is studied. And they have defined a syntactic no-
tion of validity on proofs in order to distinguish sound and unsound proofs, as we
can see a same notion in [Bro06] and [BS07].

One of our purpose is to develop a more Curry-Howard oriented point of view
on µLL∞ through the denotational semantic. And as there are different validity
conditions on the µLL∞ proofs (such as straight-thread, bouncing, etc. [BDKS20]),
we hope that the denotational semantic helps us to understand which one is more
appropriate.

There is a categorical semantics of µLL [EJ21], and two instances of this cat-
egorical setting are REL (category of sets and relations), and NUTS (category of
sets equipped with a notion of totality and relations preserving it) which is studied
in [EJ21].

We have considered µLL∞, an extension of µMALL∞ with exponentials as the
main system. And as the denotational semantic of µLL∞, we have examined REL
and NUTS.
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Organization of the paper We first recap the language and the inference rules
of µLL∞ in the section 2. In the section 3 and 4, the interpretation of formula
and proofs in REL and NUTS are provided. And finally, the main contribution is
mentioned in the section 5 which relates validity condition and totality of NUTS.
More precisely, we show that each µLL∞ valid proof will have interpreted as a total
element in NUTS.

2 Syntax of µLL∞

The syntax of µLL∞ is an extension of µMALL∞ ([Dou17] and [BDS16]) with ex-
ponentials. We assumed to be given an infinite set of type variables names X ,Y, · · · .

The formulas of µLL∞ are defined as follows:

A,B, · · · := 1 | 0 | ⊥ | > | A⊕B | A⊗B | A & B | A`B | ?A | !B | X | µX .F | νX .F
(1)

The definition of negation for linear logic formula is as usual. However the
orthogonality acts as the identity on variable, i.e X⊥ = X , and for the fixed-point:
(µX .A)⊥ = νX .A⊥ and (νX .A)⊥ = µX .A⊥. One motivation for this definition is
that it prevents the definition of recursive types with negative dependencies which
leads to non-terminating programs.

Remark 1. We can define the exponentials in µMALL∞ by taking !A as the for-
mula νX .(1 & A & (X ⊗X)) ([BDS16]). And indeed all the structural rules are
derivable but we do not have the Seely isomorphism semantically.

We consider the inference rules in a standard one-sided Linear Logic sequent
calculus as in [Dou17] and [BDS16]. We just mention the fixed-point rules and
refer to [Gir87] for the linear logic inference rules. The fixed-point rules are as
follows:

` Γ,A[µX .A/X ]
µ

` Γ,µX .A
` Γ,A[νX .A/X ]

ν` Γ,νX .A

2.1 µLL∞ proofs

A µLL∞ pre-proof is a possibly infinite tree, generated by the given inference rules
of previous section. The pre-proofs can be unsound. For instance the sequent ` is
provable:

...
µX .A
µX .A

...
νX .A
νX .A

`
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To distinguish proper proofs from pre-proofs we consider a criterion, called
validity condition, which is summed up in two following definitions here; we refer
to [Dou17] for details.

Definition 2. We define the relation→FL on formulas as follows:

• A∗B→FL A and A∗B→FL B where ∗ is a linear logic connective.

• @A→FL A where @ is either ? or !.

• σX .F →FL F [σX .F/X ] where σ is either ν or µ .

The Fischer-Ladner sub-formula of a formula F is the formula G such that F →∗FL
G where→∗FL is the reflexive transitive closure of→FL.

Definition 3. A thread is a sequence t = (Ai)i∈ω such that for all i either Ai+1 is
Fischer-Ladner sub-formula of Ai or Ai = Ai+1.

Definition 4. A valid thread is a thread t such that min(Inf (t)) is a ν-formula
where In f (t) is set of formulas that happens infinitely often in t and minimum is
respect to the usual sub-formula ordering (not Fischer-Ladner).

Definition 5. A valid µLL∞ proof is a pre-proof π such that for any infinite branch
γ = (` Γi)i∈ω , there is a non stationary valid thread t = (Ai)i> j where j ∈ ω and
∀i > j(Ai ∈ Γi) and Ai+1 is a suboccurrence of Ai.

3 Interpreting fixed-point µLL∞ formulas in REL

REL is the well-known model of linear logic interpreting formulas and proofs in
the category of sets and relations. In this section, we provide an interpretation of
fixed-point formula in REL.

To do that, we first define the notion of variable set as [EJ21]:

Definition 6. A (n-ary) variable set (VS) is a endofunctor E : REL→ REL such
that E is monotonic and continuous on objects and on morphisms, meaning that

• If when
−→
f ,−→g ∈ RELn(

−→
X ,
−→
Y ) satisfy

−→
f ⊆−→g , then E (

−→
f )⊆ E (−→g ), and

• if D is a directed subset of RELn(X ,Y ), then E (
⋃

D) =
⋃
−→
f ∈D E (

−→
f ).

As we can see in [EJ21], the linear logic operations ⊗,⊕,`,&,?, ! are VS and
VS are closed under De Morgan duality and composition.

Given a VS, E : REL→ REL, we define σE as
⋃

∞
n=0 E n( /0). Then one can

check that E (σE ) = σE .
Note that we only dealt with unary VS’s to avoid some further technicalities.
With any formula A and any repetition-free sequence

−→
X = (X1, · · · ,Xn) of vari-

ables containing all variables free in A, one can associates an n-ary VS JAK−→X by
induction on A. So, we can take σJAK−→X as the interpretation of µX .A and νX .A,
i.e JµX .AK−→X = JνX .AK−→X = σJAKX ,

−→
X .
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Remark 7. µX .A and νX .A have the same interpretation in REL. But we can
distinguish them in non-uniform totality space [EJ21]. We summarize this con-
struction in the next section and refer to [EJ21] for more details.

4 Non-uniform totality space

Consider U ⊆P(X) for a given set X , we then define:

U ⊥ = {u′ ⊆ X | ∀u ∈U (u∩u′ 6= /0)}

A non-uniform totality space X is a pair (|X |,T X) such that |X | is a set (at most
countable) and (T X)⊥⊥ = T X . One of the crucial property of the non-uniform
totality spaces is that we have a description of bi-orthogonality by the following
lemma [EJ21]:

Lemma 8. For any U ⊆P(X), we have (U )⊥⊥ = U if and only if U is upward
closed.

We define the category NUTS whose objects are non-uniform totality spaces
and as the morphism t ∈ NUTS(X ,Y ) iff ∀u ∈ T X(t.u ∈ T Y ) where t.u = {y ∈
|Y | | ∃x ∈ u (x,y) ∈ t}

We now mention a lemma that will be useful for the construction of interpreta-
tion of fixed-point in NUTS. This lemma is proved in [EJ21].

Lemma 9. Let Tot(X) be the set of all totality candidates, i.e. Tot(X) = {U ⊆
P(X) | (U )⊥⊥ = U }. Then Tot(X) is a complete lattice ordered by ⊆.

4.1 Interpretation of the µLL∞ formulas in NUTS

For any formula A of µLL∞, we provide an interpretation JAK = (|JAK|,T JAK) as
a non-uniform totality space. We first deal with linear logic formula:

• J1K = J⊥K = ({∗},{{∗}}), JA⊥K = (|JAK|,(T JAK)⊥)

• JA⊗BK=(|JAK|×|JBK|,{w | ∃u ∈T JAK and ∃v ∈T JBK such that u× v⊆ w})

• JA & BK=({1}×|JAK|∪{2}×|JBK|,{u⊆ |JA & BK| | π1(u)∈T JAK∧π2(u)∈
T JBK}

• J!AK = (Mfin(|JAK|),{y | ∃x ∈T JAK∧ x! ⊆ y}) where x! = Pfin(x).

Note that the case of ⊕,`,? are done by duality.

Lemma 10 (From [EJ21]). t ∈ NUT S(JAK,JBK) iff t ∈ JA ( BK = J(A⊗B⊥)⊥K.

For fixed-point formula, we define the notion variable of non-uniform totality
space as follows [EJ21]:
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Definition 11. An n-ary variable of non-uniform totality space (VNUTS)
E is a pair (|E|,T E) such that |E| : REL→ REL is a (n-ary) VS, and T E is

an operation such that

• T E((|X |,T X))∈Tot(|E|(|X |)) for any non-uniform totality space (|X |,T X),
and

• for any−→t ∈NUTS(−→X ,
−→
Y ), the morphism |E|(−→t ) belongs actually to NUTS(E(−→X ,E(−→Y )),

so that E defines a functor NUTSn→ NUTS (denoted simply as E) .

4.1.1 Fixed Points of VNUTS:

Let E be a VNUTS, we define a non-uniform totality space µ.E=(|µ.E|,T (µ.E)).
First, we set |µ.E| = σ |E|. Now we define a map θE : Tot(|µ.E|)→ Tot(|µ.E|)
such that it maps T ∈T |µ.E| to T E(|µ.E|,T ). Note that by definition of VNUTS,
T E(|µ.E|,T ) ∈ Tot(|E|(|µ.E|)) =Tot(|µ.E|). The map (θE) is a monotonic map
on the complete lattice Tot(|µ.E|) (as shown in [EJ21]). By Knaster-Tarski’s The-
orem, there is a least fixed point U of θE, and we set T (µ.E) = U .

We actually can describe that U by sequence of candidates of totality for |µ.E|,
indexed by ordinals: Uα+1 = θE(Uα) and Uλ = (

⋃
α<λ Uα)

⊥⊥. One can also
define ν .E by De Morgan duality, i.e. ν .E = (σ |E|,(T (µ.(E)⊥))⊥). A more
explicit construction for ν .E is given in the section 5.

Lemma 12. Let A be a formula and
−→
X = (X1, · · · ,Xn) be a repetition-free list of

variables containing all free variables of A. Let B1, · · · ,Bn be a list of formulas
and let

−→
Y = (Y1, · · · ,Yn) be a repetition-free list of variables containing all free

variables of B1, · · · ,Bn. Then we have the:

JA[C1/X1, · · · ,Cn/Xn]K−→Y = JAK−→X ◦ (JC1K−→Y , · · · ,JCnK−→Y )

4.2 Interpretation of the µLL∞ proofs in NUTS

The interpretation of µLL∞ inference rules in NUTS is same as their interpretation
in REL. So, we only mention the case for fixed-point rules, and this is fairly simple
by taking the interpretation of the premise. More precisely, let us say π ′ is the proof
of ` Γ,µX .A, and π is obtained by applying the µ rule on π ′. Then we take JπK
same as Jπ ′K. And we do the same for the case of ν rule.

We can not simply interpret an infinite proof by induction on the proof tree,
since we have to deal with an infinite object. The idea is to consider all finite
approximations of the proof, and then take the union of the interpretation of all
finite approximation. However there is another idea to interpret an infinite proof
in [KPP21] which is based on the notion of the computation and an well-founded
relation on them.

The cut-elimination theorem on µMALL∞ is provided in [Dou17]. One can
define a set R of reduction rules on µLL∞ by taking R as the cut-elimination rules
of µMALL∞ plus the corresponding reduction rules for the exponentials. Then
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we can show that the denotational semantic NUTS respects the reduction rules as
follows:

Theorem 13. The interpretation of µLL∞ proofs in NUTS (REL) is preserved by
the reduction rules R.

5 Validity implies totality

In this section, we prove our main result which says that the interpretation of any
valid proof is a total element, i.e. theorem 19. The proof method is similar to
the proof of soundness of LKIDω in [Bro06]. However the system of [Bro06] is
classical logic with inductive definitions, and the proof is for a Tarskian semantic.
We need to adapt the proof in two aspects: considering µLL∞ instead of LKIDω ,
and try to deal with the denotational semantic instead of Tarskian semantics. The
adapation for µLL∞ is somehow done in [Dou17], since there is soundness theorem
for µLL∞ with respect to the truncated truth semantics (a Tarskian semantic). So,
basically, the main point of this section is adapting a Tarskian soundness theorem
to a denotational semantic soundness.

As we saw in the previous section, given a formula νX .A, we can define its
interpretation by a transfinite induction considering sequences of totality candidate
as follows:

• U0 = Pfin(|JνX .AK|),

• Uα+1 = T JAK(|JνX .AK|,Uα)

• Uδ =
⋂

α<δ Uα

• and finally, there is an ordinal, denoted as λA, such that UλA =UλA+1.

We use the notation Uα freely without mentioning the formula. One can find
what the corresponding formula is from the context.

The following definition is borrowed from [Dou17].

Definition 14. The marked formulas of µLL∞ are defined as follows where α is an
ordinal:

A,B, · · · := 1 | 0 | ⊥ | > | A⊕B | A⊗B | A & B | A`B | ?A | !B | X | µX .A | ναX .A
(2)

The interpretation of ναX .A in NUTS is JναX .AK = (|JνX .AK|,Uα). And the
interpretation of the other marked formulas are same as the case of µLL∞ formula.

Proposition 15. Let A be a µLL∞ formula. Then we have JĀK= JAK where Ā is the
marked formula, obtained from A by marking every ν binder of A by the ordinal
λA.

6
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Lemma 16. Given a marked formula ναX .A. If x 6∈ T JναX .AK, then there exists
an ordinal γ < α such that x 6∈T JA[νγX .A/X ]K.

Proof. If α is a successor ordinal δ +1 then Uα = T JAK((|JνX .AK|,Uδ )) by defi-
nition, and obviously x 6∈ T JAK((|JνX .AK|,Uδ )). And so x 6∈ T JA[νγX .A/X ]K for
γ = δ using lemma 12.

If α is a limit ordinal, then: Uα =
⋂

γ<α Uγ , and x 6∈
⋂

γ<α Uγ =
⋂

δ+1<α Uδ+1.
So, there exists an ordinal δ +1 < α such that x 6∈Uδ+1 and we continue as before.

Lemma 17. T JA[µX .A/X ]K = T JµX .AK.

Proof. The interpretation of µX .A is the least fixed-point of θA. So, we have:

T JµX .AK = θA(T JµX .AK)
= T JAK((|JµX .AK|,T JµX .AK)) by definition of θA

= T JA[µX .A/X ]K by Lemma 12

Lemma 18. Given a proof π of ` Γ. If JπK 6∈T (JΓK), then

1. there exists an infinite branch γ = (` Γi)i∈ω such that JπiK 6∈T (JΓiK) where
πi is the sub-proof of π rooted in ` Γi;

2. there exists a sequence of functions ( fi)i∈ω where fi maps all formulas D
of Γi to a marked formula fi(D) such that if Γi = Γ′i,C, then there exists
x ∈ T J fi(Γ

′
i)
⊥K such that JπiK.x 6∈ T J fi(C)K where Γ′i = Ai

0, · · · ,Ai
n and

J fi(Γ
′
i)
⊥K = J fi(Ai

0)K
⊥⊗·· ·⊗ J fi(Ai

n)K⊥.

Theorem 19. If π is a valid proof of the sequent ` Γ, then JπK ∈T JΓK.

Proof. Let us assume JπK 6∈ T JΓK. We can then apply Lemma 18 to obtain an
infinite branch (` Γi)i∈ω and a sequence ( fi)i∈ω satisfying properties 1 and 2 of the
lemma. By the definition of valid proof, there exists a valid thread t = (Fi)i∈ω for
the infinite branch (` Γi)i∈ω . Take the suffix t ′ of t such that D ∈ t ′ iff D ∈ Inf (t).
Let νX .F be the minimal formula formula of t ′. So, there are infinitely many times
that we use a ν rule to unfold νX .F , and all of those νX .F are in t ′ so that those are
suboccurrence of each other. Let (ik)k∈ω be the sequence of indices where νX .F
gets unfolded. By the property 2 of lemma 18, fik(Fik) = ναk X . fik(F). Therefore,
by the property 2 of lemma 18 and by the construction of the fi in the proof of
lemma 18, the sequence (αk)k∈ω is strictly decreasing. As this contradicts the
well-foundedness property of the ordinals we obtain the required contradiction and
conclude that JπK ∈T JΓK.

And at the end, we conclude with the following remark.
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Remark 20. The converse of the theorem 19 is not necessarily true, and there are
many counterexamples indeed. For instance, simply take the following proof:

id` νX .X ,µX .X
ν` νX .X ,µX .X

?
` νX .X

cut
? ` νX .X

The interpretation of this proof is /0 and /0 ∈ T JνX .XK but that is not a valid
proof regrading the definition 5.

Acknowledgement We thank the reviewers of this paper for their very useful
comments and questions.
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