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Linear Exponentials as Graded Modal Types

Jack Hughes* Daniel Marshall* James Wood†

Dominic Orchard*

Abstract

Graded type systems, which allow resource usage in programs to be
tracked and reasoned about, are proliferating in recent works. These systems
generalise ideas from Bounded Linear Logic (BLL), which allows the expo-
nential modality ! from linear logic to be indexed by a bound on the number
of times a formula is used. Graded systems generalise BLL’s indexed modal-
ity to an arbitrary semiring of grades. Despite their relation to linear logic,
particular choices in most graded type systems mean they cannot faithfully
model ! due to the interaction between ! and ⊗; there are certain distribu-
tive laws that can be derived in graded type systems but cannot be derived in
linear logic. We remedy this by enriching the structure of the grading with
an additional operation, and show how this recovers the expressive power of
Intuitionistic Multiplicative Exponential Linear Logic (IMELL) in a system
with graded modal types. We briefly discuss our implementation involving
this new operation for the graded modal language Granule.

1 Introduction

Linear logic separates linear formulas (those that must be used exactly once) from
non-linear formulas (those that can be used arbitrarily often) by treating linearity
as the default and using the ‘exponential’ modality ! to mark non-linear formulas.
Bounded Linear Logic [GSS92] generalises ! to an indexed family of modalities
!rA where r is a polynomial term over natural numbers capturing the maximum
number of times that A can be used. Graded modal logics have generalised this
idea further so that 2rA captures a formula A which can be used according to a
usage constraint r which is an element of an arbitrary pre-ordered semiring R. One
natural question is: can we recover the ! of linear logic via a particular choice of
semiring? It turns out that many graded modal type systems bake in extra properties
regarding the interaction of graded modalities and linear products⊗ (multiplicative
conjunction) such that ! cannot be precisely captured. In particular, whilst graded
type theories (e.g. [OLEI19, AB20, BBN+17, Bra21]) can derive a bi-implication
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between 2rA⊗2rB and 2r (A⊗B) for any r , linear logic (LL) only derives
!A⊗ !B( !(A⊗B), i.e., for graded theories, denoted GR:

`GR pull2 : 2rA⊗2rB(2r (A⊗B) `GR push2 : 2r (A⊗B)(2rA⊗2rB

`LL pull! : !A⊗ !B( !(A⊗B) 0LL push! : !(A⊗B)( !A⊗ !B

For example, push2 can be defined in Granule (a linear language with graded
modalities [OLEI19]) as follows (where (a, b) [r] is syntax for 2r (A⊗B)):

Granule

1 push : ∀ {a b : Type, s : Semiring, r : s} . (a, b) [r] → (a [r], b [r])

2 push [(x, y)] = ([x], [y])

However, the power of the pattern matching used here does not translate to lin-
ear logic, and thus 2r and ! are different. We propose a technique to restrict
push by augmenting the grading semiring with additional structure such that the
derivability of push can be controlled (or ‘turned off’), enabling the intuitionistic
! to be recovered in a graded modal type system. This has applications to prac-
tical implementations of graded type systems such as Linear Haskell [BBN+17],
Granule [OLEI19], and Idris 2 [Bra21], and on the theories of Grad [CEIEW21],
Λp [AB20] and GranuleCore [OLEI19].

While we would like to be able to embed intuitionistic linear logic, we would
like in other situations to have push2. Graded systems have useful models [AB20]
and a simple syntax for mixed linear and non-linear settings [BBN+17, Bra21].
This motivates accommodating both choices in the same system.

2 Core calculus

To explore this issue and formulate a solution, we focus on a core calculus based
on the linear λ -calculus extended with products, units, pattern matching, and a
semiring graded necessity modality [OLEI19], where for a pre-ordered semiring
(R,∗,1,+,0,v), there is a family of types {�rA}r∈R . This language constitutes a
simplified monomorphic subset of Granule [OLEI19] which we will call GRCORE,
and closely resembles other related graded systems [AB20, Atk18, BBN+17, Bra21,
CEIEW21].

Typing judgements are of the form Γ ` t : A, assigning type A to a term t under
context Γ. Contexts Γ can contain linear and graded assumptions Γ ::=∅ | Γ,x : A |
Γ,y : [A]r, where x is a linear assumption and y is a graded assumption with grade
r ∈R describing how y can be used. Syntax and typing are given by the rules:

x : A ` x : A
VAR

Γ,x : A ` t : B

Γ ` λ x.t : A( B
ABS

Γ1 ` t1 : A( B Γ2 ` t2 : A

Γ1 +Γ2 ` t1 t2 : B
APP

Γ,x : A ` t : B

Γ,x : [A]1 ` t : B
DER

Γ ` t : A

Γ+[∆]0 ` t : A
WEAK

Γ,x : [A]r,Γ′ ` t : A r v s

Γ,x : [A]s,Γ′ ` t : A
APPROX

[Γ] ` t : A

r∗[Γ] ` [t] :�rA
PR

∅ ` unit : 1
UNIT

Γ1 ` t1 : A Γ2 ` t2 : B

Γ1 +Γ2 ` (t1, t2) : A ⊗ B
PROD

Γ1 ` t1 : A · ` p : A � ∆ Γ2,∆ ` t2 : B

Γ1 +Γ2 ` let p = t1 in t2 : B
LET
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The (VAR), (ABS), and (APP) rules are the standard rules of the linear λ -calculus,
augmented with a partial context addition operation Γ+Γ′ defined via semiring
addition on graded assumptions which appear in both Γ and Γ′ (where Γ and Γ′ are
disjoint in their linear assumptions): (Γ,x : [A]r)+(Γ′,x : [A]s) = (Γ+Γ′),x : [A]r+s.

The (WEAK) rule captures structural weakening of assumptions, where [∆]0
denotes a context containing only assumptions graded by 0. A linear assumption
may be converted to a graded assumption with the grade 1 via the rule for derelic-
tion (DER). Grade approximation is provided by the (APPROX) rule, which allows
a grade r to be converted to another grade s, provided that s approximates r (where
v is the pre-order given by the grades’ semiring). Graded modalities are introduced
by the promotion (PR) rule, scaling the assumptions in the context [Γ] (where a [Γ]
denotes a context containing only graded assumptions) via semiring multiplication.
Products are typed by the (PROD) rule, where the contexts used to type the pair’s
constituent subterms are added together.

Elimination of products, units, and graded modal types is achieved via the
(LET) rule, which applies pattern matching to a term t1 to produce a context of
typed binders ∆ to be used in t2. Patterns p are typed by judgements of the form
?r ` p : A � ∆, meaning that a pattern p has type A and produces a context of typed
binders ∆. Optional grade information is denoted via ?r, defined syntactically as
?r ::= · | r, where r indicates that the rule takes place under an unboxing pattern.
We then define the rules for pattern typing as:

· ` x : A � x : A
PVAR

· ` p1 : A � Γ1 · ` p2 : B � Γ2

· ` (p1,p2) : A ⊗ B � Γ1,Γ2
PPROD

r ` p : A � Γ

· ` [p] :�rA � Γ
PBOX

r ` x : A � x : [A]r
[PVAR]

r ` p1 : A � Γ1 r ` p2 : B � Γ2

r ` (p1,p2) : A ⊗ B � Γ1,Γ2
[PPROD]

?r ` unit : 1 � ∅
PUNIT

The (PBOX) rule types ‘unboxing’ patterns by propagating grade information r
into the typing of the sub-pattern p. We therefore require two rules each for
the typing of variable and product patterns: a rule for linear patterns (PVAR and
PPROD) and a rule for patterns which take place inside an unboxing ([PVAR] and
[PPROD]). In the case of the latter [PVAR] rule, a binding is produced with the
grade of the enclosing box’s grade r. Likewise in [PPROD], grade information is
propagated to the typing of the product’s constituent sub-patterns. Unit patterns
are not affected by the enclosing grade and so have one rule PUNIT above.
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3 Dissecting the problem
In the above system, we can construct the following derivation, nesting a tensor
pattern inside an unboxing pattern:

Γ1 ` t1 :�r(A ⊗ B)

r ` x : A � x : [A]r
[PVAR]

r ` y : B � y : [B]r
[PVAR]

r ` (x,y) : A ⊗ B � x : [A]r,y : [B]r
[PPROD]

· ` [(x,y)] :�r(A ⊗ B) � x : [A]r,y : [B]r
PBOX

Γ2,x : [A]r,y : [B]r ` t2 : C
Γ1 +Γ2 ` let [(x,y)] = t1 in t2 : C

LET

This prevents us capturing linear logic’s ! as some 2r in a graded system, since
from the above we can derive push2 :2r (A⊗B)(2rA⊗2rB with t2 =([x ], [y ]).
We briefly demonstrate how this problem affects languages other than Granule.

Linear Haskell As of GHC 9, Haskell implements a graded type system [BBN+17].
Function types (a %r -> b) now have a multiplicity annotation r. The annotation
r is either ’One or ’Many, corresponding to linear and unrestricted use of the argu-
ment, respectively. Following the presentation in [HVO20], we can define a graded
modality in Linear Haskell via the Box data type:

Haskell
1 data Box r a where { Box :: a %r -> Box r a }

We might hope to define !A= Box %’Many A, but this does not provide an accurate
definition of the exponential modality as we can define the push distributive law:

Haskell

1 push :: Box r (a, b) %1 -> (Box r a, Box r b)

2 push (Box (x, y)) = (Box x, Box y)

The Box %’Many A type is equivalent to a wrapper data type Unrestricted which is
described as being “very much like !a in linear logic” [BBN+17]. The existence
of push shows one way in which !a and Unrestricted a behave differently.

Idris 2 Idris 2 is based on Quantitative Type Theory (QTT) [Bra21, Atk18],
though, as we discuss below, QTT does not admit push, while Idris 2 does. In
both Idris 2 and QTT, every variable has a quantity associated with it, either 0, 1
or ω (unrestricted). Idris 2 does not support direct abstraction over multiplicity, so
instead of a general 2r type, we define a type corresponding to 2ω and the Haskell
Unrestricted data type:

Idris 2
1 data Unrestricted : Type -> Type where Box : a -> Unrestricted a

(Note here that, as in Haskell, variables have an unrestricted multiplicity by de-
fault.) Similarly to Haskell, we might hope that we can define !A= Unrestricted A.
However, again this is not possible as we can redefine the same push law which is
not derivable in linear logic.
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Idris 2

1 push : Unrestricted (a, b) -> (Unrestricted a, Unrestricted b)

2 push (Box (x, y)) = (Box x, Box y)

QTT Quantitative Type Theory [Atk18, McB16] is an example of a graded type
system without the push behaviour, thus being a conservative extension of linear
logic. It does this via a more restricted rule for tensor products than the other sys-
tems mentioned in this paper. Below, we give the rule for tensor products as it
appears in the original paper, and also a simplified version comparable with propo-
sitional linear logic.

In QTT, conclusions are annotated either 1 or 0. Rules are given for both
possibilities simultaneously, with σ ranging over {0,1}. Conclusions annotated
0 are used only for constructing (dependent) types, so we need only consider the
σ = 1 case. Further simplifying to get the elimination rule for a simple tensor
product, we ignore all of the dependency in T and U , and set π (the grade of the
first component of the pair) to 1. All of these simplifications get us the second rule
below. Essentially the same simplified rule appears in the system λ R, which is
equivalent to intuitionistic linear logic [WA21].

0Γ1,z
0
: (x

π
: S )⊗T `U Γ1 `M

σ
: (x

π
: S )⊗T

Γ2,x
σπ
: S ,y

σ
: T `N σ

: U [(x ,y)/z ] 0Γ1 = 0Γ2

Γ1 +Γ2 ` let
x

π
:S .T

(x ,y) =M in N
σ
: U [M /z ]

0Γ1 = 0Γ2 Γ1 `M : S ⊗T

Γ2,x
1
: S ,y

1
: T `N : U

Γ1 +Γ2 ` let (x ,y) =M in N : U

Abel & Bernardy’s Λp Abel and Bernardy defined a graded type system Λp and
denotational semantics admitting push [AB20]. They have the following rule for
pattern matching on products:

γΓ ` t : A×B δΓ,x : qA,y : qB ` u : C

(qγ +δ )Γ ` let (x ,y) = q t in u : C

This is akin to the elimination behaviour underneath a graded modality in GRCORE

as shown at the start of this section. Compared to the simplified QTT pattern
matching rule, the essential difference with QTT becomes apparent: the Λp rule
has the extra grade q , allowing not just one A×B to yield one A and one B , but
q-many inhabitants of A×B (signified by the fact that γ is multiplied by q in the
conclusion) to yield q-many As and q-many Bs. This stronger elimination rule
requires a semantic version of push in the models, but such models still include the
one used to show that every linear term is a permutation.

4 Solution

The key to controlling the ‘push’ behaviour is to control pattern matching on tensor
products underneath a graded modality. We thus extend the pre-ordered semiring

5
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with a partial commutative and associative binary operator n : R×R 7→R (pro-
nounced ‘hsup’) used in the typing of patterns for tensor products as:

r ` p1 : A � Γ1 s ` p2 : B � Γ2

r n s ` (p1,p2) : A ⊗ B � Γ1,Γ2
[PPROD]

Thus, to pattern match on a pair inside of an unboxing pattern, we must be able
to compute r n s, where r and s are the grades used to type the pair’s constituent
sub-patterns. For the semirings where we wish to permit the full ⊗ distributive
law we can set n to be the (partial) least-upper bound t derived from the pre-
ordering which recovers the existing pattern matching typing, e.g., for the exact
usage semiring (N with pre-ordering as equality) this means that n is only defined
when r = s .

For graded modalities where we wish to disallow the ‘push’ behaviour we can
leave r n s undefined for the relevant grades. In this way, we can recover the power
of linear logic’s ! in our calculus via the pre-ordered semiring {0,1,ω} (none-one-
tons) with !A = �ωA. The semiring is defined with r + s = r if s = 0, r + s = s
if r = 0 and otherwise ω , and r ∗ 0 = 0 ∗ r = 0, r ∗ω = ω ∗ r = ω (for r 6= 0),
and r ∗ 1 = 1 ∗ r = r with ordering 0 v ω and 1 v ω . This semiring allows us
to represent both linear and non-linear use: variables graded with 1 must be used
linearly, with 0 must be discarded, and a grade of ω permits unconstrained use à la
linear logic’s !. We then define r n s for this semiring as:

r n s =
{

1 r = 1 ∧ s = 1
⊥ otherwise

(1)

i.e., if either of the grades is not 1, then n is undefined and we cannot apply the
[PPROD] pattern typing rule, thus disallowing !(A⊗B)→ !A⊗ !B and recovering
the strength of ! for intuitionistic multiplicative exponential linear logic (IMELL):

Theorem 1 (Equivalent expressivity). The adjusted GRCORE calculus, for the
none-one-tons semiring with !A=�ωA, has the same expressive power as IMELL.

The equivalence in expressivity follows by a translation. In the case of the
GRCORE � IMELL direction, we interpret contexts and types directly, but a type-
directed translation is then required for the term. In the opposite direction, a more
syntactic translation is possible, since we follow Benton et al.’s full term assignment
for IMELL [BBdPH93]. The appendix [HMWO21] provides the proof.

• (GRCORE into IMELL) Γ ` t : A ⇒ ∃M . JΓK `IMELL M : JAK

• (IMELL into GRCORE) Γ `IMELL M : T ⇒ JΓK ` JMK : JTK

The translation from GRCORE to IMELL maps both �0A and �ωA to !JAK and
�1A to just JAK, and similarly for graded assumptions (e.g., x : [A]ω to x :!JAK).

The operation n is inspired by the coeffect calculus of Petricek et al. [POM14]
whose graded type system includes n as an operation to control splitting of re-
sources to subterms, modelled by colax monoidality of a graded comonad nr ,s,A,B :
Dr ns(A⊗B)→ (DrA⊗DsB).
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https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

5 Implementation in Granule

The partial operation n is implemented within the Granule compiler as part of the
type checker. Granule has a more general notion of type constructors than we
defined in our calculus here, including user defined algebraic data types (ADTs)
as well as generalised algebraic data types (GADTs). Thus, instead of occurring
solely in the presence of product patterns, n is applied whenever a pattern match
occurs against a constructor with at least one sub-pattern.

We implement n via a constraint on the grades given by the data constructor
pattern (inside a box pattern) which is then discharged via an SMT solver. If such
a constraint is satisfiable, then the type checking of the pattern may proceed. The
nature of information flow in the type checking of a Granule pattern match is such
that the grades r and s in r n s are necessarily the same, i.e. r n r, and we require that
this is then defined at r . For the 0-1-ω semiring (called LNL in Granule and written
with elements 0, 1, Many), where ω is used to model the exponential modality, r n r
is then defined only when r = 1. We can therefore no longer write the (previously
type checkable) Granule program:

Ill-typed Granule

1 push : ∀ {a b : Type} . (a, b) [Many] → (a [Many], b [Many])

2 push [(x, y)] = ([x], [y])

6 Conclusions

Graded types trace their origins from intuitionistic linear logic. The inability in
many of these systems to capture the strength of ! therefore represents an interest-
ing divergence in their expressive power from linear logic. The solution described
here allows our calculus to retain both the power of push and of !, by defining
when grades can be ‘pushed inside a tensor’ via the algebraic structure of grades.
This approach is readily adaptable to the other graded systems described here. This
has implications for other ongoing work on the automatic derivation of distributive
laws for arbitrary types in a graded type system [HVO20]. The ability to define
where push is possible for a given semiring imposes an additional constraint on
when the push distributive law for a type can be automatically calculated.
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