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Towards Unifying (Co)induction and Structural Control

In this work-in-progress paper, we extend hybrid multiplicative-additive linear logic with modalities for recursion so that infinite formulas and proofs correspond to (co)inductive types and programs. Working towards a unified logical framework, we consider various approaches to incorporating limited rules of weakening and contraction that reuse the hybrid structure.

1 Introduction (Co)induction [START_REF] Baelde | Infinitary Proof Theory: the Multiplicative Additive Case[END_REF] and limited rules of weakening and contraction [START_REF] Girard | Bounded linear logic: a modular approach to polynomial-time computability[END_REF] (which we call structural control) have separately been introduced into linear logic to reason about various computational phenomena. In this work-in-progress paper, we suggest hybrid logic as a unifying formalism for both features. First, we develop guarded HyMALL, which extends hybrid multiplicative-additive linear logic (HyMALL) [START_REF] Chaudhuri | Hybrid Linear Logic, revisited[END_REF] with Nakano's later modality ( ) [START_REF] Nakano | A Modality for Recursion[END_REF] and its dual ( ). Then, we show how infinite formulas and proofs correspond to (co)inductive types and programs. Lastly, we show how the hybrid judgment can provide structural control in the sense of bounded linear logic. While both systems can be combined naively, their unified treatment is of theoretical interest and could lead to a concise and expressive logical framework for resource-sensitive systems with (in)finite behaviors.

Guarded HyMALL

In this section, we introduce guarded HyMALL and work through some examples, ending with sketches of its metatheory. In short, we transport Vezzosi's [START_REF] Vezzosi | Total (Co)Programming with Guarded Recursion[END_REF] insight, which was to encode and into sized types by appealing to their Kripke semantics as necessity resp. possibility modalities, to the hybrid setting. However, Nakano and Vezzosi both encode recursion via a fixed point combinator. Since recursive calls can be made zero, one, or many times, such a combinator must be typed with !. On the other hand, we encode recursion via infinite proofs, decoupling it from ! [START_REF] Somayyajula | Circular Proofs as Processes: Type-Based Termination via Arithmetic Refinements[END_REF]. This affords us much more control on the inclusion of structural rules in the next section. Moreover, our use of modalities to control recursion obviates the need for extrinsic validity conditions on proofs as is common in infinitary proof theory [START_REF] Baelde | Infinitary Proof Theory: the Multiplicative Additive Case[END_REF].

Definition 1 (Worlds). Let (W, 0, +) be a monoid and u, v, w ∈ W be worlds. As usual, let u ≤ w ∃v. u + v = w and < be the corresponding strict order.

Definition 2 (Formulas). The formulas of guarded HyMALL, given below, are stratified into two syntactic categories: modal formulas M and quantified/hybrid formulas Q. We will see later that limiting the scope of quantifiers and "at" in this fashion is central to our sketch of cut admissibility. The ellipses stand for copies of the grammar for A and B replacing the subterms A and B with M resp. Q, indicating that M and Q each include the connectives of MALL and ´. The double pipes in the definition of M indicate the portion of its grammar that is coinductive. That is, viewing some M as a tree, all of its infinite paths must pass through or infinitely often [START_REF] Anders | Mixing Induction and Coinduction[END_REF]. Lastly, negation M ⊥ and Q ⊥ is defined as usual with and as duals but "at" and ´are self-dual.

A, B := 1 | ⊥ | A ⊗ B | A `B | | 0 | A & B | A ⊕ B | ´u. A(u) M := . . . M M Q := . . . | M | Q at w | ∀u. Q(u) | ∃u. Q(u)
The contexts Γ and ∆ are multisets of judgments A @ w indicating that A holds at world w. Proof rules are given in table 1 with the usual freshness condition on eigenvariables, where A and B draw from the MALL subgrammars of M and Q. Indicated by the double line, the rule for is coinductive, delimiting a potentially infinite branch as explained in the case of M. Moreover, the eigenvariable u is paired with the assumption that u < w, agreeing with the usual Kripke semantics for necessity. Dually, the rule for is inductive and has the corresponding side condition. Since our presentation is quite abstract, let us work through some examples of (co)induction, viewing formulas as types and proofs as programs. For the remainder of this section, let W = (N, 0, +), noting that < is well-founded.

Example 3 (Induction). Let gnat

(1 ⊕ gnat) be the type of guarded natural numbers; intuitively, a proof of gnat @ w is a natural number < w. As a result, nat ∃u. gnat at u must be the type of all natural numbers. Then, the infinite proof at the top in table 2 represents a trivial program gnat 1 using the notation D J to indicate a derivation D of the judgment(s) J and [w/u]D to substitute w for u in D.

In general, letting ♦Q ∃u. Q @ u, we call M = f (M) a guarded inductive type and ♦M the corresponding full inductive type. Let us now look at an example of coinduction.

1 @ w 1 Γ, ∆ Γ, ⊥ @ w, ∆ ⊥ Γ, A @ w B @ w, ∆ Γ, A ⊗ B @ w, ∆ ⊗ Γ, A @ w, B @ w, ∆ Γ, A `B @ w, ∆ ` 
Γ, @ w, ∆ (no rule for 0)

Γ, A @ w, ∆ Γ, B @ w, ∆ Γ, A & B @ w, ∆ & Γ, A i @ w, ∆ Γ, A 1 ⊕ A 2 @ w, ∆ ⊕ i , i ∈ {1, 2} Γ, Q @ u, ∆ Γ, Q at u @ w, ∆ at Γ, A(w) @ w, ∆ Γ, ´u. A(u) @ w, ∆ ´ Γ, M @ u, ∆ Γ, M @ w, ∆ Γ, M @ u, ∆ Γ, M @ w, ∆ , u < w Γ, Q(u) @ w, ∆ Γ, ∀u. Q(u) @ w, ∆ ∀ Γ, Q(v) @ w, ∆ Γ, ∃u. Q(u) @ w, ∆ ∃ Table 1: Rules for Guarded HyMALL
Example 4 (Coinduction). gstream A (A ⊗ gstream A ) is the type of guarded streams with elements in A; intuitively, a proof of gstream A @ w is a stream with at most w observable elements. As a result, stream A ∀u. gstream A at u is the type of all infinite streams. For example, consider the infinite proof at the bottom in table 2 representing a trivial stream of units.

eat = 1 @ v 1 ⊥ @ u, 1 @ v ⊥ [u/w]eat gnat ⊥ @ u, 1 @ v ⊥ & gnat ⊥ @ u, 1 @ v & (⊥ & gnat ⊥ ) @ w, 1 @ v ones = 1 @ u 1 [u/w] ones gstream 1 @ u 1 ⊗ gstream 1 @ u ⊗ (1 ⊗ gstream 1 ) @ w Table 2: Examples of (Co)induction
In general, letting Q ∀u. Q at u, we call M = f (M) a guarded coinductive type and M 1 the corresponding full coinductive type. We suspect that mixed induction-coinduction can be encoded with world vectors ordered lexicographically [START_REF] Abel | Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types[END_REF]. Now, let us comment on the metatheory of guarded HyMALL.

Definition 5 (Cut). If D Γ, Q @ w and E Q ⊥ @ w, ∆, then we define cut(D, E) Γ, ∆ in two parts: if Q = M, then we proceed by lexicographic induction on (w, M, D, E) otherwise proceed by the usual lexicographic induction on (Q, D, E) [START_REF] Pfenning | Structural Cut Elimination[END_REF]. While we have not verified every case, consider the principal cut for .

cut   D Γ, M @ u Γ, M @ w , E M ⊥ @ v M ⊥ @ w, ∆   = cut [v/u]D , E
w decreases to v, allowing M and D to grow arbitrarily large. If we had not limited the scope of quantifiers and "at" to come before modalities, then we could not have guaranteed that w decreases or stays the same in every case.

Definition 6 (Identity). Define id(F) Q @ w, Q ⊥ @ w in two parts as before: Q = M goes by lexicographic induction on (w, M) otherwise by induction on Q. While we have not verified every case, consider below: w decreases to u.

id( M) = id(M) M @ u, M ⊥ @ u M @ u, M ⊥ @ w M @ w, M ⊥ @ w 3 HyMALLSC
First, note that hybrid linear logic embeds into focused linear logic with quantified subexponentials [START_REF] Chaudhuri | Hybrid Linear Logic, revisited[END_REF], suggesting a close relationship between worlds and the control of exponential modalities. In general, substructural logics can be embedded into focused first-order logic [START_REF] Reed | Focus-Preserving Embeddings of Substructural Logics in Intuitionistic Logic[END_REF] where the sequent is modeled by the concatenation of worlds in an algebra such that its equations govern the structural rules. We aim to determine whether guarded HyMALL can be embedded similarly-the primary obstacle is reckoning with infinite proofs. However, consider the following development internal to HyMALL itself. We begin with the intuition that Q @ w means "w copies of the resource Q." Then, we could add to HyMALL rules of weakening and contraction where Q @ 0 is dropped resp. Q @ u + w splits into Q @ u and Q @ w. However, HyMALL rules for MALL connectives betray the new meaning of the judgment. Instead, let W be a semiring and let the rules for MALL connectives be defined at world 1, indicating that one copy of a formula is worked with at a time. Table 3 details representative rules of the resulting calculus, which we call HyMALL with structural control (HyMALLSC). modality 

Γ, A @ 1 B @ 1, ∆ Γ, A ⊗ B @ 1, ∆ ⊗ Γ, ∆ Γ, Q @ 0, ∆ W Γ, Q @ u, Q @ w, ∆ Γ, Q @ u + w, ∆ C

Conclusion and Future Work

We have presented two logics-guarded HyMALL and HyMALLSC-that respectively extend HyMALL with (co)induction and structural control in the sense of bounded linearity. Both can be combined immediately by introducing multiple world sorts (one for (co)induction and one for structural control) with separate modalities for each. However, the Church encoding of natural numbers bounded above in bounded linear logic [START_REF] Girard | Bounded linear logic: a modular approach to polynomial-time computability[END_REF] suggests a material connection between (co)induction and structural control, although the specifics are unclear to us. Moreover, we are interested in controlling the rule of exchange as well [START_REF] Bryant | The Graded Lambek Calculus[END_REF]. Overall, the high-level notion that worlds restrict the structure of proofs seems promising.

Table 3 :

 3 Selected Rules for HyMALLSCHyMALLSC is similar to Granule[START_REF] Orchard | Quantitative Program Reasoning with Graded Modal Types[END_REF], albeit with a different judgmental structure. The latter extends intuitionistic linear logic with hypotheses [A] w standing for w copies of A such that [A] 1 collapses to A. Like HyMALLSC, its additive structure controls weakening and contraction. However, its multiplicative structure induces graded modalities ( w and w ) indicating an upper bound w on use in lieu of unlimited exponentials. Let us compare both systems through examples.Example 7 (Reuse). Let W = N. In Granule, contraction is internalized as 2 A A ⊗ A. HyMALLSC can ascribe a more specific type: A at 2A ⊗ A at 1. Example 8 (Security). Let W = {Private, Public} be a Boolean semiring. In Granule, an information leak (not provable) looks like Private A Public A. Alternatively, consider A at Private A at Public in HyMALLSC as a more specific ascription.

Nakano introduced this additional modality; Clouston et al. [CBGB15] call it the constant