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Parallelism in Soft Linear Logic

Paulin Jacobé de Naurois∗

Abstract

We extend the Soft Linear Logic of Lafont with a new kind of
modality, called parallel. Contractions on parallel modalities are only
allowed in the cut and the left ( rules, in a controlled, uniformly dis-
tributive way. We show that SLL, extended with this parallel modal-
ity, is sound and complete for PSPACE. We propose a corresponding
typing discipline for the λ-calculus, extending the STA typing sys-
tem of Gaboardi and Ronchi, and establish its PSPACE soundness
and completeness. The use of the parallel modality in the cut-rule
drives a polynomial-time, parallel call-by-value evaluation strategy of
the terms.

1 Introduction

Implicit Complexity aims at providing purely syntactical, machine indepen-
dent criteria on programs, in order to ensure they respect some complexity
bounds upon execution. In the context of functional programming, the
use of tailored proof systems, and subsequent type systems for λ-calculus,
has been very successful: using subsystems of Linear Logic [Gir87], several
proof systems have been proposed, where cut-elimination has a bounded
complexity. Consequently, under the Curry-Howard isomorphism, type sys-
tems for λ-calculus based on these logics have been proposed, where β-
normalization of the typed terms follows the same complexity bounds. Such
results include, among many others, Bounded Linear Logic [GSS92, LH10]
and Light Linear Logic [Gir98, BT09] for polynomial time computation,
and Stratified Bounded Affine Logic [Sch07, LS10] for logarithmic space
computations. Our interest in this paper lies in the Soft Linear Logic
of Lafont [Laf04], which proposes a simple and elegant approach for en-
suring polynomial time bounds by controlling contractions on exponen-
tial formulas, and in the subsequent type systems for polynomial time λ-
calculus [BM04, GR07, GMR08].
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https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

At this point, it is relevant to note that the complexity classes cap-
tured thus far are all sequential, deterministic in essence. While Soft Lin-
ear Logic type systems have been extended to express the classes NP and
PSPACE [GMR12], it is important to note that the construction relies on
Soft Type Assignment (STA), a deterministic, sequential polynomial time
type system, by extending the λ-calculus with an additional construct (if
then else), for which an ad hoc, alternating polynomial time evaluation
strategy is imposed - the core of the language retaining its sequential poly-
nomial time evaluation. While being indeed extensionally complete for
PSPACE, this approach lacks intensionality: many natural algorithms, that
are easily computable in parallel, are hardly expressible in this setting. Let
us take as simple example the numerical evaluation of a balanced, arithmetic
expression on bounded integer values. In order to compute it in alternating
polynomial time with the (if then else) defined in [GMR12], one would
need to express the value of all bits of the result as boolean expressions on
the bits of the input numbers, and use the alternating evaluation of the (if
then else) construct to speed up the parallel computation time - not quite
a practical method. Furthermore, this approach is no longer doable in real
world functional programming languages, where integers are given as a base
type, and arithmetical operations as unitary functions of the language.

A reason why these approaches are all essentially sequential, determinis-
tic is that they use the typing discipline to control the amount of resources
the calculus uses (e.g. by controlling contractions on exponentials), not
the way these resources are distributed along the computation. In order to
truly denote parallel computation in a functional programming language,
our proposal here is to use a parallel, call-by-value evaluation strategy for
the λ-calculus: in an application, both terms can be normalized in paral-
lel, before the substitution of the redex takes place. If both terms share
the same normalization time bound, the parallel evaluation strategy is ef-
ficient. Note that in first order functional programming, this is already
the approached used by Leivant and Marion [LM94] with their safe recur-
sion with substitutions: using sequential resource bounds from Ptime Safe
Recursion [BC92], and a parallel call-by-value evaluation strategy, the au-
thors characterize the class FPAR (Parallel polynomial time), which co-
incides with PSPACE. This approach has also been later on extended to
sub-polynomial complexity classes [Kur04, BKMO16, JDN19]. For higher
order functional programming, we rely on the Curry-Howard isomorphism:
ensuring an homogeneous computation time on the parallel evaluation of
both arguments of an application amounts to ensuring that both premises
of a cut-rule share a homogeneous bound on the resource usage in the cor-
responding type system.

In order to achieve this, we can no longer rely on the usual linear cut-rule.
We propose therefore a modification of the linear cut-rule, that internalizes
a controlled number of contractions on some formulas, that are uniformly
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distributed among the premises. These formulas are decorated with a ded-
icated modality, called parallel modality. This approach is applied here on
the Soft Type Assignment (STA) of Gaboardi and Ronchi [GR07], in or-
der to propose a sound and complete type system for PSPACE, with a truly
parallel evaluation strategy. We believe it could be also successfully adapted
to other type systems.

2 Parallel Soft Linear Logic

2.1 Soft Linear Logic

Let us recall the SLL rules of Lafont [Laf04], in its intuitionistic fashion. It
the following, (A)n stands for n copies of A in a sequent.

(Id)
U ` U

Γ ` U ∆, U ` V
(cut)

Γ,∆ ` V
Γ, U ` V

(( R)
Γ ` U ( V

Γ ` U V,∆ ` Z
(( L)

Γ, U ( V,∆ ` Z
Γ ` A Γ ` B (&R)

Γ ` A&B

Γ, A ` V
(&L1)Γ, A&B ` V

Γ, B ` V
(&L2)Γ, A&B ` V

Γ ` U (∀R)
Γ ` ∀αU

Γ, U [V/α] ` Z
(∀L)

Γ,∀αU ` Z
Γ ` U (sp)
!Γ `!U

Γ, (U)n ` V n ≥ 0
(m)

Γ, !U ` V
In the (m) rule, n is the rank. The rank of a proof is the maximal rank

of its (m) rules, its degree is the maximal nesting of ! modalities.
SLL proofs of rank n and degree d normalize in polynomial time nd.

2.2 Parallel Modalities

PSLL is built upon SLL. An Additional modality, called the parallel modal-
ity �, is introduced with the additional condition, necessary to ensure (cut)-
elimination, that � sub-formulas occur only negatively in our sequents. The
corresponding rules are

Γ ` B (�W )
Γ,�A ` B

Γ, A ` B
(�D)

Γ,�A ` B
�∆,Γ,` U

(�sp)
�∆, !Γ `!U

2.2.1 (�Cut) and (�() Rules

Contraction for parallel formulas is internalized into the PSLL (�cut)-rule,
in a controlled fashion. As for the usual cut-rule in linear logic, linear and
exponential formulas are linearly distributed among the two premises. The
(binary) (�cut) rule is the following,

�∆1,Γ1 ` A1 �∆2,Γ2, A1 ` A2 �∆1 ( �∆, �∆2 ( �∆
(�cut)

�∆,Γ1,Γ2 ` A2

3

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/


From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
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with cut-formula A1, cut-pair of premises the two premises, and, simi-
larly, the (binary) (�() rule is the following,

�∆1,Γ1 ` A1 �∆2,Γ2, A2 ` A3 �∆1 ( �∆, �∆2 ( �∆
(�()

�∆,Γ1, A1 ( A2,Γ2 ` A3

with principal (-formula A1 ( A2 and (-pair of premises its two
premises. In a proof tree consisting only in (n− 1) binary linear (cut) rules,
these (cut) rules can be freely permuted, and a generalized, n − ary linear
cut-rule can be derived from the binary ones. The non-linear distribution of
parallel modalities in PSLL breaks this isomorphism: permuting two binary
(�cut) rules in a binary tree of (�cut) rules may come in conflict with the
side condition ∆i ( �∆. Under some conditions the same remark can be
made for ( L rules as well, whose structure is similar to the (cut) rule. Since
we want a uniform bound on the parallel normalization of the premises, we
define a n-ary parallel cut-rule as a parallel extension of the linear one, where
the side condition for parallel modalities is adapted accordingly: We define
linear n-ary cuts, with (cut)-pairs of premises as follows:

Definition 1 (n-ary (cut/( L) rule) The following n-ary (cut/( L)

Γ1 ` A1 Γ2 ` A2 · · · Γd ` Ad R : (cut/( L)
Γ,Λ ` Ad

is either a binary (( L) with (-pair the pair of its two premises, or a
binary (cut) rule with (cut)-pair the pair of its two premises, or it is a n-
ary rule obtained by several of the following proof tree (cut/ ( L)-merge
rewriting steps:

T1 · · ·
T2 · · · Tn R1Tt · · ·Tm R2Γ,Λ ` Ad

→ T1 · · · T2 · · · Tn · · · Tm
R

Γ,Λ ` Ad
where the principal formulae of R1 are not sub-formulae of those of R2.

The multiset of ( (respectively (cut)) principal formulae of R is then the
union of those of R1 and R2. The cut - and (-pairs of R are obtained
from the union of those of R1 and R2 with the following update procedure:
whenever Tt belongs to a ( or cut-pair of premises Tt → Tw ( respectively
Tw → Tt) of R2, with corresponding principal formula F belonging to one
of the premises Tv of R1, the pair Tt → Tw (resp. Tw → Tt) is replaced by
Tv → Tw (resp. Tw → Tv), with the same corresponding principal formula.

Now, provided

Γ1 ` A1 Γ2 ` A2 · · · Γd ` Ad R : (cut/( L)
Γ,Λ ` Ad

is a valid n − ary rule in SLL we deem the folowing n-ary (�,( cut) rule
valid for PSLL
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�∆1,Γ1 ` A1 �∆2,Γ2 ` A2 · · · �∆d,Γd ` Ad
(�,( cut)

�∆,Γ,Λ ` Ad

where the side condition ∀i = 1, · · · , d,�∆i ( �∆ holds, with the exact
same (cut)-pairs. These (cut)-pairs play a role in our parallel evaluation
strategy, and define a forest structure on the premises of a (�,( cut)-rule,
called the pairing forest.

The logic PSLL is then given by the rules (( R), (∀R), (∀L), (&R),
(&Li), (m) (�sp), (�W ), (�D) and (�,( cut).

2.3 Parallel Cut Elimination

Restricting � modalities to negative sub-formulae only ensures that PSLL
enjoys cut elimination - the elimination cases being almost identical to those
of SLL. We moreover define a parallel, call-by-value elimination strategy.

Definition 2 (Parallel elimination of an innermost cut) Le Π be a
PSLL proof. A (�,( cut) rule R with cut-pairs is innermost if there is no
other (�,( cut) rule with cut-pairs along any path from R to the axioms.

Let R be an innermost (�,( cut) rule in Π, and F (R) be the pairing
forest. The parallel elimination of R is then the following procedure:

1. For any premise S = Λ ` B of R root in F (R), with cut-pairs (S1 =
Γ1 ` A1, S), · · · , (St = Γt ` At, S), perform the rule permutations such
that S is conclusion of a proof tree with deep most rules the left rules
with principal formulae A1, · · · , At, and

2. perform the rule permutations s. t., for i = 1, · · · , t, Si is conclusion
of a proof tree ending with a right rule with principal formula Ai.

3. perform in parallel the cut-elimination steps of all cut-pairs (Si, S) for
all roots S in F (R).

4. if R has at least one cut-pair left, go to step 1.

The Innermost parallel cut-elimination procedure consists in applying in par-
allel, for all its innermost cuts, their parallel elimination, until no (�,( cut)
rule with cut-pairs remains.

The innermost parallel cut-elimination procedure ensures that the blow-
up of the (�,( cut) rules remains under control, and can be done in parallel
polynomial time:

Theorem 3 Let Π be a PSLL proof, of rank n and degree d, with conclusion
sequent S. Let M be the maximal size of its cut-formulae, and h the maxi-
mal height of its pairing forests.Then, an innermost parallel cut-elimination
strategy takes O(|S|.M.h.n2d) steps.

It follows that PSLL is sound for FPSPACE. Completeness is given by the
type assignment of the next section.
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3 A Parallel Polynomial Time Type Assigment for
λ-calculus

We take insipiration from the STA type assignment of [GR07]. We add the
parallel modalities in a restricted way, as follows.

Definition 4 In the following, α, β, etc stand for base type variables, A,
B, C, etc stand for types with linear output, and σ, τ , etc stand for PSTA
types. The PSTA grammar is:

A,B,C := α | σ ( A | ∀αA | A&B

σ, τ, ρ, µ, ν := A | !σ | � σ

A PSTA Typing context is a set of type assignments M : σ, where M
is a λ-term and σ a PSTA type. A PSTA Typing judgment is Γ ` M : σ,
where Γ is a PSTA Typing context, M is a λ-term, and σ is a PSTA type.

The PSTA typing rules are the following.

(�Id)
�∆, x : A ` x : A

Γ `M : σ (�W )
Γ, x : �τ `M : σ

�∆, Γ `M : σ
(�Sp)

�∆, !Γ `M : !σ

Γ, x0 : U, · · · , xn : τ `M : σ
(m)

Γ, x : !τ `M [x/x0, · · · , x/xn] : σ
Γ `M : A (∀R)

Γ `M : ∀αA
Γ `M : σ1 Γ `M : σ2 (NR)

Γ `M : σ1Nσ2
Γ, x : A[B/α] `M : σ

(∀L)
Γ, x : ∀αA `M : σ

Γ, x : σ `M : A
(( R)

Γ ` λx.M : σ ( A

Γ, x2 : τ2 `M : σ
(NL2)

Γ, x : τ1Nτ2 `M [x/x2] : σ

Γ, x1 : τ1 `M : σ
(NL1)

Γ, x : τ1Nτ2 `M [x/x1] : σ

Γ, x1 : τ `M : σ
(�D)

Γ, x : �τ `M [x/x1] : σ

�∆1, Γ `M : τ �∆2, Λ, x : τ ` N : σ
(�cut)

�∆, Γ, Λ, ` N [M/x] : σ

�∆1, Γ `M : τ �∆2, Λ, x : A ` N : σ
(�( L)

�∆, Γ, Λ, y : τ ( A ` N [yM/x] : σ

With the following additional side conditions:

• Parallel types occur only with negative polarity in the typing judg-
ments,

• In rules (�cut) and (� ( L), the domain of contexts Γ and Λ are
disjoint, and finally

• In rules (�cut) and (�( L), we have �∆1 ( �∆, and �∆2 ( �∆.
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Moreover, we also define a generalized (�,( cut) rule similar to that of
PSLL, with the appropriate nesting of substitutions for all (cut) and (
pairs of terms.

Then, PSTA enjoys the subject-reduction property, can be evaluated in
parallel polynomial time, and is complete:

Theorem 5 PSTA is complete for FPAR.

4 Concluding Remarks

In this paper we have only investigated one of the many possible choices for
the way the parallel (�,( cut) rule allows contraction on � formulas, and
allows its distribution among the premises of the cut, and we have applied
this approach to one example (STA) of linear typing system. Among the
questions now worth investigating are the following: Is it possible to tune
differently the (�,( cut) rule to capture other complexity classes? For
instance, does it hold that taking the �∆i in the premise to have size half of
that of �∆ yields some sort of logarithmic, or polylogarithmic parallel time
bound? Is it also possible to use this approach on type systems capturing
other sequential complexity classes, for instance Logspace [Sch07, LS10], and
to obtain other interesting results?
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